Unit 4 - Lecture 9 RF-accelerators: RF-cavities

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

\|| RF-cativties for acceleration

IIII
 S-band (~ 3 GHz) RF linac

$$
\begin{aligned}
& \star \star{ }^{\star} \star \\
& \star \\
& \star \star \\
& \star \star \\
& \star
\end{aligned}
$$

US PARticle Accelerator School

｜｜｜RF cativties：Basic concepts

粦 Fields and voltages are complex quantities．
\rightarrow For standing wave structures use phasor representation

粦 For cavity driven externally，phase of the voltage is

$$
\theta=\omega t+\theta_{\mathrm{o}}
$$

米 For electrons $\mathrm{v} \approx \mathrm{c}$ ；therefore $\mathrm{z}=\mathrm{z}_{\mathrm{o}}+\mathrm{ct}$

｜｜｜Basic principles and concepts

粦 Superposition

粦 Energy conservation

粦 Orthogonality（of cavity modes）

粦 Causality

11- Basic principles: Reciprocity \& superposition

米 If you can kick the beam, the beam can kick you = = $>$

Total cavity voltage $=\mathrm{V}_{\text {generator }}+\mathrm{V}_{\text {beam-induced }}$

Fields in cavity $=\mathbf{E}_{\text {generator }}+\mathbf{E}_{\text {beam-induced }}$

|||| Basic principles: Energy conservation

粦 Total energy in the particles and the cavity is conserved \rightarrow Beam loading

$\Delta W_{c}=U_{i}-U_{f}$

Ilii
 Basics：Orthogonality of normal modes

粦 Each mode in the cavity can be treated independently in computing fields induced by a charge crossing the cavity．

粦 The total stored energy is equals the sum of the energies in the separate modes．

粦 The total field is the phasor sum of all the individual mode fields at any instant．

||| Basic principles: Causality

粦 There can be no disturbance ahead of a charge moving at the velocity of light.

粦 In a mode analysis of the growth of the beam-induced field, the field must vanish ahead of the moving charge for each mode.

Iliit
 Example：Differential superposition

粦 A point charge q induces a voltage Vo passing through a cavity，what voltage is induced by a Gaussian bunch of charge q ？

米 A differential charge induces the differential voltage

$$
d \tilde{V}=\tilde{V}_{o} \frac{d q}{q}=V_{o} e^{j \omega_{o} t} \frac{d q}{q}
$$

粦 Say dq passes $\mathrm{z}=0$ at t_{o} ；at time t the induced voltage will be

$$
d \tilde{V}=\frac{V_{o}}{q} e^{j \omega_{o}\left(t-t_{o}\right)} d q\left(t_{o}\right)
$$

粦 The bunch has a Gaussian distribution in time

$$
\begin{gathered}
d q\left(t_{o}\right)=\frac{q}{\sqrt{2 \pi \sigma}} e^{-t_{o}^{2} / 2 \sigma^{2}} d t_{o} \\
V=V_{o} e^{j \omega_{o} t} e^{-\omega_{o}^{2} \sigma^{2} / 2} d t_{o}
\end{gathered}
$$

||i|
 Basic components of an RF cavity

||| Lumped circuit analogy of resonant cavity

$$
\begin{gathered}
Z(\omega)=\left[j \omega C+(j \omega L+R)^{-1}\right]^{-1} \\
Z(\omega)=\frac{1}{j \omega C+(j \omega L+R)^{-1}}=\frac{(j \omega L+R)}{(j \omega L+R) j \omega C+1}=\frac{(j \omega L+R)}{\left(1-\omega^{2} L C\right)+j \omega R C}
\end{gathered}
$$

The resonant frequency is $\omega_{\mathrm{o}}=1 / \sqrt{L C}$

Iliii
 Q of the lumped circuit analogy

Converting the denominator of Z to a real number we see that

$$
|Z(\omega)| \sim\left[\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)^{2}+(\omega R C)^{2}\right]^{-1}
$$

The width is $\frac{\Delta \omega}{\omega_{0}}=\frac{R}{\sqrt{L / . C}}$

||| More basics from circuits - Q

$$
Q=\frac{\omega_{o} \circ \text { Energy stored }}{\text { Time average power loss }}=\frac{2 \pi \circ \text { Energy stored }}{\text { Energy per cycle }}
$$

$$
\mathscr{C}=\frac{1}{2} L I_{o} I_{o}^{*} \quad \text { and }\langle\mathscr{P}\rangle=\left\langle\mathrm{i}^{2}(t)\right\rangle R=\frac{1}{2} I_{o} I_{o}^{*} R_{\text {surface }}
$$

$$
\therefore Q=\frac{\sqrt{\mathrm{L} / \mathrm{C}}}{\mathrm{R}}=\left(\frac{\Delta \omega}{\omega_{o}}\right)^{-1}
$$

IIF Translate circuit model to a cavity model: Directly driven, re-entrant RF cavity

