Unit 3 - Lecture 5 RF-accelerators: Synchronism conditions

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

Final Exam schedule:
 8.277 Introduction to Particle Accelerators
 Room 4-145 Thursday, May 22 9:00AM - 12:00NOON

You may use your lecture notes

Iliì
 We can vary B in an RF cavity

Note that inside the cavity $\mathbf{d B} / \mathbf{d t} \neq 0$

IT RF-cativties for acceleration

Iliition
 Linac size is set by $\mathrm{E}_{\text {gap }}$; why not one gap?

Note that in cavity $d B / d t \neq 0$

III RF accelerators

The synchrotron introduces two new ideas：

 change $B_{\text {dipole }} \&$ change $\omega_{r f}$类 For low energy ions，$f_{\text {rev }}$ increases as $E_{\text {ion }}$ increases

米＝＝＞Increase $\omega_{r f}$ to maintain synchronism

粦 For any $E_{i o n}$ circumference must be an integral number of rf wavelengths

$$
L=h \lambda_{r f}
$$

粦 h is the harmonic number

IIITI
 Ideal closed orbit in the synchrotron

粦 Beam particles will not have identical orbital positions \＆ velocities
粦 In practice，they will have transverse oscillatory motion（betatron oscillations）set by radial restoring forces
粦 An ideal particle has zero amplitude motion on a closed orbit along the axis of the synchrotron

Iliit
 Ideal closed orbit \& synchronous particle

粦 The ideal synchronous particle always passes through the rf-cavity when the field is at the same phase

｜｜｜｜Synchrotron acceleration

米 The rf cavity maintains an electric field at $\omega_{r f}=h \omega_{\text {rev }}=h 2 \pi v / L$
＊Around the ring，describe the field as $E(z, t)=E_{1}(z) E_{2}(t)$
米 $\mathrm{E}_{1}(\mathrm{z})$ is periodic with a period of L

$$
E_{2}(t)=E_{o} \sin \left(\int_{t_{o}}^{t} \omega_{r f} d t+\varphi_{o}\right)
$$

粦 The particle position is $z(t)=z_{o}+\int_{t_{o}}^{t} v d t$

Energy gain

粦 The energy gain for a particle that moves from 0 to L is given by：

$$
\begin{aligned}
& W=q \int_{0}^{L} E(z, t) \cdot d z=q \int_{-g / 2}^{+g / 2} E_{1}(z) E_{2}(t) d z= \\
& =q g E_{2}(t)=q E_{o} \sin \left(\int_{t_{o}}^{t} \omega_{r f} d t+\varphi_{o}\right)=q V
\end{aligned}
$$

粦 V is the voltage gain for the particle．
\rightarrow depends only on the particle trajectory
\rightarrow includes contributions from all electric fields present
－（RF，space charge，interaction with the vacuum chamber，．．．）
米 Particles can experience energy variations $U(E)$ that depend on energy
\rightarrow synchrotron radiation emitted by a particle under acceleration

$$
\Delta E_{\text {Total }}=q V+U(E)
$$

Ilīi
 Energy gain－II

粦 The synchronism conditions for the synchronous particle
\rightarrow condition on rf－frequency，
\rightarrow relation between rf voltage \＆field ramp rate
类 The rate of energy gain for the synchronous particle is

$$
\frac{d E_{s}}{d t}=\frac{\beta_{s} c}{L} e V \sin \varphi_{s}=\frac{c}{h \lambda_{r f}} e V \sin \varphi_{s}
$$

粦 Its rate of change of momentum is

$$
\frac{d p_{s}}{d t}=e E_{o} \sin \varphi_{s}=\frac{e V}{L} \sin \varphi_{s}
$$

｜｜｜Beam rigidity links B, p and ρ

粦 Recall that $\mathrm{p}_{\mathrm{s}}=e \rho \mathrm{~B}_{\text {o }}$
粦 Therefore，

$$
\frac{d B_{o}}{d t}=\frac{V \sin \varphi_{s}}{\rho L}
$$

类 If the ramp rate is uniform then $\operatorname{Vsin} \phi_{s}=$ constant
粦 In rapid cycling machines like the Tevatron booster

$$
B_{o}(t)=B_{\min }+\frac{B_{\max }-B_{\min }}{2}\left(1-\cos 2 \pi f_{c y c l e} t\right)
$$

粦 Therefore $V \sin \phi_{s}$ varies sinusoidally

Phase stability
\&
Longitudinal phase space

US Particl e Accel er ator School

IIT Phase stability: Will bunch of finite length stay together \& be accelerated?

