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RF-cativties for acceleration

Microtron Synchrotron

Linac
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S-band (~3 GHz) RF linac

RF-input

RF-cavities
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RF cativties: Basic concepts

Fields and voltages are complex quantities.

For standing wave structures use phasor representation

For cavity driven externally, phase of the voltage is

 = t  + 

For electrons v  c;  therefore z = zo+ct

˜ V = Vei t     where    V = ˜ V 

Zo  is the reference plane

At t = 0 particle receives maximum voltage gain
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Basic principles and concepts

Superposition

Energy conservation

Orthogonality (of cavity modes)

Causality
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Basic principles:
Reciprocity & superposition

If you can kick the beam, the beam can kick you

==>

Total cavity voltage  =  Vgenerator+ Vbeam-induced

Fields in cavity = Egenerator+ Ebeam-induced
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Basic principles: Energy conservation

Total energy in the particles and the cavity is conserved

Beam loading

Ui Uf

Wc

Wc  = Ui - Uf 
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Basics: Orthogonality of normal modes

Each mode in the cavity can be treated independently in

computing fields induced by a charge crossing the cavity.

The total stored energy is equals the sum of the energies in

the separate modes.

The total field is the phasor sum of all the individual mode

fields at any instant.
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Basic principles: Causality

There can be no disturbance ahead of a charge moving at

the velocity of light.

In a mode analysis of the growth of the beam-induced

field,  the field must vanish ahead of the moving charge for

each mode.
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Example: Differential superposition

A point charge q induces a voltage Vo passing through a cavity, what

voltage is induced by a Gaussian bunch of charge q?

A differential charge induces the differential voltage

Say dq passes z = 0 at to; at time t the induced voltage will be

The bunch has a Gaussian distribution in time

d ˜ V  =  ˜ V o
dq

q
 =  Voe

j ot dq

q

d ˜ V  =   
Vo

q
e j o ( t to )dq(to)

dq(to) =
q

2
e

to
2

2 2
dto

Integrate

V =Voe
j ote

o
2 2

2 dto
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Basic components of an RF cavity

Outer region: Large, single turn Inductor

Central region: Large plate Capacitor

Beam (Load) current

I

 B

E
Displacement current

Wall current

a

Rd
Power feed from rf - generator
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Lumped circuit analogy of resonant cavity

V(t)

I(t)

C

L

R

Z( ) = j C + ( j L + R) 1[ ]
1

The resonant frequency is o = 1
LC

Z( ) =
1

j C + ( j L + R) 1
=

( j L + R)

( j L + R) j C +1
=

( j L + R)

(1 2LC) + j RC
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Q of the lumped circuit analogy

The width is
0

=
R

L /.C

 Z( ) ~ 1
2

o
2
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+ ( RC)2
 

 

 
 

 

 

 
 

1

Converting the denominator of Z to a real number we see that 
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More basics from circuits - Q

  

Q =  o o  Energy stored

Time average power loss   

=  
2 o Energy stored

Energy per cycle

    
E =  

1

2
L IoIo

*
and

  

P  =  i2(t) R =  
1

2
IoIo

*Rsurface

  Q =  
L

C
R

 =  
o

 

 
 

 

 
 

1
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Translate circuit model to a cavity model:

Directly driven, re-entrant RF cavity

Outer region: Large, single turn Inductor

Central region: Large plate Capacitor

Beam (Load) current

I

 B

E
Displacement current

Wall current

a

Rd

L =
μo a

2

2 (R + a)

C = o

R2

d

o = 1
LC

= c
2((R + a)d

R2a2
 

  
 

  

1
2

Q – set by resistance in outer region

Q =
L
C
R

Expanding outer region 

raises Q

Narrowing gap 

raises shunt impedance

Source: Humphries, Charged Particle

Accelerators
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Properties of the RF pillbox cavity

We want lowest mode: with only  Ez & B

Maxwell’s equations are:

 and

Take derivatives

==>

1

r r
rB( ) =

1

c 2 t
Ez r

Ez =
t
B

t

1

r r
rB( )

 

 
 

 

 
 = t

B
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+
B
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1

c 2

2Ez
t 2
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Ez
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=
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2Ez
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+
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Ez
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Ez

b
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For a mode with frequency 

 Therefore,

(Bessel’s equation, 0 order)