Outer region: Large, single turn Inductor

$$
L=\frac{\mu_{0} \pi a^{2}}{2 \pi(R+a)}
$$

Central region: Large plate Capacitor

$$
\begin{gathered}
C=\varepsilon_{o} \frac{\pi R^{2}}{d} \\
\omega_{o}=1 / \sqrt{L C}=c\left[\frac{2((R+a) d}{\pi R^{2} a^{2}}\right]^{1 / 2}
\end{gathered}
$$

Q - set by resistance in outer region

$$
Q=\sqrt{L / C} / R
$$

Expanding outer region raises Q

Beam (Load) current
R Narrowing gap raises shunt impedance

Source: Humphries, Charged Particle Accelerators

｜｜｜Properties of the RF pillbox cavity

$$
\sigma_{w a l l s}=\infty
$$

粦 We want lowest mode：with only $\mathbf{E}_{\mathrm{z}} \& \mathbf{B}_{\theta}$
粦 Maxwell＇s equations are：

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)=\frac{1}{c^{2}} \frac{\partial}{\partial t} E_{z} \quad \text { and } \frac{\partial}{\partial r} E_{z}=\frac{\partial}{\partial t} B_{\theta}
$$

粦 Take derivatives

$$
\begin{gathered}
\frac{\partial}{\partial t}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)\right]=\frac{\partial}{\partial t}\left[\frac{\partial B_{\theta}}{\partial r}+\frac{B_{\theta}}{r}\right]=\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial t^{2}} \\
\frac{\partial}{\partial r} \frac{\partial E_{z}}{\partial r}=\frac{\partial}{\partial r} \frac{\partial B_{\theta}}{\partial t}
\end{gathered}
$$

$$
=\Rightarrow \quad \frac{\partial^{2} E_{z}}{\partial r^{2}}+\frac{1}{r} \frac{\partial E_{z}}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial t^{2}}
$$

I｜｜For a mode with frequency ω

3 $\quad E_{z}(r, t)=E_{z}(r) e^{i \omega t}$
米 Therefore，$\quad E_{z}^{\prime \prime}+\frac{E_{z}^{\prime}}{r}+\left(\frac{\omega}{c}\right)^{2} E_{z}=0$
\rightarrow（Bessel＇s equation， 0 order）

粦 Hence，

$$
E_{z}(r)=E_{o} J_{o}\left(\frac{\omega}{c} r\right)
$$

米 For conducting walls， $\mathrm{E}_{\mathrm{z}}(\mathrm{R})=0$ ，therefore

$$
\frac{2 \pi f}{c} b=2.405
$$

||| E-fields \& equivalent circuit: $\mathrm{T}_{\text {on1o }}$ mode

C L

ITE E-fields \& equivalent circuits for $\mathrm{T}_{\mathbf{0 2 0}}$ modes

IITE E-fields \& equivalent circuits for $\mathrm{T}_{\text {ono }}$ modes

$\mathrm{T}_{0 \mathrm{no}}$ has
n coupled, resonant
circuits; each $\mathrm{L} \& \mathrm{C}$
reduced by $1 / \mathrm{n}$

｜｜｜Simple consequences of pillbox model

粦 Increasing R lowers frequency
＝＝＞Stored Energy， $\mathscr{E} \sim \omega^{-2}$
＊

$$
\mathscr{E} \sim \mathrm{E}_{\mathrm{z}}^{2}
$$

米 Beam loading lowers E_{z} for the next bunch

粦 Lowering ω lowers the fractional beam loading

类 Raising ω lowers $Q \sim \omega^{-1 / 2}$
粦 If time between beam pulses，

$$
\mathrm{T}_{\mathrm{s}} \sim Q / \omega
$$

almost all \mathscr{E} is lost in the walls

IIF The beam tube makes the field modes （\＆cell design）more complicated

粦 Peak E no longer on axis
$\rightarrow \mathrm{E}_{\mathrm{pk}} \sim 2-3 \times \mathrm{E}_{\mathrm{acc}}$
$\rightarrow \mathrm{FOM}=\mathrm{E}_{\mathrm{pk}} / \mathrm{E}_{\mathrm{acc}}$
粦 ω_{o} more sensitive to cavity dimensions
\rightarrow Mechanical tuning \＆detuning

粼 Beam tubes add length \＆€＇s w／o acceleration

粦 Beam induced voltages $\sim \mathrm{a}^{-3}$
\rightarrow Instabilities

Cavity figures of merit

US PARticle Accelerator School

IIT Make the linac with a series of pillbox cavities

Power the cavities so that $E_{z}(z, t)=E_{z}(z) e^{i \omega t}$

||Figure of Merit: Accelerating voltage

粦 The voltage varies during time that bunch takes to cross gap
\rightarrow reduction of the peak voltage by Γ (transt time factor)

$$
\Gamma=\frac{\sin (\vartheta / 2)}{\vartheta / 2} \text { where } \vartheta=\omega d / \beta c
$$

For maximum acceleration $\quad T_{\mathrm{cav}}=\frac{d}{c}=\frac{T_{\mathrm{rf}}}{2} \quad \Rightarrow \Gamma=2 / \pi$