Let's say that the synchronous particle makes the $\mathrm{i}^{\text {th }}$ revolution in time: T_{i}

Will particles close to the synchronous particle in phase stay close in phase?

Discovered by MacMillan \& by Veksler

\|He What do we mean by phase? Let's consider non-relativistic ions

How does the ellipse change as B lags further behind A ?

ITE How does the ellipse change as B lags further behind A?

How does the size of the bucket change with ϕ_{s} ?

||7- This behavior can be though of as phase or longitudinal focusing

类 Stationary bucket: A special case obtains when $\phi_{\mathrm{s}}=0$
\rightarrow The synchronous particle does not change energy
\rightarrow All phases are trapped

粦 We can expect an equation of motion in ϕ of the form

$$
\frac{d^{2} \varphi}{d s^{2}}+\Omega^{2} \sin \varphi=0 \quad \text { Pendulum equation }
$$

\|| Length of orbits in a bending magnet

$$
\rho=\frac{p}{q B_{z}}=\frac{\beta \gamma m_{0} c}{q B_{z}}
$$

$L_{0}=$ Trajectory length between A and B $L=$ Trajectory length between A and C

$$
\frac{L-L_{0}}{L_{0}} \propto \frac{p-p_{0}}{p_{0}} \quad \frac{\Delta L}{L_{0}}=\alpha \frac{\Delta p}{p_{0}} \quad \quad \text { where } \alpha \text { is constant }
$$

$$
\text { For } \gamma \gg 1 \Rightarrow \frac{\Delta L}{L_{0}}=\alpha \frac{\Delta p}{p_{0}} \cong \alpha \frac{\Delta E}{E_{0}}
$$

In the sector bending magnet $L>L_{0}$ so that $a>0$ Higher energy particles will leave the magnet later.

|||| Definition: Momentum compaction

$$
\begin{gathered}
\frac{\Delta L}{L}=\alpha \frac{\Delta p}{p} \\
\alpha=\int_{0}^{L_{o}} \frac{D_{x}}{\rho} d s
\end{gathered}
$$

where dispersion, D_{x}, is the change in the closed orbit as a function of energy

Momentum compaction, α, is the change in the closed orbit length as a function of momentum.

Iliit Phase stability：Basics

粦 Distance along the particle orbit between rf－stations is L
粦 Time between stations for a particle with velocity v is

$$
\tau=L / v
$$

粦 Then

$$
\frac{\Delta \tau}{\tau}=\frac{\Delta L}{L}-\frac{\Delta v}{v}
$$

粦 Note that

$$
\frac{\Delta v}{v}=\frac{1}{\gamma^{2}} \frac{\Delta p}{p}
$$

（Exercise）

粦 For circular machines，L can vary with p

米 For linacs L is independent of p

Iliit Phase stability：Slip factor \＆transition

粦 Introduce γ_{t} such that

$$
\frac{\Delta L}{L}=\frac{1}{\gamma_{t}^{2}} \frac{\Delta p}{p}
$$

粦 Define a slip factor

$$
\eta \equiv \frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}}
$$

粦 At some transition energy η changes sign

粦 Now consider a particle with energy E_{n} and phase ψ_{n} w．r．t．the rf that enters station n at time T_{n}

US Particl e Accel er ator School

Illii
 Equation of motion for particle phase

粦 The phase at station $n+1$ is

$$
\begin{aligned}
\psi_{n+1} & =\psi_{n}+\omega_{r f}(\tau+\Delta \tau)_{n+1} \\
& =\psi_{n}+\omega_{r f} \tau_{n+1}+\omega_{r f} \tau_{n+1}\left(\frac{\Delta \tau}{\tau}\right)_{n+1}
\end{aligned}
$$

粦 By definition the synchronous particle stays in phase $(\bmod 2 \pi)$
粦 Refine the phase $\bmod 2 \pi$

$$
\phi_{n}=\psi_{n}-\omega_{r f} T_{n}
$$

$$
\phi_{n+1}=\phi_{n}+\omega_{r f} \tau_{n+1}\left(\frac{\Delta \tau}{\tau}\right)_{n+1}=\phi_{n}+\eta \underbrace{\omega_{r f} \tau_{n+1}}\left(\frac{\Delta p}{p}\right)_{n+1}
$$

harmonic number $=2 \pi \mathrm{~N}$

Iliit
 Equation of motion in energy

$\left(E_{s}\right)_{n+1}=\left(E_{s}\right)_{n}+e V \sin \phi_{s} \quad$ and in general $\quad E_{n+1}=E_{n}+e V \sin \phi_{n}$

