Unit 3 - Lecture 6 Non-resonant Accelerators

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

Present motivations

IIF Components of an inertial fusion power plant

1. Driver (accelerator or laser) to heat and compress the target to ignition

2. Fusion chamber to recover the fusion energy pulses from the target
3. Steam plant to convert fusion heat into electricity

|||- Target design is a variation of the distributed radiator target (DRT)

New design allows beams to come in from larger angle, $\sim 24^{\circ}$ off axis.

$$
\text { Yield }=400 \mathrm{MJ}, \text { Gain }=57 \text { at } E_{\text {driver }}=7 \mathrm{MJ}
$$

||- Heavier ions ==> higher voltage ==> lower current beams

- Collective effects are reduced with heaviest ions
- More energy/particle ==> fewer particles ($\sim 10^{15}$ total ions).
- Cost tradeoff: lower mass ions ==> lower voltage ==> lower cost
- Compromise with 2.5 GeV Xenon.
- SC magnets can confine beam against its space charge during acceleration.

IIII Beam requirements for HIF

粦 Representative set of parameters for indirect-drive targets
$\rightarrow 500$ Terawatts of beam power
\rightarrow beam pulse length $\sim 10 \mathrm{~ns}$
\rightarrow range $0.02-0.2 \mathrm{~g} / \mathrm{cm}^{2}$
\rightarrow focus such a large beam to a spot of $\sim 1-5 \mathrm{~mm}$ radius
\rightarrow desired focal length $\sim 6 \mathrm{~m}$ (maximum chamber size
粦 Basic requirements ==> certain design choices
\rightarrow parallel acceleration of multiple beams
\rightarrow acceleration of needed charge in a single beam is uneconomical
\rightarrow emittance required to focus single large beam extremely difficult

\|He 2.5 GeV 112-beam fusion driver: 6.4 MJ of Xe ${ }^{+1}$

24,000 tonne induction cores
\$720M hardware, \$1 B direct, \$2.1 B total capital cost

How could one produce such energetic monolithic pulses?

US Particl e Accel er ator School

11|- Transformers are highly efficient and can drive large currents

Large units can transfer > 99\% of input power to the output

\|He Recall the ray transformer realized as the Betatron (D. Kerst, 1940)

The beam acts as a 1-turn secondary winding of the transformer Magnetic field energy is transferred directly to the electrons

For the orbit size to remain invariant

$$
\dot{\Phi}=2 \pi R^{2} \dot{B}_{s}
$$

This was good for up to 300 MeV electrons. What about electrons or ions?

|| Linear Betatron: Linear Induction Accelerator could accelerate ions

N. Christofilos

Illii
 Linear induction accelerators \& fusion

Astron-I Induction linac (1963) \& the Astron CTR experiment

Iliit
 Principle of inductive isolation

|li| Properties of inductive geometry

1. Leakage inductance: $\mathrm{L}=(\mu / 2 \pi) \ln \left(\mathrm{R}_{\mathrm{o}} / \mathrm{R}_{\mathrm{i}}\right)$
a) $i_{\mathrm{L}}=\left(\mathrm{V}_{\mathrm{o}} / \mathrm{L}\right) \mathrm{t}$
2. Ferromagnetic core reduces the leakage current and slows the speed of the shorting wave until the core saturates
3. Load current does not encircle the core
a) Pulse drive properties not core properties limit I_{b}
4. Field across the gap is quasi-electrostatic
5. Within the core electrostatic \& inductive voltages cancel
a) The structure is at ground potential

Iliit
 Current flow in the induction core

|1He Realistic cross-section of a small induction cell

Fig. 5 Typical cross section of low-gamma ten-cell module.

