

Unit 4 - Lecture 9 RF-accelerators: RF-cavities

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

S-band (~3 GHz) RF linac

RF cativties: Basic concepts

⋇ Fields and voltages are complex quantities.

→ For standing wave structures use phasor representation

✤ For cavity driven externally, phase of the voltage is

$$\theta = \omega t + \theta_{\rm c}$$

***** For electrons v ≈ c; therefore $z = z_0 + ct$

Basic principles and concepts

- # Superposition
- # Energy conservation
- % Orthogonality (of cavity modes)
- ℁ Causality

Basic principles: Reciprocity & superposition

==>

* If you can kick the beam, the beam can kick you

Total cavity voltage =
$$V_{generator} + V_{beam-induced}$$

Basic principles: Energy conservation

✤ Total energy in the particles and the cavity is conserved

→ Beam loading

- * Each mode in the cavity can be treated independently in computing fields induced by a charge crossing the cavity.
- * The total stored energy is equals the sum of the energies in the separate modes.
- * The total field is the phasor sum of all the individual mode fields at any instant.

Basic principles: Causality

* There can be no disturbance ahead of a charge moving at the velocity of light.

In a mode analysis of the growth of the beam-induced field, the field must vanish ahead of the moving charge for each mode.

Example: Differential superposition

- * A point charge q induces a voltage Vo passing through a cavity, what voltage is induced by a Gaussian bunch of charge q?
- * A differential charge induces the differential voltage

*

$$d\tilde{V} = \tilde{V}_o \frac{dq}{q} = V_o e^{j\omega_o t} \frac{dq}{q}$$

* Say dq passes z = 0 at t_0 ; at time t the induced voltage will be

Lumped circuit analogy of resonant cavity

$$Z(\omega) = \left[j\omega C + (j\omega L + R)^{-1}\right]^{-1}$$

$$Z(\omega) = \frac{1}{j\omega C + (j\omega L + R)^{-1}} = \frac{(j\omega L + R)}{(j\omega L + R)j\omega C + 1} = \frac{(j\omega L + R)}{(1 - \omega^2 LC) + j\omega RC}$$

The resonant frequency is
$$\omega_{o} = \frac{1}{\sqrt{LC}}$$

Q of the lumped circuit analogy

Converting the denominator of Z to a real number we see that

$$\left| Z(\omega) \right| \sim \left[\left(1 - \frac{\omega^2}{\omega_o^2} \right)^2 + (\omega RC)^2 \right]^{-1}$$

More basics from circuits - Q

$$Q = \frac{\omega_o \circ Energy \ stored}{Time \ average \ power \ loss}$$

 $\frac{2\pi \circ Energy \ stored}{Energy \ per \ cycle}$

$$\mathscr{C} = \frac{1}{2} L I_o I_o^* \quad \text{and} \langle \mathscr{P} \rangle = \langle i^2(t) \rangle R = \frac{1}{2} I_o I_o^* R_{surface}$$

$$\therefore Q = \frac{\sqrt{\frac{L}{C}}}{R} = \left(\frac{\Delta\omega}{\omega_o}\right)^{-1}$$

Translate circuit model to a cavity model: Directly driven, re-entrant RF cavity

Properties of the RF pillbox cavity

- ***** We want lowest mode: with only $\mathbf{E}_{z} \& \mathbf{B}_{\theta}$
- * Maxwell's equations are:

$$\frac{1}{r}\frac{\partial}{\partial r}(rB_{\theta}) = \frac{1}{c^2}\frac{\partial}{\partial t}E_z \quad \text{and} \quad \frac{\partial}{\partial r}E_z = \frac{\partial}{\partial t}B_{\theta}$$

★ Take derivatives

$$\frac{\partial}{\partial t} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(rB_{\theta} \right) \right] = \frac{\partial}{\partial t} \left[\frac{\partial B_{\theta}}{\partial r} + \frac{B_{\theta}}{r} \right] = \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2}$$

$$\frac{\partial}{\partial r}\frac{\partial E_z}{\partial r} = \frac{\partial}{\partial r}\frac{\partial B_{\theta}}{\partial t}$$

$$\frac{\partial^2 E_z}{\partial r^2} + \frac{1}{r} \frac{\partial E_z}{\partial r} = \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2}$$

For a mode with frequency ω

$$# \qquad E_z(r,t) = E_z(r) \ e^{i\omega t}$$

** Therefore,
$$E_z'' + \frac{E_z'}{r} + \left(\frac{\omega}{c}\right)^2 E_z = 0$$

 \rightarrow (Bessel's equation, 0 order)

₩ Hence,

$$E_z(r) = E_o J_o\left(\frac{\omega}{c}r\right)$$

For conducting walls, $E_z(R) = 0$, therefore

$$\frac{2\pi f}{c}b = 2.405$$

E-fields & equivalent circuit: T_{on10} mode

E-fields & equivalent circuits for T₀₂₀ modes

E-fields & equivalent circuits for T_{ono} modes

T_{0n0} has n coupled, resonant circuits; each L & C reduced by 1/n

Simple consequences of pillbox model

- * Increasing R lowers frequency ==> Stored Energy, $\mathscr{C} \sim \omega^{-2}$
- $\# \qquad \qquad & \mathcal{E} \sim E_z^2$
- * Beam loading lowers E_z for the next bunch
- * Lowering ω lowers the fractional beam loading
- # Raising ω lowers $Q \sim \omega^{-1/2}$
- * If time between beam pulses, $T_s \sim Q/\omega$ almost all \mathcal{E} is lost in the walls

