

Unit 4 - Lectures 11 & 12 Acceleration by RF waves

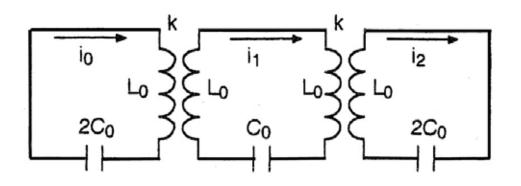
William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

Sources: USPAS Course notes by F. Sannibale

High Energy Electron Linacs by P. Wilson

US Particle Accelerator School

Example of 3 coupled cavities



$$x_0 \left(1 - \frac{\omega_0^2}{\Omega^2} \right) + x_1 k = 0 \qquad \text{oscillator } n = 0$$
$$x_1 \left(1 - \frac{\omega_0^2}{\Omega^2} \right) + (x_0 + x_2) \frac{k}{2} = 0 \qquad \text{oscillator } n = 1$$

$$x_2\left(1-\frac{\omega_0^2}{\Omega^2}\right)+x_1k=0$$
 oscillator $n=2$

 $x_j = i_j \sqrt{2L_o}$ and Ω = normal mode frequency

US Particle Accelerator School

Write the coupled circuit equations in matrix form

$$\mathbf{L}\mathbf{x}_{q} = \frac{1}{\mathbf{\Omega}_{q}^{2}}\mathbf{x}_{q} \quad \text{where} \quad \mathbf{L} = \begin{pmatrix} 1/\omega_{o}^{2} & k/\omega_{o}^{2} & 0\\ k/2\omega_{o}^{2} & 1/\omega_{o}^{2} & k/2\omega_{o}^{2}\\ 0 & k/\omega_{o}^{2} & 1/\omega_{o}^{2} \end{pmatrix} \quad \text{and} \quad \mathbf{x}_{q} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$$

* Compute eigenvalues & eigenvectors to find the three normal modes

Mode q = 0: zero mode
$$\Omega_0 = \frac{\omega_o}{\sqrt{1+k}}$$
 $\mathbf{x}_0 = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$
Mode q = 1: $\pi/2$ mode $\Omega_1 = \omega_o$ $\mathbf{x}_1 = \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix}$
Mode q = 2: π mode $\Omega_2 = \frac{\omega_o}{\sqrt{1-k}}$ $\mathbf{x}_2 = \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$

US Particl e Accel erator School

B fields can change the trajectory of a particle

$$\mathbf{F} = q \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right)$$

Show that B fields cannot change its energy

We will cast our discussion in terms of the E field

From Maxwell equations, we can derive

$$\nabla^{2} E_{i} = \frac{\partial^{2} E_{i}}{\partial x^{2}} + \frac{\partial^{2} E_{i}}{\partial y^{2}} + \frac{\partial^{2} E_{i}}{\partial z^{2}} = \frac{1}{c^{2}} \frac{\partial^{2} E_{i}}{\partial t^{2}} \quad i = x, y, z$$

for electromagnetic waves in free space (no charge or current distributions present).

The plane wave is a particular solution of the EM wave equation

$$\overline{E} = \overline{E}_o e^{i(\omega t - ks)} = \overline{E}_o \left[\cos(\omega t - ks) + i \sin(\omega t - ks) \right]$$
Phase of the wave = \phi

when

$$\omega = c k$$

Dispersion (Brillouin) diagram for a monochromatic plane wave |'|iī ω (k) k

The phase of this plane wave is constant for

$$\frac{d\phi}{dt} = \omega - k\frac{ds}{dt} = \omega - kv_{ph} = 0$$

or

$$v_{ph} = \frac{\omega}{k} = c$$

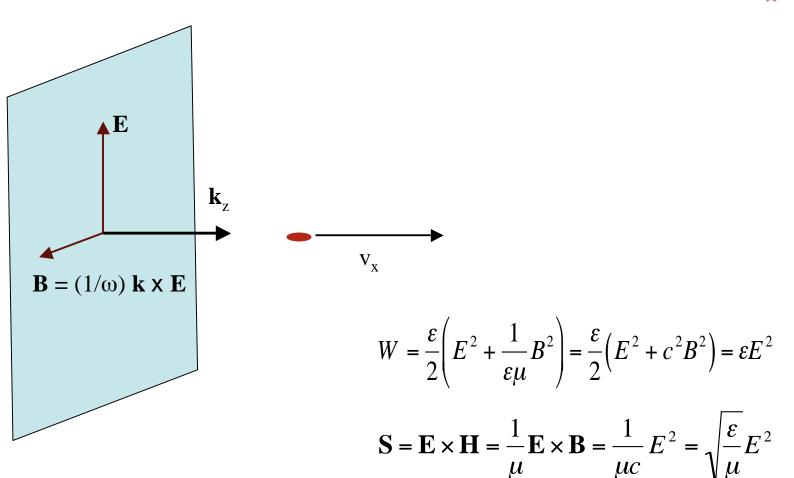
In more generality, we can represent an arbitrary wave as a sum of plane waves:

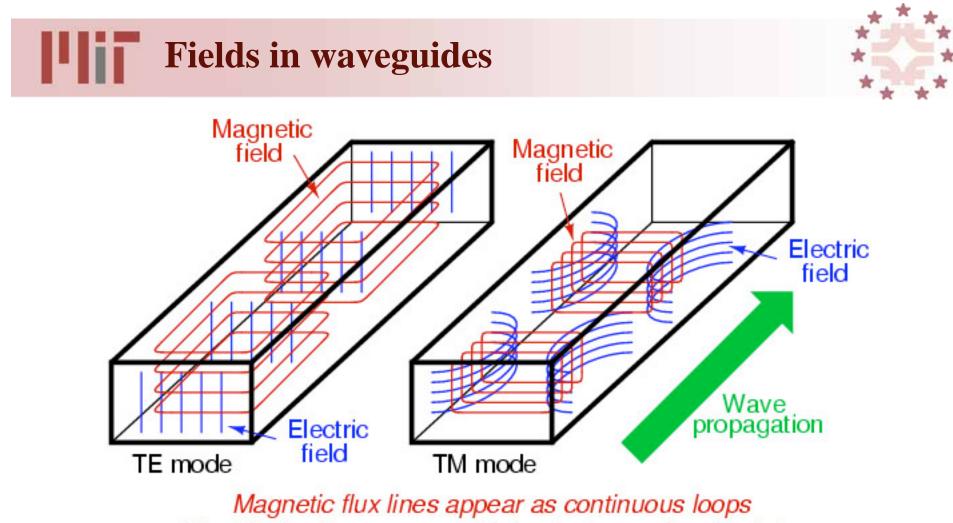
$$\overline{E} = \sum_{n=-\infty}^{\infty} \overline{E}_{no} e^{i(n\omega_0 t - ks)} \qquad \overline{E} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dt \ f(\omega) e^{i(\omega t - ks)}$$

Periodic Case

Non-periodic Case

Exercise: Can the plane wave accelerate the particle in the x-direction?





