Unit 6 - Lecture 13

Beam loading

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

Source: Wake field slides are based on Sannibale lecture 9

Iliit
 Figure of merit 1: Beam energy

粦 Two particles have equal rest mass m_{0}.
Laboratory Frame (LF): one particle at rest, total energy is $\mathrm{E}_{\text {lab }}$.

$$
\mathbf{P}_{\mathbf{1}}=\left(E_{1} / c, \mathbf{p}_{\mathbf{1}}\right) \quad \mathbf{P}_{\mathbf{2}}=\left(m_{0} c, \mathbf{0}\right)
$$

Centre of Momentum Frame (CMF): Velocities are equal \& opposite, total energy is E_{cm}.

$$
\begin{gathered}
\mathbf{P}_{\mathbf{1}}=\left(E_{\mathrm{cm}} /(2 c), \mathbf{p}\right) \\
\boldsymbol{E}_{c m} \approx \sqrt{2 m_{o} c^{2} E_{l a b}} \text { for } E_{l a b} \gg m_{o} c^{2}
\end{gathered}
$$

Iliit
 Surface field breakdown behavior

Beam loading

US Particle Accelerator School

||| Assumptions in our discussion

1. Particle trajectories are parallel to z -axis in the region of interest
2. The particles are highly relativistic
3. $(1)+(2)==>$ The beam is rigid,
\rightarrow Particle trajectories are not changed in the region of interest
4. Linearity of the particle motion
\rightarrow Particle dynamics are independent of presence of other particles
5. Linearity of the electromagnetic fields in the structure
\rightarrow The beam does not detune the structure
6. The power source is unaffected by the beam
7. The interaction between beam and structure is linear

|||i| Recall our discussion of space charge fields

粦 Coulomb interaction ==> space charge effect
\rightarrow A generic particle in the bunch experiences the collective Coulomb force due to fields generated by all the other particles in the bunch

粦 Such self-fields are usually nonlinear
\rightarrow Their evaluation usually requires numerical techniques
\rightarrow Special cases can be evaluated analytically

|- Lee Teng's solution for fields inside the beam

粦 Conditions:
\rightarrow Continuous beam with constant linear charge density 1
\rightarrow Stationary uniform elliptical distribution in the transverse plane
$\rightarrow a$ and b the ellipse half-axes,
\rightarrow the beam moves along z with velocity βc.

$$
\begin{array}{cc}
E_{x}=\frac{1}{\pi \varepsilon_{0}} \frac{\lambda x}{a(a+b)} & E_{y}=\frac{1}{\pi \varepsilon_{0}} \frac{\lambda y}{b(a+b)} \\
B_{x}=-\frac{\mu_{0}}{\pi} \frac{\lambda \beta c y}{b(a+b)} & B_{y}=\frac{\mu_{0}}{\pi} \frac{\lambda \beta c x}{a(a+b)} \\
B_{x}=-\frac{\beta}{c} E_{y}, & B_{y}=\frac{\beta}{c} E_{x},
\end{array}
$$

||||| Space charge for Gaussian distribution

粦 Conditions

\rightarrow Charge density is gaussian in the transverse plane
$\rightarrow x \ll \sigma_{x}$ and $y \ll \sigma_{y}$:

$$
\begin{array}{cc}
E_{x}=\frac{1}{2 \pi \varepsilon_{0}} \frac{\lambda x}{\sigma_{x}\left(\sigma_{x}+\sigma_{y}\right)} & E_{y}=\frac{1}{2 \pi \varepsilon_{0}} \frac{\lambda y}{\sigma_{y}\left(\sigma_{x}+\sigma_{y}\right)} \\
B_{x}=-\frac{\mu_{0}}{2 \pi} \frac{\lambda \beta c y}{\sigma_{y}\left(\sigma_{x}+\sigma_{y}\right)} & B_{y}=\frac{\mu_{0}}{2 \pi} \frac{\lambda \beta c x}{\sigma_{x}\left(\sigma_{x}+\sigma_{y}\right)} \\
B_{x}=-\frac{\beta}{c} E_{y}, & B_{y}=\frac{\beta}{c} E_{x},
\end{array}
$$

｜｜｜Vacuum Chamber Effects：Image Charge

粦 In the lab frame，the EM field of a relativistic particle is transversely confined within a cone of aperture of $\sim 1 / \gamma$

粦 Particle accelerators operate in an ultra high vacuum environment provided by a metal vacuum chamber

粦 By Maxwell equations，the beam＇s E field terminates perpendicular to the chamber（conductive）walls

粦 An equal image charge，but with opposite sign，travels on the vacuum chamber walls following the beam

IT Vacuum Chamber Wake Fields

粦 Any variation in chamber profile，chamber material，or material properties perturbs this configuration．
粦 The beam loses part of its energy to establish EM（wake）fields that remain after the passage of the beam．

粦 By causality in the case of ultra－relativistic beams，chamber wakes can only affect trailing particles

The accelerator cavity is，by design，such a variation

||| Longitudinal wakes \& beam loading

粦 If the structure is axisymmetric \& if the beam passes on the axis of symmetry...