The beam tube makes the field modes (& cell design) more complicated

✤ Peak E no longer on axis

$$\Rightarrow E_{pk} \sim 2 - 3 \times E_{acc}$$
$$\Rightarrow FOM = E_{pk}/E_{acc}$$

- * $ω_o$ more sensitive to cavity dimensions
 - → Mechanical tuning & detuning
- Beam tubes add length & €'s
 w/o acceleration

Cavity figures of merit

Power the cavities so that $E_z(z,t) = E_z(z)e^{i\omega t}$

Figure of Merit: Accelerating voltage

- * The voltage varies during time that bunch takes to cross gap
 - \rightarrow reduction of the peak voltage by Γ (transt time factor)

Figure of merit from circuits - Q

 $Q = \frac{\omega_o \circ Energy \ stored}{Time \ average \ power \ loss} = \frac{2\pi \circ Energy \ stored}{Energy \ lost \ per \ cycle}$

$$\mathscr{O} = \frac{\mu_o}{2} \int_{v} |H|^2 dv = \frac{1}{2} L I_o I_o^*$$
$$\langle \mathscr{O} \rangle = \frac{R_{surf}}{2} \int_{s} |H|^2 ds = \frac{1}{2} I_o I_o^* R_{surf}$$

$$R_{surf} = \frac{1}{Conductivity \circ Skin \ depth} \sim \omega^{1/2}$$

$$\therefore Q = \frac{\sqrt{L/C}}{R_{surf}} = \left(\frac{\Delta\omega}{\omega_o}\right)^{-1}$$

Measuring the energy stored in the cavity allows us to measure

We have computed the field in the fundamental mode

$$U = \int_{0}^{d} dz \int_{0}^{b} dr 2\pi r \left(\frac{\varepsilon E_{o}^{2}}{2} \right) J_{1}^{2} (2.405r/b)$$
$$= b^{2} d \left(\varepsilon E_{o}^{2}/2 \right) J_{1}^{2} (2.405)$$

- # Energy lost per half cycle = U πQ
- * Note: energy can be stored in the higher order modes that deflect the beam

Keeping energy out of higher order modes

Choose cavity dimensions to stay far from crossovers

Figure of merit for accelerating cavity: power to produce the accelerating field

Resistive input (shunt) impedance at ω_o relates power dissipated in walls to accelerating voltage

$$R_{in} = \frac{\langle V^2(t) \rangle}{\mathscr{P}} = \frac{V_o^2}{2\mathscr{P}} = Q_v \sqrt{L/C}$$

Linac literature commonly defines "shunt impedance" without the "2"

$$\mathcal{R}_{in} = \frac{V_o^2}{\mathcal{P}} \sim \frac{1}{R_{surf}}$$

Typical values 25 - 50 $M\Omega$

Computing shunt impedance

$$\mathcal{R}_{in} = \frac{V_o^2}{\mathcal{P}}$$

$$\langle \mathscr{P} \rangle = \frac{R_{surf}}{2} \int_{s} |H|^2 ds$$

$$R_{surf} = \frac{\mu\omega}{2\sigma_{dc}} = \pi Z_o \frac{\delta_{skin}}{\lambda_{rf}} \text{ where } Z_o = \sqrt{\frac{\mu_o}{\varepsilon_o}} = 377\Omega$$

The on-axis field E and surface H are generally computed with a computer code such as SUPERFISH for a complicated cavity shape

Compute the voltage gain correctly

The voltage gain seen by the beam can computed in the co-moving frame, or we can use the transit-time factor, Γ & compute V at fixed time

$$V_o^2 = \Gamma \int_{z_1}^{z_2} E(z) dz$$

* Derive the Q and R_{sh} for the pillbox cavity as a function of the dimensions of the cavity and the frequency of the fundamental mode

Note on previous slide

$$Z(\omega) = \frac{1}{j\omega C + (j\omega L + R)^{-1}} = \frac{(j\omega L + R)}{(j\omega L + R)j\omega C + 1} = \frac{(j\omega L + R)}{(1 - \omega^2 LC) + j\omega RC}$$

$$=\frac{(j\omega L+R)}{\left(1-\frac{\omega^2}{\omega_o^2}\right)^2+j\omega RC}=\frac{(j\omega L+R)\left[\left(1-\frac{\omega^2}{\omega_o^2}\right)-j\omega RC\right]}{\left(1-\frac{\omega^2}{\omega_o^2}\right)^2+\left(\omega RC\right)^2}=\frac{j\omega\left[L\left(1-\frac{\omega^2}{\omega_o^2}\right)-R^2C\right]+R\left(1-\frac{\omega^2}{\omega_o^2}\right)+\frac{\omega^2}{\omega_o^2}R}{\left(1-\frac{\omega^2}{\omega_o^2}\right)^2+\left(\omega RC\right)^2}$$

$$\frac{j\omega\left[L\left(1-\frac{\omega^2}{\omega_o^2}\right)-R^2C\right]+R}{\left(1-\frac{\omega^2}{\omega_o^2}\right)^2+\left(\omega RC\right)^2} = \frac{1}{\left(1-\frac{\omega^2}{\omega_o^2}\right)^2+\left(\omega RC\right)^2} \left[R+j\omega\left(L\left(1-\frac{\omega^2}{\omega_o^2}\right)-R^2C\right)\right]$$

$$\Rightarrow |Z| = \frac{1}{\left(1 - \frac{\omega^2}{\omega_o^2}\right)^2 + \left(\omega RC\right)^2} \left[R^2 + \omega^2 \left(L\left(1 - \frac{\omega^2}{\omega_o^2}\right) - R^2C\right)^2\right]^{1/2}$$