Electric flux lines appear with beginning and end points

Figure source: <u>www.opamp-electronics.com/tutorials/waveguide</u> Lessons In Electric Circuits copyright (C) 2000-2002 Tony R. Kuphaldt

US Particl e Accel erator School

Can the accelerating structure be a simple (smooth) waveguide?

₭ Assume the answer is "yes"

* Then $\mathbf{E} = \mathbf{E}(r, \theta) e^{i(\omega t - kz)}$ with $\omega/k = v_{ph} < c$

\% Transform to the frame co-moving at v_{ph} < *c*

₩ Then,

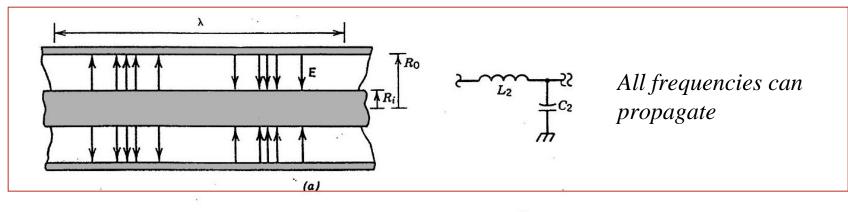
- \rightarrow The structure is unchanged (by hypothesis)
- → E is static (v_{ph} is zero in this frame)
- ==> By Maxwell's equations, H =0

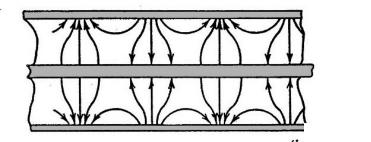
 $=> \nabla \circ \mathbf{E} = 0$ and $\mathbf{E} = -\nabla \phi$

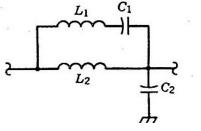
→ But ϕ is constant at the walls (metallic boundary conditions) ==> $\mathbf{E} = 0$

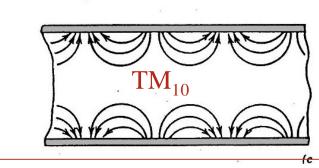
The assumption is false, smooth structures have $v_{ph} > c$

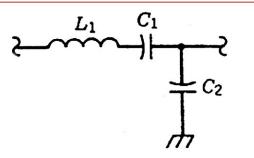
Propagating modes & equivalent circuits





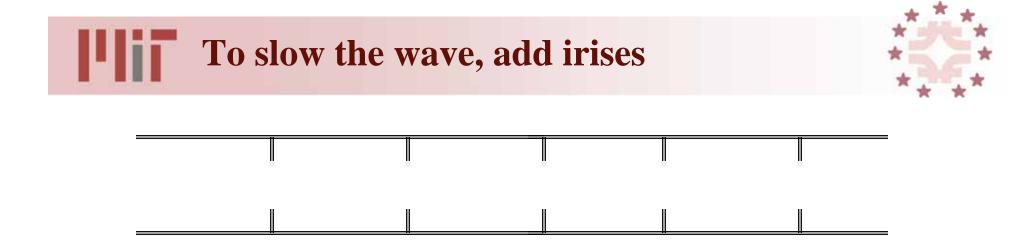






Propagation is cut-off at low frequencies

US Particle Accelerator School



 $\frac{\omega}{k} = \frac{1}{\sqrt{LC}}$

In a transmission line the irises

- a) Increase capacitance, C
- b) Leave inductance ~ constant
- c) ==> lower impedance, Z d) => lower w
- d) ==> lower v_{ph}

Similar for TM01 mode in the waveguide

Traveling wave structures

Consider a periodic structure of period p along the z-axis. By Floquet's theorem, at a given ω the fields at z & z+p differ only by a complex constant

$$\mathbf{E} (\mathbf{r}, \phi, \mathbf{z}, \mathbf{t}) = \mathbf{E}_{p} (\mathbf{r}, \phi, \mathbf{z}) \Theta^{\gamma z} \Theta^{j \omega}$$

where

 $\gamma = j k + \alpha$ and E_p is periodic

Then

$$\mathbf{E}(\mathbf{r},\phi,z,t) = \sum_{n=-\infty}^{\infty} \mathbf{E}_{p}(\mathbf{r},\phi) e^{-\alpha z} e^{j(\omega t - k_{n}z)}$$

with

$$k_n = k_0 + \frac{2\pi n}{p}$$

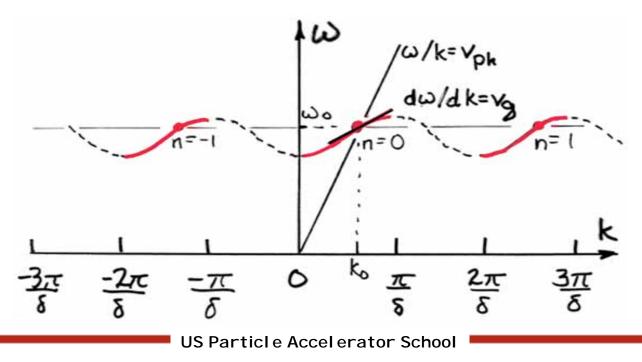
and

$$\mathbf{E}_{n}(\mathbf{r},\phi) = \frac{1}{p} \int_{z}^{z+p} \mathbf{E}_{p}(\mathbf{r},\phi,z) e^{j(\frac{2\pi n}{p})z} dz$$

US Particl e Accel erator School

Traveling waves in periodic structures

- ✤ The traveling wave is a sum of spatial harmonics
- ⋇ Each harmonic has
 - \rightarrow a propagation constant k_n
 - → a phase velocity $v_{ph,n} = \omega/k_n$
 - → a group velocity $v_g = d\omega/dk$



Typical RF accelerating structures have axial symmetry

* Natural coordinates are cylindrical coordinates

* Write the wave equation for E_z

$$\nabla^{2} = \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} + \frac{\partial^{2}}{\partial z^{2}}$$
$$= E_{0z}(r,\theta)e^{\pm i\omega t}e^{\pm ikt} \qquad \nabla^{2}E_{z} = -\frac{1}{c^{2}}\frac{\partial^{2}E_{z}}{\partial t^{2}}$$

$$\frac{\partial^2 E_{0z}}{\partial r^2} + \frac{1}{r} \frac{\partial E_{0z}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 E_{0z}}{\partial \theta^2} + \left(\frac{\omega^2}{c^2} - k^2\right) E_{0z} = 0$$