粦 ... the force on axis can only be longitudinal

In a cavity the longitudinal wake (HOMs) is closely related to beam loading via the cavity impedance

Iliit
 Fundamental theorem of beam loading

A point charge crosses a cavity initially empty of energy.
After the charge leaves the cavity, a beam-induced voltage $V_{b, n}$ remains in each mode.

By energy conservation the particle must have lost energy equal to the work done by the induced voltage on the charge

$$
\text { What fraction }(f) \text { of } V_{b, n} \text { does the charge itself see? }
$$

||| The naïve guess is correct for any cavity

This theorem relates the energy loss by a charge passing through a structure to the electromagnetic properties of modes of that structure.

By superposition, $V_{b, n}$ in a cavity is the same whether or not a generator voltage is present.

IIII A simple proof

W's are the particle energies
U is the cavity energy

Half an rf period later, the voltage has changed in phase by π
 is decreased

Increase in $U=$ decrease in W

$$
\alpha \mathbf{V}_{b}^{2}=q \mathbf{f} \mathbf{V}_{b}=\Rightarrow \mathbf{V}_{b}=q \mathbf{f} / \alpha
$$

V_{b} is proportional to q

|| The simplest wakefield accelerator: q sees an accelerating voltage

By energy conservation:

$$
\begin{gathered}
W+q V_{b}-q \mathrm{fV}_{b}+W-q \mathrm{fV}_{b}=W+W \\
==\mathbf{f}=\mathbf{1} / \mathbf{W}
\end{gathered}
$$

Half an rf period later, the voltage has changed in phase by π

Note that the second charge has gained energy

$$
\Delta W=1 / 2 q V_{b}
$$

from longitudinal wake field of the first charge

Locating the bunch at the best rf-phase minimizes energy spread

IIT Longitudinal wake field determines the (minimum) energy spread

The wake potential, $\mathrm{W}_{\| \mid}$varies roughly linearly with distance, s , back from the head

$$
W_{11}(s) \approx W_{11}^{\prime} s
$$

The energy spread per cell of length d for an electron bunch with charge q is

$$
\Delta W_{\mathrm{ll}}(s) \approx-q e W_{\mathrm{ll}}^{\prime} s_{\text {tail }}
$$

||| Beam loading effects for the SLAC linac

IIII
 My calculation for a CLIC-like structure

Energy spread vs. bunch charge

||| Energy gain in a partially filled structure

粦 For a test charge at the beginning of the bunch
Energy gain $\equiv \Delta \mathrm{E} \equiv \int_{0}^{\mathrm{L}} E_{z}(s) d s$
E_{z} is the rf - field

$E_{z}(\mathrm{~s})=E_{o} e^{-s / l} \quad$ where l is the attenuation length
$l=L \frac{T_{o}}{T_{f}} \quad$ with $T_{o}=2 Q / \omega$ and $T_{f}=L / v_{g}$

$$
\therefore \Delta E \approx E_{o}\left(1-e^{-s_{o} / l}\right) \approx E_{o} s_{o}+\ldots
$$

｜｜｜In terms of the longitudinal wakefield．．．

粦 Bunch induces a wake in the fundamental accelerating mode

$$
E_{z, \mathrm{w}}=-2 \mathrm{kq}
$$

粦 The efficiency of energy extraction is

$$
\eta=1-\frac{\text { Remaining stored energy }}{\text { Initial stored energy }}
$$

粦 Stored energy $\sim E_{z}^{2}$

$$
\eta=1-\frac{\left(E_{z}+E_{z, w}\right)^{2}}{E_{z}^{2}}=\frac{4 k q}{E_{z}}-\frac{4 k^{2} q^{2}}{E_{z}^{2}} \approx \frac{4 k q}{E_{z}}
$$

米 The particle at the end of the bunch sees $E_{z}=E_{z, o}-2 k q$

$$
\therefore \text { Average } \Delta E \equiv\langle\Delta E\rangle=\left(E_{z}-k q\right) s_{o}-(k q)\left(l-s_{o}\right)
$$