Define $\Delta E=E-E_{s}$

$$
\Delta E_{n+1}=\Delta E_{n}+e V\left(\sin \phi_{n}-\sin \phi_{s}\right)
$$

Exercise: Show that $\frac{\Delta p}{p}=\frac{c^{2}}{v^{2}} \frac{\Delta E}{E}$
Then

$$
\phi_{n+1}=\phi_{n}+\frac{\omega_{r f} \tau \eta c^{2}}{E_{s} v^{2}} \Delta E_{n+1}
$$

Longitudinal phase space of beam

Solving the difference equations will show if there are areas of stability in the $(\Delta E / E, \phi)$ longitudinal phase space of the beam

Iliit
 Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 0 3}, \phi_{n}=\phi_{s}$

US Rarcicie Accel er acor Scnool

Iliit
 Phase stability, $\Delta \mathrm{E} / \mathrm{E}=0.05, \phi_{n}=\phi_{s}$

US Rarcicie Accel er ator Scnool

Iliit
 Phase stability, $\Delta \mathrm{E} / \mathrm{E}=0.1, \phi_{n}=\phi_{s}$

Iliī
 Phase stability, $\Delta \mathbf{E} / \mathbf{E}=0.2, \phi_{n}=\phi_{s}$

Iliī
 Phase stability, $\Delta \mathbf{E} / \mathbf{E}=0.3, \phi_{n}=\phi_{s}$

Phi

US Pdrticie Accel erdaur sciluul

Iliit
 Phase stability, $\Delta \mathbf{E} / \mathbf{E}=0.4, \phi_{n}=\phi_{s}$

IIIT
 Phase stability, $\Delta \mathrm{E} / \mathrm{E}=0.405, \phi_{n}=\phi_{s}$

Regions of stability and instability are sharply divided

Iliit
 Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 4 5}, \phi_{n}=\phi_{s}$

Iliī
 Phase stability, $\Delta \mathbf{E} / \mathbf{E}=0.5, \phi_{n}=\phi_{s}$

Iliit
 Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 5 5}, \phi_{n}=\phi_{s}$

Phi

Iliì
 Phase stability, $\Delta \mathbf{E} / \mathbf{E}=\mathbf{0 . 6}, \phi_{n}=\phi_{s}$

|||| Physical picture of phase stability

Here we've picked the case in which
we are above the transition energy
(typically the case for electrons)

Iliit
 Consider this case for a proton accelerator

\|He Case of favorable transition crossing in an electron ring

Iliī
 Frequency of synchrotron oscillations

粦 Phase－energy oscillations mix particles longitudinally within the beam

粦 What is the time scale over which this mixing takes place？
粦 If $\Delta \mathrm{E}$ and ϕ change slowly，approximate difference equations by differential equations with n as independent variable

||| Two first order equations ==> one second order equation

$$
\frac{d \varphi}{d n}=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} \Delta E
$$

and

$$
\frac{\mathrm{d} \Delta \mathrm{E}}{d n}=e V\left(\sin \varphi-\sin \varphi_{s}\right)
$$

yield

$$
\frac{d^{2} \varphi}{d n^{2}}=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\sin \varphi-\sin \varphi_{s}\right)
$$

if

$$
V=\text { constant and } \frac{\mathrm{dE}_{\mathrm{s}}}{\mathrm{dn}} \text { is sufficiently small }
$$

|||| Multiply by d $\phi /$ dn $\&$ integrate

$$
\begin{aligned}
& \int \frac{d^{2} \varphi}{d n^{2}} \frac{d \varphi}{d n} d n=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V \int \frac{d \varphi}{d n}\left(\sin \varphi-\sin \varphi_{s}\right) d n \\
\Rightarrow \quad & \frac{1}{2}\left(\frac{d \varphi}{d n}\right)^{2}=-\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\cos \varphi-\sin \varphi_{s}\right)+\operatorname{const}
\end{aligned}
$$

Rearranging

$$
\underbrace{\frac{1}{2}\left(\frac{d \varphi}{d n}\right)^{2}}_{\text {"К.E." }}+\underbrace{\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\cos \varphi-\sin \varphi_{s}\right)}_{\text {"P.E" }}=\text { const }
$$