Assume that the azimuthal component of the field has periodicity *n*

$$E_{0z}(r,\theta) = \widetilde{E}_{0z}(r)e^{\pm in\theta}$$

$$\frac{\partial^2 \widetilde{E}_{0z}}{\partial r^2} + \frac{1}{r} \frac{\partial \widetilde{E}_{0z}}{\partial r} + \left(\frac{\omega^2}{c^2} - k^2 - \frac{n^2}{r^2}\right) \widetilde{E}_{0z} = 0$$

This equation has a general solution in Bessel functions

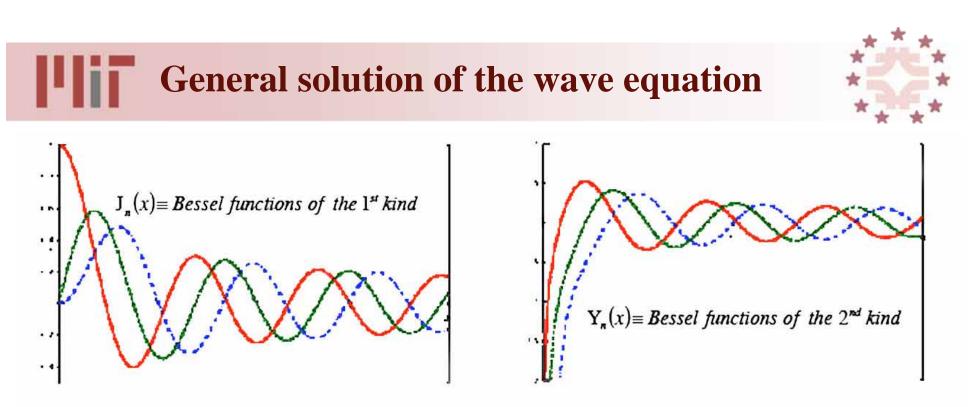
$$\tilde{E}_{0z} = AJ_n(k_c r) + BY_n(k_c r)$$

where

$$k_c^2 = \frac{\omega^2}{c^2} - k^2 \qquad \text{is the cu}$$

is the cutoff wave number

US Particl e Accel erator School



Remembering that the field must be finite at r = 0, we eliminate the terms in Y_n

$$E_{z}(r,\theta,z,t) = \cos m\theta \sum_{n=-\infty}^{\infty} A_{n}J_{m}(X_{n}r)e^{i(\omega t - k_{n}z)}$$

with

$$X_n = \left(\frac{\omega}{c}\right)^2 - k_n^2$$

US Particl e Accel erator School

Near the axis of the wave guide, the field has the form

$$E_{z}(r,\theta,z,t) = \cos m\theta \sum_{n=-\infty}^{\infty} A_{n}r^{m}e^{i(\omega t - k_{n}z)}$$

For the lowest synchronous mode, m = 0,

 E_z is independent of r (particle trajectory)

For ion accelerators, design is complicated by the fact that $v_{ion} < c$ and changing. Therefore the structure must change to assure phase stability.

We will restrict attention to high energy injection, $v_{ion} \sim c$

Modes of propagation

- *** Transverse Electric (TE)**
 - → Longitudinal E-field component, $E_z = 0$
- *** Transverse Magnetic (TM)**

 $\rightarrow B_z=0$

*** Transverse Electro-Magnetic (TEM)**

- \rightarrow E_z; H_z = 0 everywhere
- → Note: Hollow wave guide, whose walls are perfect conductors, cannot support propagation of TEM waves.
- ✤ The accelerating modes are the TM modes

Notation:

 T_{nm} where n = periodicity in θ , m = periodicity in r

The cutoff frequency in the waveguide

From the definition of cutoff wavenumber:

 ω_c

$$k^2 = \frac{\omega^2}{c^2} - k_c^2$$

By defining:

$$= ck_c$$
 Cutoff (angular) frequency

$$E_{z} = \mathbf{J}_{0}(k_{C}r)A_{F}e^{i(\omega - kz)}$$

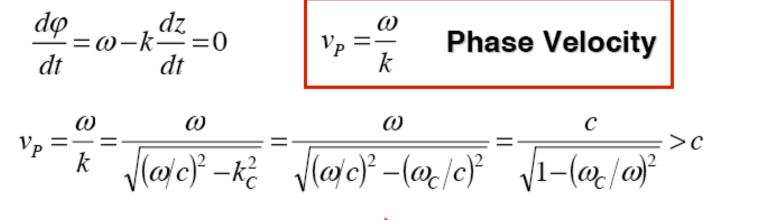
$$\omega > \omega_{C} \Rightarrow k^{2} > 0 \Rightarrow k \text{ is real} \Rightarrow \text{the wave propagates}$$
the wave does not propagate

 $\omega < \omega_c \Rightarrow k^2 < 0 \Rightarrow k$ is immaginary \Rightarrow the wave does not propagate and decreases exponentially

 $\omega = \omega_c \Rightarrow k = 0 \Rightarrow$ the wave does not propagates and does not depend on z

Definitions: Phase & group velocities

$$E_z = E_0 \cos(\omega t - kz) \qquad \varphi = \omega t - kz$$



For propagating waves $v_p > c$ **Monometry** No acceleration is possible!

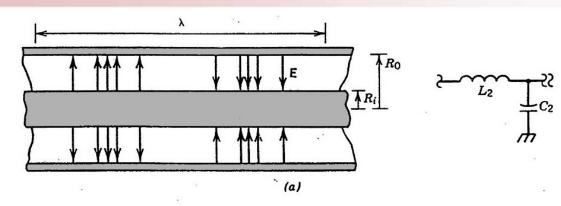
Group Velocity $v_G = \frac{d\omega}{dk}$

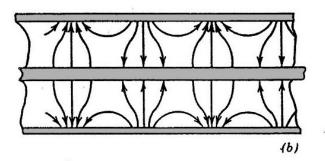
$$\omega = c \sqrt{k_c^2 + k^2}$$

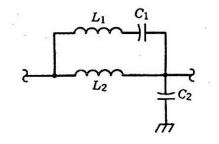
$$v_{G} = \frac{d\omega}{dk} = \frac{ck}{\sqrt{k_{C}^{2} + k^{2}}} = \frac{c}{\sqrt{1 + k_{C}^{2}/k^{2}}} < c$$

