

Unit 3 - Lecture 6 Non-resonant Accelerators

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

Present motivations

Components of an inertial fusion power plant

Target design is a variation of the distributed radiator target (DRT)

New design allows beams to come in from larger angle, ~ 24° off axis. Yield = 400 MJ, Gain = 57 at $E_{driver} = 7 MJ$

Heavier ions ==> higher voltage ==> lower current beams

- Collective effects are reduced with heaviest ions
 - More energy/particle ==> fewer particles (~ 10^{15} total ions).
- Cost tradeoff: lower mass ions ==> lower voltage ==> lower cost
 - Compromise with 2.5 GeV Xenon.
- SC magnets can confine beam against its space charge during acceleration.

Beam requirements for HIF

- Representative set of parameters for indirect-drive targets
 - \rightarrow 500 Terawatts of beam power
 - \rightarrow beam pulse length ~ 10 ns
 - → range 0.02 0.2 g/cm²
 - \rightarrow focus such a large beam to a spot of ~1-5 mm radius
 - \rightarrow desired focal length ~6 m (maximum chamber size
- # Basic requirements ==> certain design choices
 - → parallel acceleration of multiple beams
 - \rightarrow acceleration of needed charge in a single beam is uneconomical
 - → emittance required to focus single large beam extremely difficult

1117 2.5 GeV 112-beam fusion driver: 6.4 MJ of Xe⁺¹

24,000 tonne induction cores

\$720M hardware, \$1 B direct, \$2.1 B total capital cost

How could one produce such energetic monolithic pulses?

Transformers are highly efficient and can drive large currents

Large units can transfer > 99% of input power to the output

Recall the ray transformer realized as the Betatron (D. Kerst, 1940)

The beam acts as a 1-turn secondary winding of the transformer

Magnetic field energy is transferred directly to the electrons

For the orbit size to remain invariant

$$\dot{\Phi} = 2\pi R^2 \dot{B}_s$$

This was good for up to 300 MeV electrons. What about electrons or ions?

Linear Betatron: Linear Induction Accelerator could accelerate ions

N. Christofilos

Linear induction accelerators & fusion

Astron-I Induction linac (1963) & the Astron CTR experiment

Properties of inductive geometry

- 1. Leakage inductance: $L = (\mu/2\pi) \ln(R_o/R_i)$ a) $i_L = (V_o/L)t$
- 2. Ferromagnetic core reduces the leakage current and slows the speed of the shorting wave until the core saturates
- 3. Load current does not encircle the core
 a) Pulse drive properties not core properties limit I_b
- 4. Field across the gap is quasi-electrostatic
- 5. Within the core electrostatic & inductive voltages cancel
 - a) The structure is at ground potential

Realistic cross-section of a small induction cell

Fig. 5 Typical cross section of low-gamma ten-cell module.

What is the equivalent circuit

Characteristics of coaxial transmission lines

Wave velocity:

11111

$$v_g = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{c}{\sqrt{\mu_r\varepsilon_r}}$$

Core impedance:

$$Z_{core} = \sqrt{\frac{\mu}{\varepsilon}} = 120\pi \sqrt{\frac{\mu_r}{\varepsilon_r}}$$
 Ohms

Characteristic impedance:

$$Z = \left(\frac{L}{C}\right)^{1/2} = \frac{Z_{core}}{2\pi} \ln\left(\frac{r_o}{r_i}\right) = \frac{1}{2\pi} \sqrt{\frac{\mu}{\epsilon}} \ln\left(\frac{r_o}{r_i}\right) = 60 \sqrt{\frac{\mu_r}{\epsilon_r}} \ln\left(\frac{r_o}{r_i}\right)$$

Distribution of voltages in induction core (no local saturation)

Laminating the core reduces eddy current losses & allows fields to penetrate through the core

State 1 => State 2: Drive State 2 => State 1: Reset Area = Hysteresis loss

Resetting the cores

- * Before the core can be pulsed again it must be reset to $-B_r$
- * Properties of the reset circuit
 - → Achieve V Δt product > $B_r + B_s$
 - \rightarrow Supply unidirectional reverse current through the axis of the core
 - → Have high voltage isolation so that the reset circuit does not absorb energy during the drive voltage pulse
 - Depends on the type of pulse forming line used in primary circuit

ETA-II Cell Modification

The RTA Injector (1 MeV, 1 KA, 375 ns)

US Particl e Accel erator School

Double 200 kV, 1.6 µs DARHT cell is of the scale needed for HIF

Comparing 1MJ HIF linac driver example cross-sections

Multi-beam Quad (MQ) driver, an RPD-like design scaled down to produce 1MJ of 4 GeV Bi+ ions in a single pulse.