Hence,

For conducting walls, Ez(R) = 0, therefore

Ez r, t( ) = Ez (r) ei t

  E z +
 E z

r
+

c

 

 
 

 

 
 

2

Ez = 0

Ez (r) = Eo Jo c
r

 

 
 

 

 
 

2 f

c
b = 2.405
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E-fields & equivalent circuit: Ton1o mode

Ez

B

R
e
la

ti
v
e
 i
n
te

n
s
it
y

r/R

T010

C
L
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E-fields & equivalent circuits

for To2o modes

T020



US Particle Accelerator School

E-fields & equivalent circuits

for Tono modes

T030

T0n0 has 

n coupled, resonant

circuits; each L & C 

reduced by 1/n
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Simple consequences of pillbox model

L

Ez

R

B

Increasing R lowers frequency

      ==> Stored Energy, E ~ -2

                 E  ~  Ez
2

Beam loading lowers Ez for the

next bunch

Lowering  lowers the fractional

beam loading

Raising  lowers Q ~  -1/2

If time between beam pulses,

Ts ~ Q/  

      almost all E is lost in the walls
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The beam tube makes the field modes
(& cell design) more complicated

Ez

B

Peak E no longer on axis

Epk ~ 2 - 3 x Eacc

FOM = Epk/Eacc

o more sensitive to  cavity

dimensions

Mechanical tuning & detuning

Beam tubes add length & ’s

w/o acceleration

Beam induced voltages ~ a-3

Instabilities

a
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Cavity figures of merit
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Make the linac with a

series of pillbox cavities

Power the cavities so that Ez(z,t) = Ez(z)ei t
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Figure of Merit: Accelerating voltage

The voltage varies during time that bunch takes to cross gap

reduction of the peak voltage by  (transt time factor)

=
sin 2( )

2
  where  = d

c

2

TrfFor maximum acceleration ==>  = 2/

d

V
t

Epk 
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Figure of merit from circuits - Q

    

E =
μo
2

H
v

2
dv =  

1

2
L IoIo

*

  

P  =  
Rsurf

2
H

s

2
ds =  

1

2
IoIo

*Rsurf

  Q =  
L
C

Rsurf

 =  
o

 

 
 

 

 
 

1

  

Q =  o o  Energy stored

Time average power loss
=  

2 o Energy stored

Energy lost per cycle

  

Rsurf =
1

Conductivity o Skin depth
~ 1/ 2
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Measuring the energy stored in the cavity

allows us to measure

We have computed the field in the fundamental mode

To measure Q we excite the cavity and measure the E field

as a function of time

Energy lost per half cycle = U Q

Note: energy can be stored in the higher order modes that

deflect the beam

U = dz
0

d
dr2 r 

0

b Eo
2

2
 

 
 

 

 
  J1

2(2.405r /b)

   = b2d Eo
2 /2( ) J1

2(2.405)
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Keeping energy out of higher order modes

d/b

b/c

0            1             2            3             4

TM020

TM010

TE011

TE111
Source bandwidth

(green)

Dependence of mode frequency 

on cavity geometry

Choose cavity dimensions to stay far from crossovers 

10

 5

 1

TE111 mode

End view

Side view
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Figure of merit for accelerating cavity:
power to produce the accelerating field

Resistive input (shunt) impedance at  relates power dissipated in walls to

accelerating voltage

Linac literature commonly defines “shunt impedance” without the “2”

    Typical values 25 - 50 M

  

Rin  =  
V 2(t)

P
 =  

Vo
2

2P
 =  Q L

C

  

Rin  =   
Vo

2

P
 ~  

1

Rsurf
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Computing shunt impedance

  

P  =  
Rsurf

2
H

s

2
ds 

  

Rin  =   
Vo

2

P

Rsurf =
μ

2 dc

= Zo
skin

rf

  where Zo =
μo

o
= 377

The on-axis field E  and surface H are generally computed with a

computer code such as SUPERFISH for a complicated cavity shape
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Compute the voltage gain correctly

The voltage gain seen by the beam can computed in the co-moving frame, 

or we can use the transit-time factor,  & compute V at fixed time

Vo
2

= E(z)dz
z1

z2
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Exercise: Pillbox array

Derive the Q and Rsh for the pillbox cavity as a function of

the dimensions of the cavity and the frequency of the

fundamental mode
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Z( ) =
1

j C + ( j L + R) 1
=

( j L + R)
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Note on previous slide