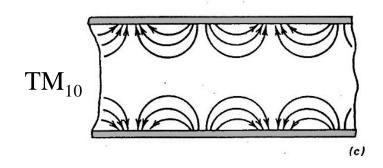
US Particle Accelerator School

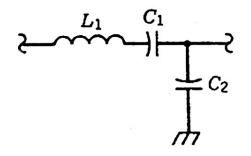
Propagating modes & equivalent circuits



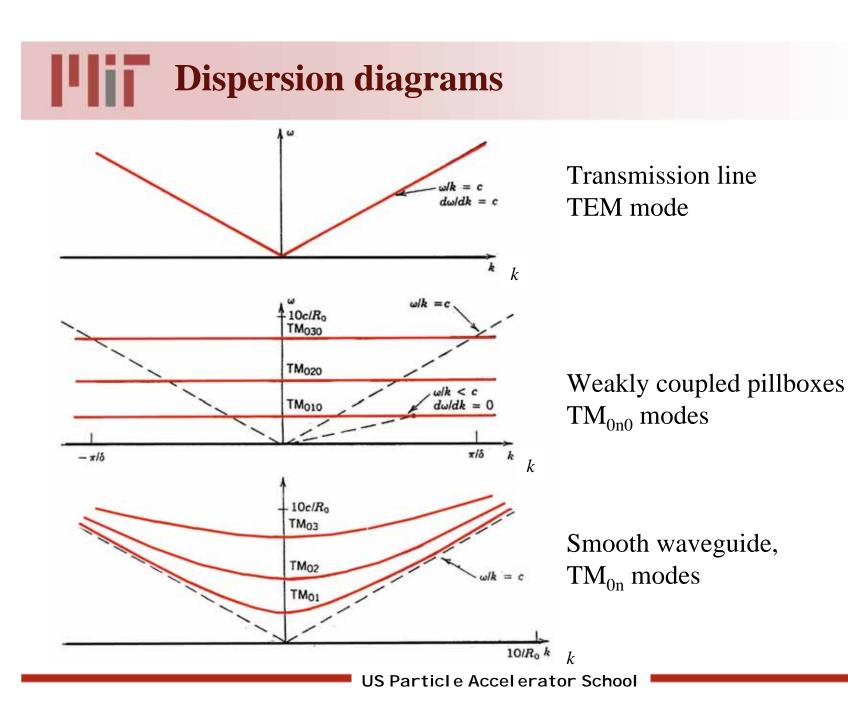




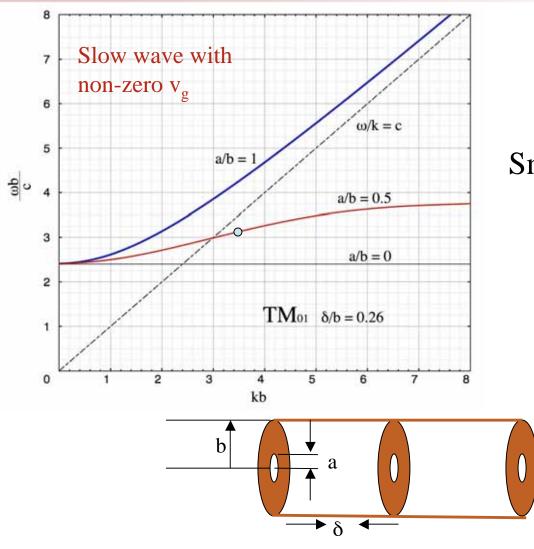




US Particl e Accel erator School



Dispersion relation for SLAC structure



US Particle Accelerator School

Small changes in alead to large reduction in v_g

Notation

- $\beta_g = v_g/c = Relative group velocity$
- $E_a = Accelerating field (MV/m)$
- $E_s = Peak surface field (MV/m)$
- P_d = Power dissipated per length (MW/m)
- $P_t = Power transmitted (MW/m)$

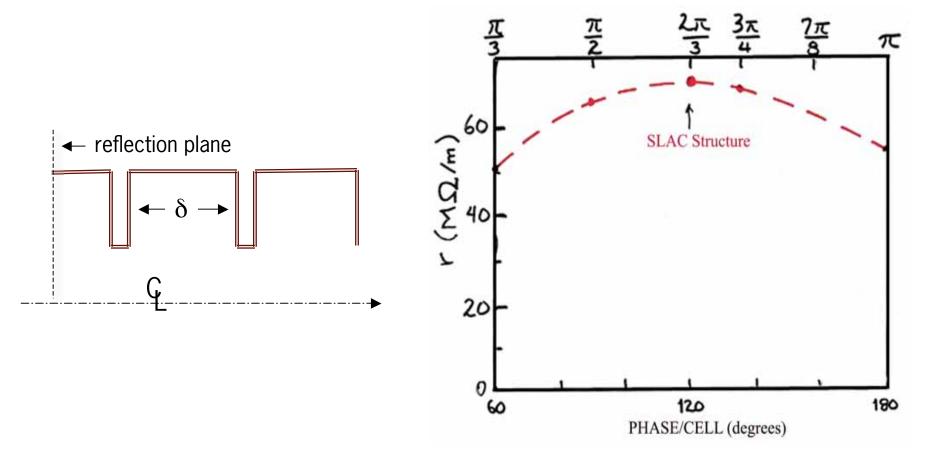
w = Stored energy per length (J/m)

Structure parameters for TW linacs

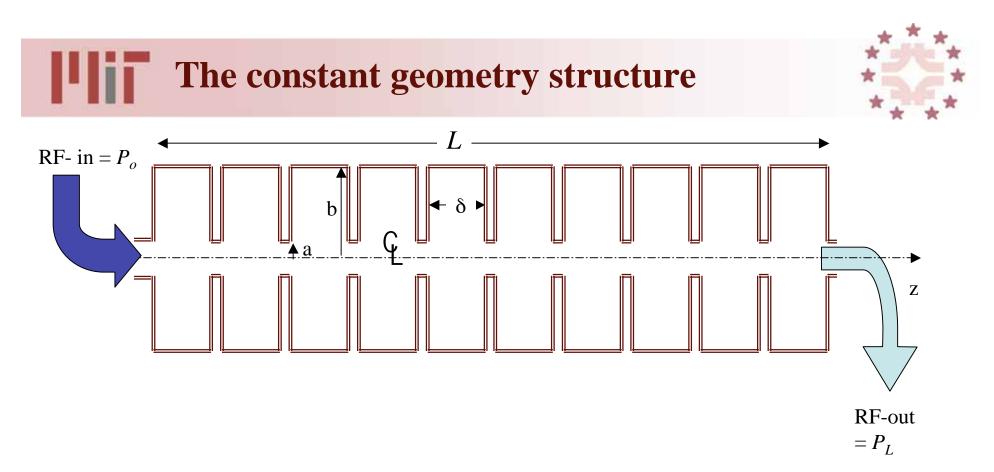
$$r_{shunt} = \frac{E_a^2}{|dP_t/dz|} \quad (M\Omega/m)$$
$$Q = \frac{w\omega}{|dP_t/dz|}$$
$$\frac{r_{shunt}}{Q} = \frac{E_a^2}{w\omega}$$

$$s = \frac{E_a^w}{w}$$
 = Elastance (MQ/m/µs)
 W_{acc} = emergy/length for acceleration