12T peak on 2cm -thick winding Modular Solenoid (MS) driver system, one of 40 linacs, to produce 1MJ total of 500 MeV Ar+8 with five pulses per linac.

a= 5 cm

20

Schematic of induction linac power system

Induction linacs handle high currents naturally.

Why HIF Chose Induction

$$\eta_{LIA} = \frac{I\Delta B}{I\Delta B + w\pi (2h+d)}$$

Efficiency increases as current increases

==> Multiple beams within single induction core

General Envelope Equation for Cylindrically Symmetric Beams

Can be generalized for sheet beams and beams with quadrupole focusing

Assumptions for the derivation

Divide beam into disks

- # Rays are paraxial (v₁/c << 1)
- # Axisymmetry
- ✤ No mass spread with a disk
- # Small angle scattering
- # Uniform B_z
- # Disks do not overtake disks

Particle equations

$$\dot{\mathbf{p}} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) + \delta \mathbf{F}_{scat}$$

$$\mathbf{p} = \gamma m \mathbf{v}$$
So,
$$\frac{d}{dt}(\gamma m \mathbf{v}) - q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) = \delta \mathbf{F}_{scat}$$
(EoM)
$$Define \ \mathbf{w} = \gamma mc^{2}$$

Paraxial implies

$$v_{\perp}/c << 1$$

and

$$I_{beam} << I_{Alfven} = \gamma \beta \frac{ec}{r_e} = 17,000 \ \gamma \beta \text{ Amps}$$

Next write the particle equation of motion

* Define the cyclotron frequency & the betatron frequency

$$\omega_{c} = \frac{qB_{z}}{\gamma m} \text{ and } \omega_{\beta} = \frac{\beta cB_{\theta} - E_{r}}{r}$$

By Maxwell's equations
$$B_{r} = -\frac{r}{2} \frac{\partial B_{z}}{\partial z}$$
$$E_{\theta} = -\frac{r}{2} \frac{\partial B_{z}}{\partial t}$$
$$\frac{dB_{z}}{dt} = \dot{B} = \frac{\partial B_{z}}{\partial t} + \beta c \frac{\partial B_{z}}{\partial z}$$

* The EoM for a beam particle is

₩

$$\frac{\dot{\gamma}}{\gamma}\mathbf{v} + \dot{\mathbf{v}} + \omega_{\beta}^{2}\mathbf{r} + \omega_{c}^{2}\mathbf{z} \times \mathbf{v} + \frac{1}{2\gamma}\frac{d}{dt}(\gamma\omega_{c})\mathbf{z} \times \mathbf{r} = \frac{1}{\gamma m}\delta\mathbf{F}_{scat}$$

Take moments of the EoM

- ✤ Three moment equations:
 - **1.** $\mathbf{v} \cdot \text{EoM} = \text{Energy equation}$
 - **2.** $\mathbf{r} \cdot \text{EoM} = \text{Virial equation}$
 - **3.** $\mathbf{r} \times \text{EoM} = \text{Angular momentum equation}$
- * Next take rms averages of the moment equations
 - \rightarrow Yields equations in R, V, L and their derivatives
- ✤ Ansatz: The radial motions of the beam are self similar
 - → The functional shape of J(r) stays fixes as R changes

Last steps

* Angular momentum conservation implies

$$P_{\vartheta} = \gamma L + \gamma \omega_c \frac{R^2}{c} = \text{constant}$$

℁ The energy & virial equations combine to yield

$$\ddot{R} + \frac{\dot{\gamma}}{\gamma}\dot{R} + \frac{U}{R} + \frac{\omega_c^2 R}{4} - \frac{E^2}{\gamma^2 R^3} = \frac{1}{\gamma^2 R^3} \int_{t_o}^t dt' \left(\frac{2\gamma R^2}{m}\varepsilon'\right)$$

where

$$U = \left< \omega_{\beta}^2 r^2 \right> = \frac{I}{I_{Alfven}}$$

and

$$E^{2} = \gamma^{2} R^{2} \left(V^{2} - (\dot{R})^{2} \right) + P_{\vartheta}^{2}$$