Iliin
 Figure of merit from circuits - Q

$$
\begin{gathered}
Q=\frac{\omega_{o} \circ \text { Energy stored }}{\text { Time average power loss }}=\frac{2 \pi \circ \text { Energy stored }}{\text { Energy lost per cycle }} \\
\mathscr{E}=\frac{\mu_{o}}{2} \int_{v}|H|^{2} d v=\frac{1}{2} L I_{o} I_{o}^{*} \\
\langle\mathscr{P}\rangle=\frac{R_{\text {suff }}}{2} \int_{s}|H|^{2} d s=\frac{1}{2} I_{o} I_{o}^{*} R_{\text {surf }} \\
R_{\text {surf }}=\frac{1}{\text { Conductivity } \circ \text { Skin depth }} \sim \omega^{1 / 2}
\end{gathered}
$$

$$
\therefore Q=\frac{\sqrt{L / C}}{R_{\text {surf }}}=\left(\frac{\Delta \omega}{\omega_{o}}\right)^{-1}
$$

IIT Measuring the energy stored in the cavity allows us to measure

粦 We have computed the field in the fundamental mode

$$
\begin{aligned}
U & =\int_{0}^{d} d z \int_{0}^{b} d r 2 \pi r\left(\varepsilon E_{o}^{2} / 2\right) J_{1}^{2}(2.405 r / b) \\
& =b^{2} d\left(\varepsilon E_{o}^{2} / 2\right) J_{1}^{2}(2.405)
\end{aligned}
$$

粦 To measure Q we excite the cavity and measure the E field as a function of time

粦 Energy lost per half cycle $=U \pi \mathrm{Q}$
粦 Note：energy can be stored in the higher order modes that deflect the beam

Illii
 Keeping energy out of higher order modes

Choose cavity dimensions to stay far from crossovers

|| Figure of merit for accelerating cavity: power to produce the accelerating field

Resistive input (shunt) impedance at ω_{o} relates power dissipated in walls to accelerating voltage

$$
R_{i n}=\frac{\left\langle V^{2}(t)\right\rangle}{\mathscr{G}}=\frac{V_{o}^{2}}{2 \mathscr{O}}=Q \sqrt{L / C}
$$

Linac literature commonly defines "shunt impedance" without the " 2 "

$$
\mathscr{R}_{\text {in }}=\frac{V_{o}^{2}}{\mathscr{P}} \sim \frac{1}{R_{\text {surf }}}
$$

Typical values $25-50 \mathrm{M} \Omega$

||| Computing shunt impedance

$$
\begin{aligned}
& \mathscr{P}_{i n}=\frac{V_{o}^{2}}{\mathscr{O}} \\
& \langle\mathscr{P}\rangle=\frac{R_{\text {mef }}}{2} \int|H|^{2} d s \\
& R_{\text {suff }}=\frac{\mu \omega}{2 \sigma_{d c}}=\pi Z_{o} \frac{\delta_{\text {stin }}}{\lambda_{\text {tf }}} \text { where } Z_{o}=\sqrt{\mu_{o} / \varepsilon_{o}}=377 \Omega
\end{aligned}
$$

The on-axis field E and surface H are generally computed with a computer code such as SUPERFISH for a complicated cavity shape

||| Compute the voltage gain correctly

The voltage gain seen by the beam can computed in the co-moving frame, or we can use the transit-time factor, Γ \& compute V at fixed time

$$
V_{o}^{2}=\Gamma \int_{z_{1}}^{z_{2}} E(z) d z
$$

IIIT
 Exercise: Pillbox array

粦 Derive the Q and R_{sh} for the pillbox cavity as a function of the dimensions of the cavity and the frequency of the fundamental mode

Note on previous slide

$$
\begin{aligned}
& Z(\omega)=\frac{1}{j \omega C+(j \omega L+R)^{-1}}=\frac{(j \omega L+R)}{(j \omega L+R) j \omega C+1}=\frac{(j \omega L+R)}{\left(1-\omega^{2} L C\right)+j \omega R C} \\
& =\frac{(j \omega L+R)}{\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)^{2}+j \omega R C}=\frac{(j \omega L+R)\left[\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)-j \omega R C\right]}{\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)^{2}+(\omega R C)^{2}}=\frac{j \omega\left[L\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)-R^{2} C\right]+R\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)+\frac{\omega^{2}}{\omega_{o}^{2}} R}{\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)^{2}+(\omega R C)^{2}} \\
& \frac{j \omega\left[L\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)-R^{2} C\right]+R}{\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)^{2}+(\omega R C)^{2}}=\frac{1}{\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)^{2}+(\omega R C)^{2}}\left[R+j \omega\left(L\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)-R^{2} C\right)\right] \\
& \Rightarrow|Z|=\frac{1}{\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)^{2}+(\omega R C)^{2}}\left[R^{2}+\omega^{2}\left(L\left(1-\frac{\omega^{2}}{\omega_{o}^{2}}\right)-R^{2} C\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