Variation of shunt impedance with cell length

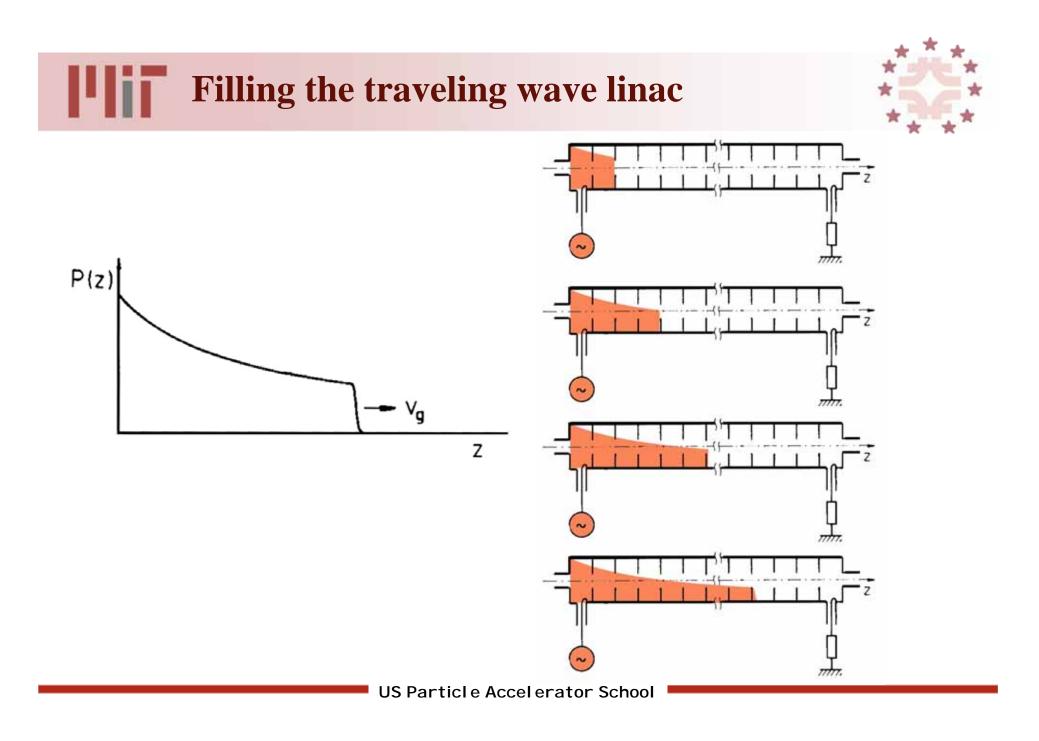


Calculations by D. Farkas (SLAC)



In a structure with a constant geometry, the inductance & capacitance per unit length are constant

==> constant impedance structure



Energy flow in the structure

$$v_{energy} = v_{group} \qquad \left(\beta_{g} = \frac{v_{g}}{c}\right)$$

From the definition of Q

$$\frac{dP_t}{dz} = -\frac{\omega P_t}{v_g Q} \equiv -2\alpha P_t$$

and

$$\frac{dE_a}{dz} = -\alpha E_a$$

where the antenuation length is defined as

$$\alpha \equiv \frac{\omega}{2v_g Q}$$

Then

$$E_a^2 = r_{shunt} \left| \frac{dP_t}{dz} \right| = 2\alpha r_{shunt} P_t$$

* A structure with constant structure parameters along its length is called a

Constant Impedance Structure

$$E_a(z) = E_o e^{-\alpha z}$$
 & $P_a(z) = P_o e^{-2\alpha z}$

\% For a structure of length L the attenuation parameter is

$$\tau = \alpha L = \frac{\omega L}{2v_g Q}$$

Acceleration in a constant impedance structure

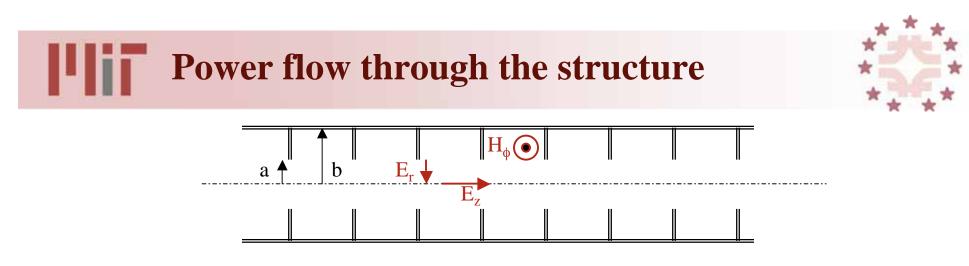
$$\frac{dP_t}{dz} = -\frac{\omega P_t}{v_g Q} \equiv -2\alpha P_t \text{ and } \frac{dE_a}{dz} = -\alpha E_a$$
$$E_a(z) = E_o e^{-\alpha z}$$
$$P_t(z) = P_o e^{-2\alpha z}$$

Transmitted power & accelerating gradient *decrease exponentially* along the structure.

$$E_a(L) = E_o e^{-\alpha L} \equiv E_o e^{-\tau}$$

$$P_t(L) = P_o e^{-2\alpha L} \equiv P_o e^{-2\tau}$$
 where $\tau \equiv \alpha L = \frac{\omega L}{2v_g Q}$

Can we do better by varying the structure geometry?