Ilií
 "Energy" diagram for $\cos \phi+\phi \sin \phi_{\mathrm{s}}$

||| Stable contours in phase space

$$
\begin{gathered}
\text { Insert } \frac{d \varphi}{d n}=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} \Delta E \\
\text { into } \frac{1}{2}\left(\frac{d \varphi}{d n}\right)^{2}+\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\cos \varphi-\sin \varphi_{s}\right)=\mathrm{const} \\
(\Delta E)^{2}+2 e V \frac{\beta^{2} E_{s}}{\eta \omega_{r f} \tau}\left(\cos \varphi-\sin \varphi_{s}\right)=\mathrm{const}
\end{gathered}
$$

for all parameters held constant

For $\phi_{\sigma}=0$ we have

We've seen this behavior for the pendulum

Now let's return to the question of frequency

IIE For small phase differences, $\Delta \phi=\phi-\phi_{s}$, we can linearize our equations

$$
\begin{aligned}
\frac{d^{2} \varphi}{d n^{2}}=\frac{d^{2} \Delta \varphi}{d n^{2}} & =\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\sin \varphi-\sin \varphi_{s}\right) \\
& =\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\sin \left(\varphi_{s}+\Delta \varphi\right)-\sin \varphi_{s}\right)
\end{aligned}
$$

$$
\approx 4 \pi^{2}(\underbrace{\frac{\eta \omega_{r f} \tau}{4 \pi^{2} \beta^{2} E_{s}} e V \cos \varphi_{s}}_{-\boldsymbol{v}_{\mathbf{s}}^{2} \quad \text { Synchrotron tune }}) \Delta \varphi
$$

$$
\Omega_{s}=\frac{2 \pi v_{s}}{\tau}=\sqrt{-\frac{\eta \omega_{r f}}{\tau \beta^{2} E_{s}} e V \cos \varphi_{s}}=\text { synchrotron angular frequency }
$$

｜｜｜｜Choice of stable phase depends on η

$$
\Omega_{s}=\sqrt{-\frac{\eta \omega_{r f}}{\tau \beta^{2} E_{s}} e V \cos \varphi_{s}}
$$

米 Below transition $\left(\gamma<\gamma_{t}\right)$ ，
$\rightarrow \eta<0$ ，therefore $\cos \phi_{\mathrm{s}}$ must be >0
米 Above transition $\left(\gamma>\gamma_{t}\right)$ ，
$\rightarrow \eta>0$ ，therefore $\cos \phi_{\mathrm{s}}$ must be <0
米 At transition $\Omega_{\mathrm{s}}=0$ ；there is no phase stability
＊Circular accelerators that must cross transition shift the synchronous phase at $\gamma>\gamma_{t}$
＊Linacs have no path length difference，$\eta=1 / \gamma^{2}$ ；particles stay locked in phase and $\Omega_{\mathrm{s}}=0$
||| Momentum acceptance: maximum momentum of any particle on a stable orbit ${ }_{\star}{ }_{\star}{ }^{*}{ }^{*}$

$$
\left(\frac{\Delta p}{p_{0}}\right)_{A C C}^{2}=\frac{2|q| \hat{V}}{\pi h\left|\eta_{C}\right| \beta c p_{0}}
$$

$$
\left(\frac{\Delta p}{p_{0}}\right)_{A C C}^{2}=\frac{F(Q)}{2 Q} \frac{2|q| \hat{V}}{\pi h\left|\eta_{C}\right| \beta c p_{0}}
$$

$$
F(Q)=2\left(\sqrt{Q^{2}-1}-\arccos \frac{1}{Q}\right)
$$

$$
\begin{aligned}
& Q=\frac{1}{\sin \varphi_{s}}=\frac{q \hat{V}}{U_{0}} \\
& \text { Over voltage factor }
\end{aligned}
$$

||| How can particles be lost

粦 Scattering out of the rf-bucket
\rightarrow Particles scatter off the collective field of the beam
\rightarrow Large angle particle-particle scattering
粦 RF-voltage too low for radiation losses

$$
\Delta E_{\text {Total }}=q V+U(E)
$$

Iliit
 Matching the beam on injection

粦 Beam injection from another rf-accelerator is typically
"bucket-to-bucket"
\rightarrow rf systems of machines are phase-locked
\rightarrow bunches are transferred directly from the buckets of one machine into the buckets of the other

粦 This process is efficient for matched beams
\rightarrow Injected beam hits the middle of the receiving rf-bucket
\rightarrow Two machines are longitudinally matched.

- They have the same aspect ratio of the longitudinal phase ellipse

Iliit
 Dugan simulations of CESR injection

Matched transfer - first hundred turns

|||Example of mismatched CESR transfer: phase error 60°

From Dugan: USPAS lectures - Lecture 11