Iliit
 What is the equivalent circuit

Iliī
 Characteristics of coaxial transmission lines

Wave velocity:

$$
v_{g}=1 / \sqrt{\mu \varepsilon}=c / \sqrt{\mu_{r} \varepsilon_{r}}
$$

Core impedance:

$$
Z_{\text {core }}=\sqrt{\mu / \varepsilon}=120 \pi \sqrt{\mu_{r} / \varepsilon_{r}} \mathrm{Ohms}
$$

Characteristic impedance:

$$
Z=\left(\frac{L}{C}\right)^{1 / 2}=\frac{Z_{\text {core }}}{2 \pi} \ln \left(\frac{r_{o}}{r_{i}}\right)=\frac{1}{2 \pi} \sqrt{\frac{\mu}{\varepsilon}} \ln \left(\frac{r_{o}}{r_{i}}\right)=60 \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}} \ln \left(\frac{r_{o}}{r_{i}}\right)
$$

IIF Volt-seconds, gradient (G) \& inner radius set the induction core size

1|F Distribution of voltages in induction core
 (no local saturation)

Laminating the core reduces eddy current losses \& allows fields to penetrate through the core

\|He Voltage \& leakage current behavior at saturation

US Particl e Accel er ator School

||| Hysteresis losses in induction cell

$$
\mu / \mu_{o} \sim 1
$$

B-H hysteresis model curve at $\tau_{\text {sat }}=500 \mathrm{nsec}$ for Co-amorphous

State 1 => State 2: Drive State 2 => State 1: Reset Area $=$ Hysteresis loss

Resetting the cores
米 Before the core can be pulsed again it must be reset to $-\mathrm{B}_{\mathrm{r}}$
米 Properties of the reset circuit
\rightarrow Achieve $\mathrm{V} \Delta \mathrm{t}$ product $>\mathrm{B}_{\mathrm{r}}+\mathrm{B}_{\mathrm{s}}$
\rightarrow Supply unidirectional reverse current through the axis of the core
\rightarrow Have high voltage isolation so that the reset circuit does not absorb energy during the drive voltage pulse

- Depends on the type of pulse forming line used in primary circuit

Core hysteresis loop
US Particl e Accel er ator School

Ilii
 ETA-II Cell Modification

ITT The RTA Injector ($\mathbf{1} \mathrm{MeV}, 1 \mathrm{KA}, 375 \mathrm{~ns}$)

$$
\begin{aligned}
& \star \star \\
& \star \\
& \star \\
& \star \star \\
& \star{ }^{\star} \\
& \star
\end{aligned}
$$

\|PE Double 200 kV , 1.6 us DARHT cell is of the** scale needed for HIF

Comparing 1MJ HIF linac driver example cross-sections

Multi-beam Quad (MQ) driver, an RPD-like design scaled down to produce 1 MJ of 4 GeV $\mathrm{Bi}+$ ions in a single pulse.

Nb3Sn solenoid
12T peak on 2 cm -thick winding

Modular Solenoid (MS) driver system, one of 40 linacs, to produce 1MJ total of 500 MeV Ar+8 with five pulses per linac.

III Schematic of induction linac power system

|l||i Why HIF Chose Induction

Induction linacs handle high currents naturally.

$$
\begin{gathered}
\text { Efficiency }=\frac{\mathrm{Ild} \frac{\Delta \mathbf{B}}{\tau} \tau}{\underbrace{\mathrm{Ild} \frac{\Delta \mathrm{~B}}{\tau} \tau+\mathbf{w} \pi \operatorname{ld}(2 \mathrm{~h}+\mathrm{d})}_{\begin{array}{l}
\text { Voltage } \\
\text { across } \\
\text { gap }
\end{array}}} \underbrace{\mathrm{Loss} \text { function (frequency dependent) }}_{\text {Core volume }} \\
\eta_{L I A}=\frac{\mathrm{I} \Delta \mathrm{~B}}{\mathrm{I} \Delta \mathrm{~B}+\mathrm{w} \pi(2 \mathrm{~h}+\mathrm{d})}
\end{gathered}
$$

Efficiency increases as current increases
==> Multiple beams within single induction core

General Envelope Equation for Cylindrically Symmetric Beams

Can be generalized for sheet beams and beams
with quadrupole focusing

｜｜｜Assumptions for the derivation

Divide beam into disks

米 Rays are paraxial $\left(\mathrm{v}_{\perp} / \mathrm{c} \ll 1\right)$
粦 Axisymmetry
粦 No mass spread with a disk
粦 Small angle scattering
粦 Uniform B_{z}
粦 Disks do not overtake disks

