

Unit 6 - Lecture 13 Beam loading

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

Source: Wake field slides are based on Sannibale lecture 9

US PARTICLE ACCELERATOR SCHOOL

Figure of merit 1: Beam energy

Two particles have equal rest mass m₀.

Laboratory Frame (LF): one particle at rest, total energy is E_{lab}.

$$\mathbf{P_1} = (E_1/c, \mathbf{p_1}) \qquad \mathbf{P_2} = (m_0 c, \mathbf{0})$$

Centre of Momentum Frame (CMF): Velocities are equal & opposite, total energy is E_{cm} .

US PARTICLE ACCELERATOR SCHOOL

Surface field breakdown behavior

Beam loading

US PARTICLE ACCELERATOR SCHOOL

Assumptions in our discussion

- 1. Particle trajectories are parallel to z-axis in the region of interest
- 2. The particles are highly relativistic
- 3. (1) + (2) ==> The beam is rigid,
 - → Particle trajectories are not changed in the region of interest
- 4. Linearity of the particle motion
 - → Particle dynamics are independent of presence of other particles
- 5. Linearity of the electromagnetic fields in the structure
 - \rightarrow The beam does not detune the structure
- 6. The power source is unaffected by the beam
- 7. The interaction between beam and structure is linear

Recall our discussion of space charge fields

- % Coulomb interaction ==> space charge effect
 - → A generic particle in the bunch experiences the *collective* Coulomb force due to fields generated by all the other particles in the bunch
- * Such self-fields are usually nonlinear
 - → Their evaluation usually requires numerical techniques
 - → Special cases can be evaluated analytically

We've already written the expressions for an axisymmetric beam with uniform charge density

Lee Teng's solution for fields inside the beam

- ***** Conditions:
 - \rightarrow Continuous beam with constant linear charge density 1
 - → Stationary uniform elliptical distribution in the transverse plane
 - \rightarrow a and b the ellipse half-axes,
 - \rightarrow the beam moves along *z* with velocity βc .

$$E_{x} = \frac{1}{\pi\varepsilon_{0}} \frac{\lambda x}{a(a+b)} \qquad E_{y} = \frac{1}{\pi\varepsilon_{0}} \frac{\lambda y}{b(a+b)}$$
$$B_{x} = -\frac{\mu_{0}}{\pi} \frac{\lambda \beta c y}{b(a+b)} \qquad B_{y} = \frac{\mu_{0}}{\pi} \frac{\lambda \beta c x}{a(a+b)}$$

$$B_x = -\frac{\beta}{c}E_y, \qquad B_y = \frac{\beta}{c}E_x,$$

Space charge for Gaussian distribution

- * Conditions
 - \rightarrow Charge density is gaussian in the transverse plane
 - $\rightarrow x \ll \sigma_x$ and $y \ll \sigma_y$:

$$E_{x} = \frac{1}{2\pi\varepsilon_{0}} \frac{\lambda x}{\sigma_{x}(\sigma_{x} + \sigma_{y})} \qquad E_{y} = \frac{1}{2\pi\varepsilon_{0}} \frac{\lambda y}{\sigma_{y}(\sigma_{x} + \sigma_{y})}$$
$$B_{x} = -\frac{\mu_{0}}{2\pi} \frac{\lambda\beta cy}{\sigma_{y}(\sigma_{x} + \sigma_{y})} \qquad B_{y} = \frac{\mu_{0}}{2\pi} \frac{\lambda\beta cx}{\sigma_{x}(\sigma_{x} + \sigma_{y})}$$
$$B_{x} = -\frac{\beta}{c} E_{y}, \qquad B_{y} = \frac{\beta}{c} E_{x},$$

Vacuum Chamber Effects:Image Charge

- ** In the lab frame, the EM field of a relativistic particle is transversely confined within a cone of aperture of ~ $1/\gamma$
- * Particle accelerators operate in an ultra high vacuum environment provided by a metal vacuum chamber
- By Maxwell equations, the beam's E field terminates perpendicular to the chamber (conductive) walls
- * An equal image charge, but with opposite sign, travels on the vacuum chamber walls following the beam

Vacuum Chamber Wake Fields

- * Any variation in chamber profile, chamber material, or material properties perturbs this configuration.

By causality in the case of ultra-relativistic beams, chamber wakes can <u>only</u> affect trailing particles

The accelerator cavity is, by design, such a variation

℁ If the structure is axisymmetric & if the beam passes on the axis of symmetry...

... the force on axis can only be longitudinal

In a cavity the longitudinal wake (HOMs) is closely related to beam loading via the cavity impedance

A point charge crosses a cavity initially empty of energy.

After the charge leaves the cavity, a beam-induced voltage $V_{b,n}$ remains in each mode.

By energy conservation the particle must have lost energy equal to the work done by the induced voltage on the charge

What fraction (f) of $V_{b,n}$ does the charge itself see?

This theorem relates the energy loss by a charge passing through a structure to the electromagnetic properties of modes of that structure.

By superposition,

V_{b,n} in a cavity is the same whether or not a generator voltage is present.