In the region of the aperture,

$$E_r \propto r$$
 and $H_{\phi} \propto r$

==> momentum flux is $\Pi \propto E \mathbf{x} H \propto r^2$

The power flowing through the structure is

$$P_t = \int_0^a \Pi \ r dr \propto a^4 \implies v_g \propto a^4$$

==> Small variations in *a* lead to large variations in v_g and P_t

US Particle Accelerator School

The constant gradient structure

* Rapid variation of $P_t ==>$ we can make E_a constant by varying P_t as α^{-1}

$$E_a^2 = r_{shunt} \left| \frac{dP_t}{dz} \right| = 2\alpha r_{shunt} P_t$$

As r_{sh} varies very weakly with the iris size. Then,

$$\left|\frac{dP_t}{dz}\right| = const \qquad ==>$$

$$P_t(z) = P_o - (P_o - P_L)(z/L)$$

$$= > \qquad \frac{P(z)}{P_o} = 1 - \left(\frac{z}{L}\right) \left(1 - e^{-2\tau}\right)$$

How to vary v_g in the CG structure

∗ Compute

$$\left|\frac{dP_t}{dz}\right| = -\frac{P_o}{L} \left(1 - e^{-2\tau}\right)$$

ℜ Recall that

$$\frac{dP_t}{dz} = -\frac{\omega P_t}{v_g Q} \equiv -2\alpha P_t$$

$$\#$$
 So, $v_g =$

$$_{g} = -\frac{\omega P_{t}}{Q\frac{dP_{t}}{dz}} = \frac{\omega LP_{t}}{QP_{o}(1-e^{-2\tau})}$$

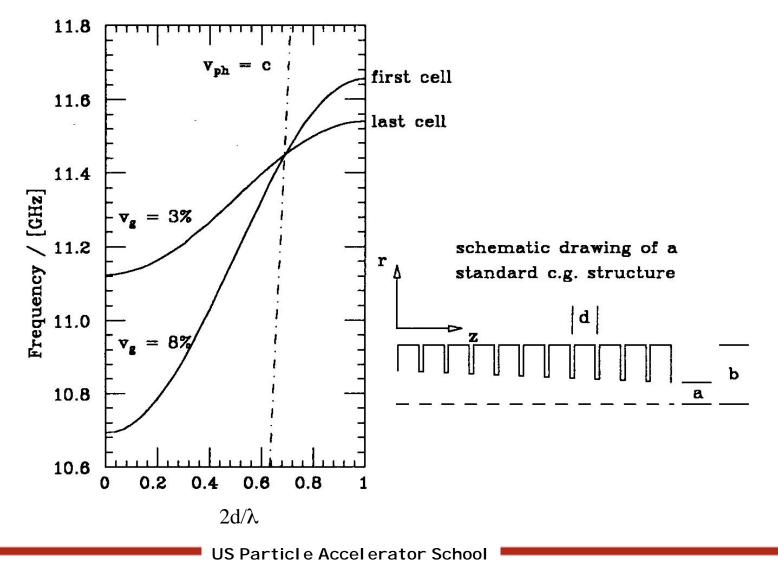
$$v_{g} = \frac{\omega L P_{t}}{Q P_{o} (1 - e^{-2\tau})} = \frac{\omega L}{Q} \frac{\left(1 - \frac{Z}{L} (1 - e^{-2\tau})\right)}{\left(1 - e^{-2\tau}\right)}$$

==> make the irises smaller

Advantages of the CG structure

- ✤ Uniform thermal load along structure
 - → In CZ structure load can vary by 10:1
- # Higher average (breakdown limited) accelerating gradient
 - → Higher no-load voltage gain
 - → Higher efficiency under beam loading
- * For equal attenuation parameter, equal fill time & equal stored energy
- * Disadvantage: mechanically more complex ==> more expensive

Example of CG-structure at 11.4 GHz



Accelerator technology: scaling disk-loaded waveguide structures

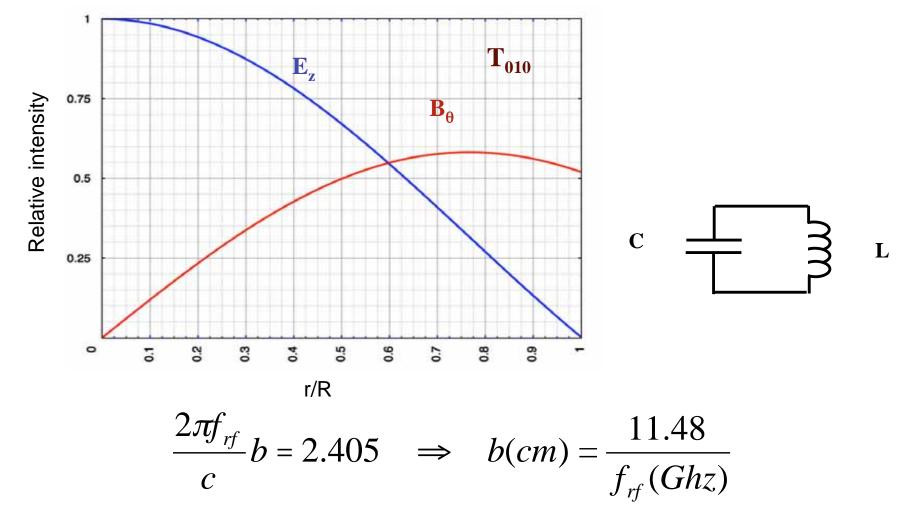
** Based on calculations by D. Farkas (SLAC)
** Does not include the effect of the thickness of the disk
** Scaling relations ~10% optimistic compared with measurements

A few more definitions

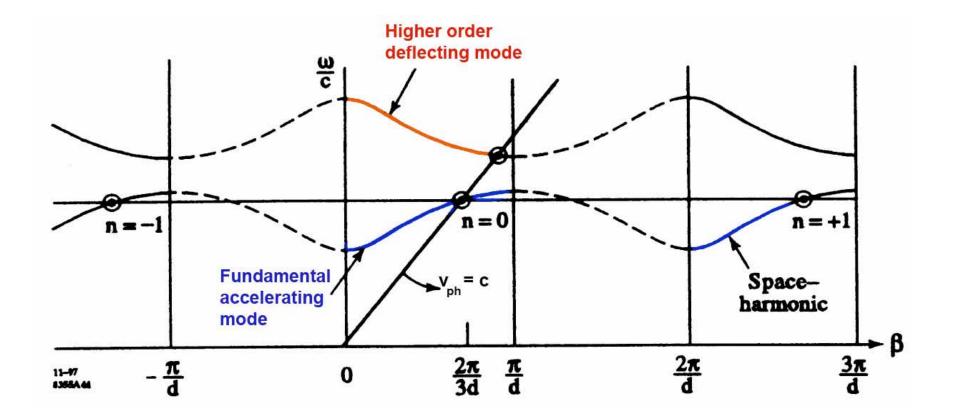
Structure efficiency (h) = $\frac{\text{energy available for acceleration}}{\text{energy input}}$