IIIT
 Particle equations

$$
\begin{gather*}
\dot{\mathbf{p}}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})+\delta \mathbf{F}_{\text {scat }} \\
\mathbf{p}=\gamma m \mathbf{v} \\
\text { So, } \frac{\mathrm{d}}{\mathrm{dt}}(\gamma m \mathbf{v})-q(\mathbf{E}+\mathbf{v} \times \mathbf{B})=\delta \mathbf{F}_{\text {scat }} \tag{EoM}\\
\text { Define } \mathrm{w}=\gamma m c^{2}
\end{gather*}
$$

粦 Paraxial implies

$$
\mathrm{v}_{\perp} / \mathrm{c} \ll 1
$$

and

$$
I_{\text {beam }} \ll I_{\text {Alfien }}=\gamma \beta \frac{e c}{r_{e}}=17,000 \gamma \beta \mathrm{Amps}
$$

Iliī
 Next write the particle equation of motion

粦 Define the cyclotron frequency \＆the betatron frequency

$$
\omega_{c}=\frac{q B_{z}}{\gamma m} \quad \text { and } \quad \omega_{\beta}=\frac{\beta c B_{\vartheta}-E_{r}}{r}
$$

粦 By Maxwell＇s equations

$$
\begin{aligned}
& B_{r}=-\frac{r}{2} \frac{\partial B_{z}}{\partial z} \\
& E_{\vartheta}=-\frac{r}{2} \frac{\partial B_{z}}{\partial t} \\
& \frac{d B_{z}}{d t} \equiv \dot{B}=\frac{\partial B_{z}}{\partial t}+\beta c \frac{\partial B_{z}}{\partial z}
\end{aligned}
$$

类 The EoM for a beam particle is

$$
\frac{\dot{\gamma}}{\gamma} \mathbf{v}+\dot{\mathbf{v}}+\omega_{\beta}^{2} \mathbf{r}+\omega_{\mathbf{c}} \mathbf{Z} \times \mathbf{v}+\frac{1}{2 \gamma} \frac{d}{d t}\left(\gamma \omega_{c}\right) \mathbf{z} \times \mathbf{r}=\frac{1}{\gamma m} \delta \mathbf{F}_{s c a t}
$$

Ilī
 Take moments of the EoM

米 Three moment equations：
1． $\mathbf{v} \bullet E o M=$ Energy equation
2． $\mathbf{r} \bullet E o M=$ Virial equation
3． $\mathbf{r} \times \mathrm{EoM}=$ Angular momentum equation

粦 Next take rms averages of the moment equations
\rightarrow Yields equations in R，V，L and their derivatives
粦 Ansatz：The radial motions of the beam are self similar
\rightarrow The functional shape of $\mathrm{J}(\mathrm{r})$ stays fixes as R changes

||| Last steps

粦 Angular momentum conservation implies

$$
P_{\vartheta}=\gamma L+\gamma \omega_{c} \frac{R^{2}}{c}=\text { constant }
$$

米 The energy \& virial equations combine to yield

$$
\ddot{R}+\frac{\dot{\gamma}}{\gamma} \dot{R}+\frac{U}{R}+\frac{\omega_{c}^{2} R}{4}-\frac{\mathrm{E}^{2}}{\gamma^{2} R^{3}}=\frac{1}{\gamma^{2} R^{3}} \int_{t_{o}}^{t} d t^{\prime}\left(\frac{2 \gamma R^{2}}{m} \varepsilon^{\prime}\right)
$$

where

$$
U=\left\langle\omega_{\beta}^{2} r^{2}\right\rangle=I / I_{\text {Alfiven }}
$$

and

$$
\mathrm{E}^{2}=\gamma^{2} R^{2}\left(V^{2}-(\dot{R})^{2}\right)+P_{\vartheta}^{2}
$$