A simple proof

W's are the particle energies U is the cavity energy

For simplicity:

Assume that the change in energy of the particles does not appreciably change their velocity Half an rf period later, the voltage has changed in phase by π

Increase in U = decrease in W

$$\alpha V_b^2 = q f V_b = > V_b = q f / \alpha$$

V_b is proportional to q

US PARTICLE ACCELERATOR SCHOOL

The simplest wakefield accelerator: q sees an accelerating voltage

Half an rf period later, the voltage has changed in phase by π

Note that **the second charge** has gained energy

 $\Delta \mathbf{W} = 1/2 \mathbf{qV}_{\mathbf{b}}$

from longitudinal wake field of **the first charge**

By energy conservation:

 $W+qV_b - q fV_b + W - q fV_b = W + W$ = > f = 1/2

Locating the bunch at the best rf-phase minimizes energy spread

US PARTICLE ACCELERATOR SCHOOL

The wake potential, $W_{||}$ varies roughly linearly with distance, s, back from the head $W_{||}(s) \approx W'_{||}s$

The energy spread per cell of length d for an electron bunch with charge q is

$$\Delta W_{\rm ll}(s) \approx -qeW_{\rm ll}'s_{tail}$$

My calculation for a CLIC-like structure

Energy gain in a partially filled structure

\% For a test charge at the beginning of the bunch

Energy gain =
$$\Delta E = \int_{0}^{L} \mathcal{E}_{z}(s) ds$$

 \mathcal{E}_{z} is the rf - field
 $\mathcal{E}_{z}(s) = \mathcal{E} e^{-\frac{s}{l}}$ where *l* is the attenuation length

 $t_z(s) = t_o e^{-rt}$ where *l* is the attenuation length

 $l = L \frac{T_o}{T_f}$ with $T_o = \frac{2Q}{\omega}$ and $T_f = \frac{L}{v_g}$

$$\therefore \Delta E \approx \mathcal{E}_o \left(1 - e^{-\frac{s_o}{l}} \right) \approx \mathcal{E}_o s_o + \dots$$

In terms of the longitudinal wakefield...

₭ Bunch induces a wake in the fundamental accelerating mode

$$\mathcal{E}_{z,w} = -2kq$$

✤ The efficiency of energy extraction is

 $\eta = 1 - \frac{\text{Remaining stored energy}}{\text{Initial stored energy}}$

* Stored energy ~ \mathcal{E}_z^2

$$\eta = 1 - \frac{\left(\mathcal{E}_z + \mathcal{E}_{z,w}\right)^2}{\mathcal{E}_z^2} = \frac{4kq}{\mathcal{E}_z} - \frac{4k^2q^2}{\mathcal{E}_z^2} \approx \frac{4kq}{\mathcal{E}_z}$$

***** The particle at the end of the bunch sees $E_z = E_{z,o} - 2kq$

$$\therefore \text{ Average } \Delta E \equiv \langle \Delta E \rangle = (\mathcal{E}_z - kq) s_o - (kq)(l - s_o)$$

We can extend this idea to N bunches

℁ By analogy

$$\Delta E_n = \mathcal{E}_o l \left(1 - e^{-\left(s_o + (n+1)\Delta s\right)/l} \right) - (n-1)2kql + n(n+1)kq\Delta s$$

Assume a small attenuation parameter (T_f/T_o << 1)

$$\Delta \boldsymbol{E}_n \approx \boldsymbol{\mathcal{E}}_o \boldsymbol{s}_o + (n-1) \big(\boldsymbol{\mathcal{E}}_o \Delta \boldsymbol{s} - 2 k q L \big) + n(n-1) k q \Delta \boldsymbol{s}$$

* The quadratic tern prevents all ΔE_n from being equal * We can choose Δs so $\Delta E_1 = \Delta E_N$; i.e., such that

$$(n-1)(\mathcal{E}_o\Delta s - 2kqL) + n(n-1)kq\Delta s = 0$$
 for $n = N$

finally...

** That is $\frac{\Delta s}{L} = \frac{2kq}{E_o + Nkq}$

* Then the maximum energy spread between the bunches is

$$\delta E_{\max} = Max(\Delta E_i, \Delta E_j) = -\frac{N(N-2)}{4}kq\Delta s$$

* In terms of the single bunch beam loading $\eta_o = 4kq/\mathcal{E}_o$

$$\frac{\Delta s}{L} = \frac{\Delta t}{T_f} = \frac{\eta_o}{2} \frac{1}{1 + \eta_o N/4}$$

* Where the maximum δE_{max} is set by the application

$$\eta_o \approx \left[\frac{32 \ \delta E_{\max}}{N(N-2)}\right]^{1/2}$$

Costs of making a multi-bunch train

✤ Decreased gradient:

$$E_{actual}/E_{max}\approx 1\text{-}N\eta_o/2$$

* Decreased efficiency

$$\eta_{\rm N} \approx N \eta_{\rm o} (\sim 1 - N \eta_{\rm o} / 2)$$

- # The bunch separation ($\Delta t/T_{f})\approx 9.95$ x $10^{\text{-3}}$

$$\eta_{10} \approx 18\%$$

Consider a 17 GHz MIT structure

 $\text{** For } f_{rf} = 17 \text{ GHz } \& T_{f} = 70 \text{ ns}$

21 cm spacing ==> 12 rf periods between bunches

 $\eta_{10}\approx 18\%$

⋇ Since the rf is making up for the wakefields→ tight tolerance on N

₭ In this case,

 $\langle \Delta N/N \rangle < 1 \%$

Scaling of wakefields with geometry & frequency in axisymmetric structures

For the disk-loaded waveguide structure (and typically)

* Longitudinal wake field scales as

✤ Transverse wakes scale as

les as
$$a^{-2} \sim \lambda_{rf}^{-2}$$

 $a^{-3} \sim \lambda_{rf}^{-3}$