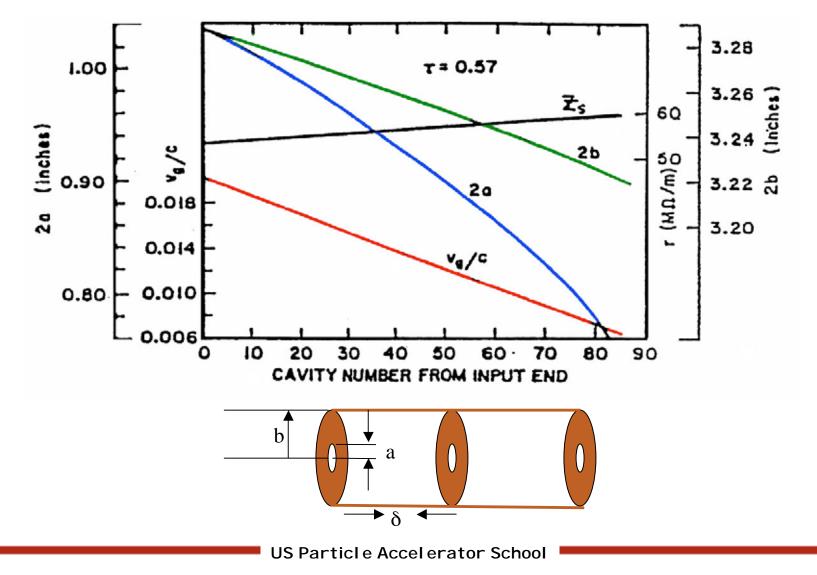
Attenuation time
$$(T_o) = \frac{Q}{\pi f_{rf}}$$

Attenuation parameter $(\tau) \equiv \alpha L = \frac{\omega L}{2v_g Q}$

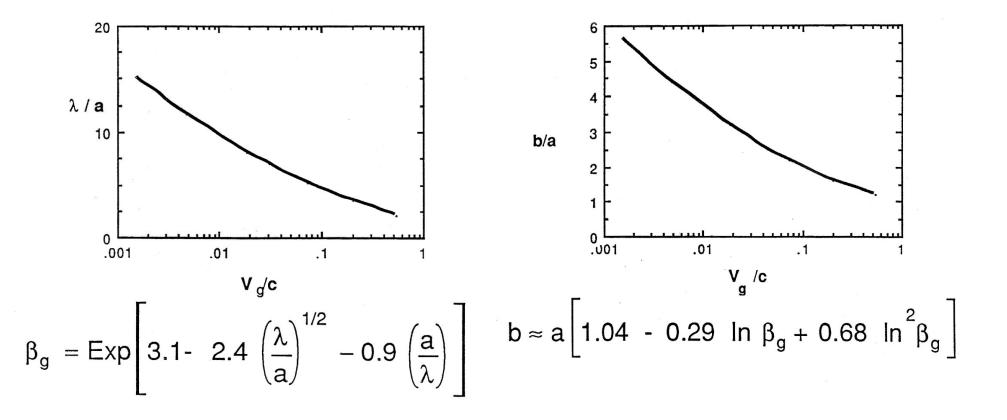


Dispersion diagram for the SLAC structure



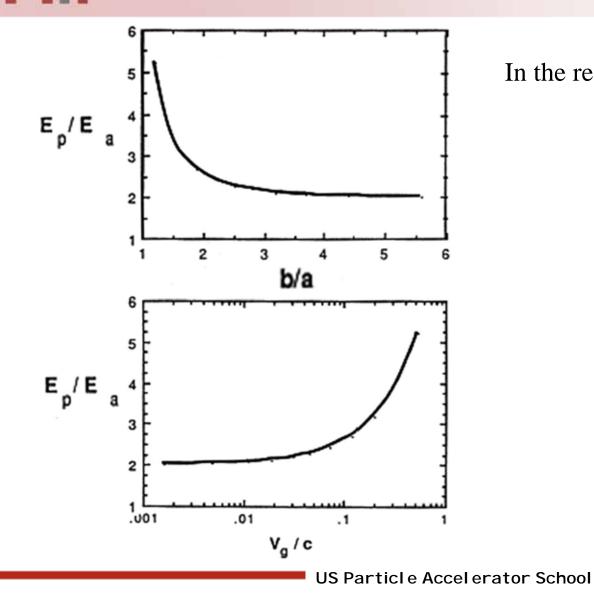


Variation of v_g with aperture



Fits to TWAP code calculations by D. Farkas (SLAC)