1H- Now look at the second bunch setting $\Delta s=\Delta t / v_{o}$

$$
\begin{aligned}
\Delta E_{3} & =\int_{0}^{\Delta s} E_{z}(s) d s+\int_{\Delta s}^{2 \Delta s}\left(E_{z}(s)-2 k q\right) d s \\
& +\int_{2 \Delta s}^{s_{o}+2 \Delta s}\left(E_{z}(s)-4 k q\right) d s \\
& -4 k q\left(L-s_{o}-2 \Delta s\right)
\end{aligned}
$$

｜We can extend this idea to N bunches

粦 By analogy

$$
\Delta E_{n}=E_{o} l\left(1-e^{-\left(s_{o}+(n+1) \Delta s\right) / l}\right)-(n-1) 2 k q l+n(n+1) k q \Delta s
$$

粦 Assume a small attenuation parameter $\left(\mathrm{T}_{\mathrm{f}} / \mathrm{T}_{\mathrm{o}} \ll 1\right)$

$$
\Delta E_{n} \approx E_{o} s_{o}+(n-1)\left(E_{o} \Delta s-2 k q L\right)+n(n-1) k q \Delta s
$$

＊The quadratic tern prevents all $\Delta \mathrm{E}_{\mathrm{n}}$ from being equal
粦 We can choose $\Delta \mathrm{s}$ so $\Delta \mathrm{E}_{1}=\Delta \mathrm{E}_{\mathrm{N}}$ ；i．e．，such that

$$
(n-1)\left(E_{o} \Delta s-2 k q L\right)+n(n-1) k q \Delta s=0 \quad \text { for } n=N
$$

｜l｜i｜．．．finally．．．

粦 That is

$$
\frac{\Delta s}{L}=\frac{2 k q}{E_{o}+N k q}
$$

米 Then the maximum energy spread between the bunches is

$$
\delta E_{\max }=\operatorname{Max}\left(\Delta E_{i}, \Delta E_{j}\right)=-\frac{N(N-2)}{4} k q \Delta s
$$

类 In terms of the single bunch beam loading $\eta_{o}=4 k q / E_{o}$

$$
\frac{\Delta s}{L}=\frac{\Delta t}{T_{f}}=\frac{\eta_{o}}{2} \frac{1}{1+\eta_{o} N / 4}
$$

类 Where the maximum $\delta E_{\max }$ is set by the application

$$
\eta_{o} \approx\left[\frac{32 \delta E_{\max }}{N(N-2)}\right]^{1 / 2}
$$

｜｜｜Costs of making a multi－bunch train

粦 Decreased gradient：

$$
\mathrm{E}_{\mathrm{actual}} / \mathrm{E}_{\max } \approx 1-\mathrm{N} \eta_{\mathrm{o}} / 2
$$

粦 Decreased efficiency

$$
\eta_{\mathrm{N}} \approx \mathrm{~N} \eta_{\mathrm{o}}\left(\sim 1-\mathrm{N} \eta_{\mathrm{o}} / 2\right)
$$

米 Example： $\operatorname{Say}(\Delta \mathrm{E} / \mathrm{E})_{\max }=10^{-3} \& N=10$ bunches

$$
\eta_{\mathrm{o}} \approx 2 \%
$$

米 The bunch separation $\left(\Delta \mathrm{t} / \mathrm{T}_{\mathrm{f}}\right) \approx 9.95 \times 10^{-3}$
米 For $\mathrm{f}_{\mathrm{rf}}=17 \mathrm{GHz} \& \mathrm{~T}_{\mathrm{f}}=70 \mathrm{~ns}$
$\rightarrow 21 \mathrm{~cm}$ spacing $==>12 \mathrm{rf}$ periods between bunches

$$
\eta_{10} \approx 18 \%
$$

｜｜｜Consider a 17 GHz MIT structure

粦 For $\mathrm{f}_{\mathrm{rf}}=17 \mathrm{GHz} \& \mathrm{~T}_{\mathrm{f}}=70 \mathrm{~ns}$
粦 21 cm spacing＝＝＞ 12 rf periods between bunches

$$
\eta_{10} \approx 18 \%
$$

粦 Since the rf is making up for the wakefields
\rightarrow tight tolerance on N
粦 In this case，

$$
\langle\Delta \mathrm{N} / \mathrm{N}\rangle<1 \%
$$

|l| Scaling of wakefields with geometry \& frequency in axisymmetric structures

For the disk-loaded waveguide structure (and typically)

* Longitudinal wake field scales as $a^{-2} \sim \lambda_{r f}^{-2}$

粦 Transverse wakes scale as $a^{-3} \sim \lambda_{r f}^{-3}$