Variation of peak field with iris aperture

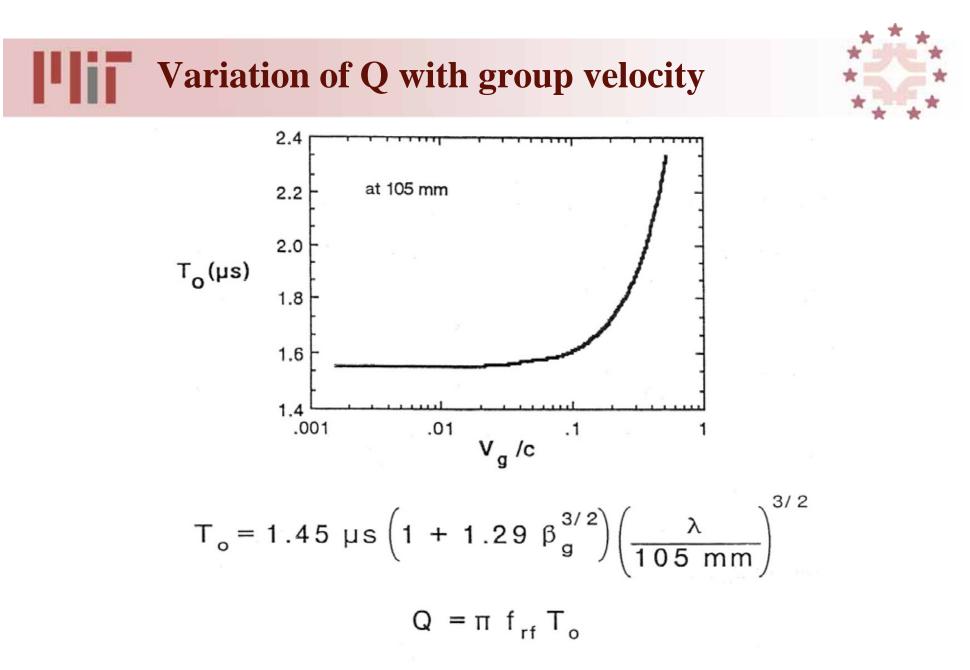


In the region of the aperture

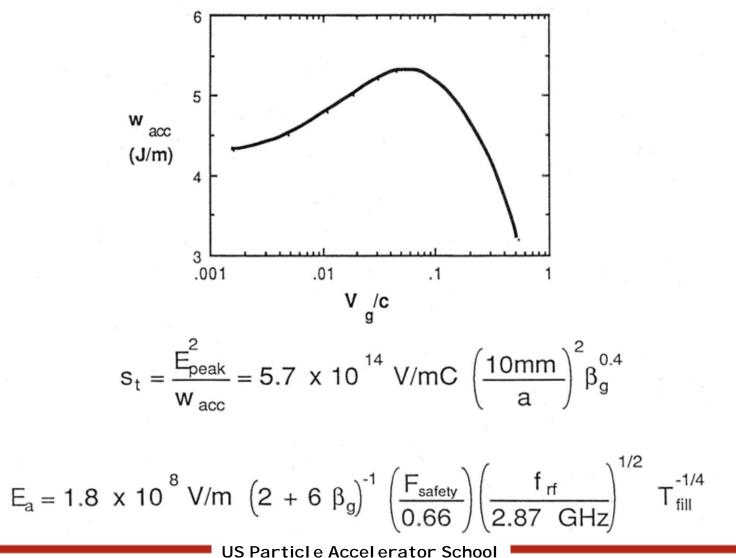
$$E_r \sim r$$

 $E_z \approx constant$

$$E_a = \frac{E_{peak}}{2 + 6\beta_g}$$



Variation of elastance with group velocity



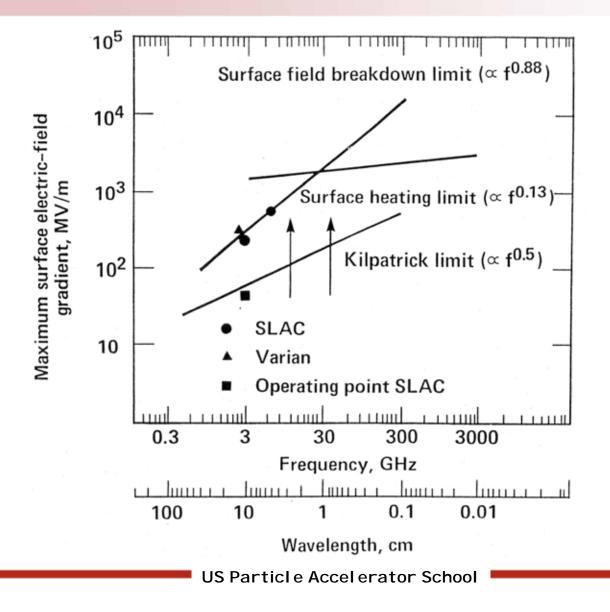
Choice of rf determines linac size

- ✤ Higher frequency allows for higher breakdown fields
- * Operate linac at 66% of breakdown limit do avoid dark currents stimulating beam instabilities
- * Accelerating field is reduced from the peak field by structure geometry
 - \rightarrow Opening iris reduces fill time, gradient, and wake fields
- Smaller structure size reduces RF energy needed to fill structure for high field strength

Peak power scaling:

 $P \approx 74 \text{ MW/m} (E_a / 100 \text{ MeVm}) (h_\tau)^{-1} (\lambda / 105 \text{ mm})^{1/2}$

Surface field breakdown behavior



Power scaling in TW linacs using the Farkas relations

* For a given E_a and β_g

$$W_{acc} \sim f_{rf}^{-2}$$

and

$$T_o \sim f_{rf}^{-3/2}$$

Therefore

$$P_{\rm rf} \sim w_{acc}/T_o \sim f_{rf}^{-1/2}$$

* But higher frequency permits higher E_a

$$E_a \sim f_{rf}^{-1/2} T_o^{-1/4} \sim f_{rf}^{-1/2} f_{rf}^{-3/8}$$
$$E_a \sim f_{rf}^{-7/8}$$

For a fixed final energy

* The shortest accelerator has

$$P_{rf} \sim E_a^{2} f_{rf}^{-1/2} \sim f_{rf}^{7/4} f_{rf}^{-1/2}$$

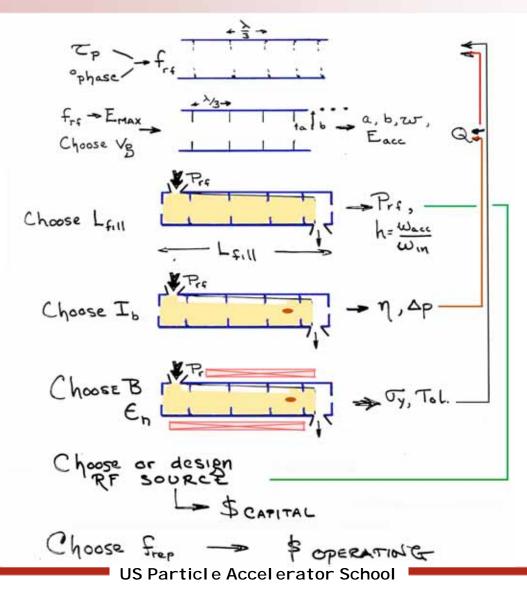
$$P_{rf} \sim f_{rf}^{5/4}$$

₩ But

$$W_{rf} \sim E_a^{2} W_{acc,o} \sim f_{rf}^{7/4} f_{rf}^{-2}$$

 $W_{rf} \sim f_{rf}^{-1/8}$

Steps in designing a TW linac



Why not go to extremely high frequency?

- * Cost of accelerating structures
- * Power source availability
- ₭ Beam loading
 - → Process of transferring energy from the cavity to the beam

₩ Wakefields

If you can kick the beam, the beam can kick you

End of unit 5

Brief discussion about costs

Exercise: B fields can change the trajectory of a particle but not its energy

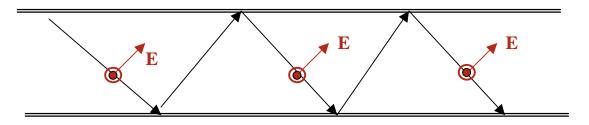
$$\mathbf{F} = q \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right)$$
$$= \mathbf{0}$$
$$W = \int \mathbf{F} \circ d\mathbf{l} = q \left(\int \mathbf{E} \circ d\mathbf{l} + \int \frac{1}{c} \mathbf{v} \times \mathbf{B} \circ d\mathbf{l} \right)$$

 $\Delta E = W = q \int \mathbf{E} \, \mathbf{0} \, d\mathbf{l}$

Typically we need a longitudinal E-field to

✤ Example: the standing wave structure in a pillbox cavity

- What about traveling waves?
 - \rightarrow Waves guided by perfectly conducting walls can have E_{long}



- ***** But first, think back to phase stability
 - → To get continual acceleration the wave & the particle must stay in phase
 - → Therefore, we can accelerate a charge with a wave with a synchronous phase velocity, $v_{ph} \approx v_{particle} < c$