

Unit 3 - Lecture 5 RF-accelerators: Synchronism conditions

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

Final Exam schedule: 8.277 Introduction to Particle Accelerators Room 4-145 Thursday, May 22 9:00AM - 12:00NOON

You may use your lecture notes

We can vary B in an RF cavity

Note that inside the cavity $dB/dt \neq 0$

Linac size is set by E_{gap}; why not one gap?

US Particle Accelerator School

MacMillan's first synchrotron

US Particl e Accel erator School

The synchrotron introduces two new ideas: thange B_{dipole} & change ω_{rf}

- * For low energy ions, f_{rev} increases as E_{ion} increases
- * ==> Increase ω_{rf} to maintain synchronism
- * For any E_{ion} circumference must be an integral number of rf wavelengths

$$L = h \lambda_{rf}$$

h is the harmonic number

$$L = 2\pi R$$

$$f_{rev} = 1/\tau = v/L$$

Ideal closed orbit in the synchrotron

- # Beam particles will not have identical orbital positions & velocities
- In practice, they will have transverse oscillatory motion (betatron oscillations) set by radial restoring forces
- * An ideal particle has zero amplitude motion on a closed orbit along the axis of the synchrotron

Ideal closed orbit & synchronous particle

* The ideal synchronous particle always passes through the rf-cavity when the field is at the same phase

Synchrotron acceleration

- ** The rf cavity maintains an electric field at $\omega_{rf} = h \omega_{rev} = h 2\pi v/L$
- ** Around the ring, describe the field as $E(z,t)=E_1(z)E_2(t)$
- # E₁(z) is periodic with a period of L

$$E_2(t) = E_o \sin\left(\int_{t_o}^t \omega_{rf} dt + \varphi_o\right)$$

* The particle position is $z(t) = z_o + \int_t^t v dt$

Energy gain

* The energy gain for a particle that moves from 0 to L is given by:

$$W = q \int_{0}^{L} E(z,t) \cdot dz = q \int_{-g/2}^{+g/2} E_{1}(z) E_{2}(t) dz =$$
$$= qgE_{2}(t) = qE_{o} \sin\left(\int_{t_{o}}^{t} \omega_{rf} dt + \varphi_{o}\right) = qV$$

V is the voltage gain for the particle.

- \rightarrow depends only on the particle trajectory
- \rightarrow includes contributions from all electric fields present
 - (RF, space charge, interaction with the vacuum chamber, ...)
- # Particles can experience energy variations U(E) that depend on energy
 - \rightarrow synchrotron radiation emitted by a particle under acceleration

$$\Delta E_{Total} = qV + U(E)$$

* The synchronism conditions for the synchronous particle

- \rightarrow condition on rf- frequency,
- → relation between rf voltage & field ramp rate

* The rate of energy gain for the synchronous particle is

$$\frac{dE_s}{dt} = \frac{\beta_s c}{L} eV \sin\varphi_s = \frac{c}{h\lambda_{rf}} eV \sin\varphi_s$$

$$\frac{dp_s}{dt} = eE_o\sin\varphi_s = \frac{eV}{L}\sin\varphi_s$$

Beam rigidity links B, p and ρ

Recall that $p_s = e\rho B_o$

₩ Therefore,

$$\frac{dB_o}{dt} = \frac{V\sin\varphi_s}{\rho L}$$

** If the ramp rate is uniform then $Vsin\phi_s = constant$ ** In rapid cycling machines like the Tevatron booster

$$B_o(t) = B_{\min} + \frac{B_{\max} - B_{\min}}{2} \left(1 - \cos 2\pi f_{cycle} t\right)$$

* Therefore $Vsin\phi_s$ varies sinusoidally

Phase stability & Longitudinal phase space

US Particl e Accel erator School

Phase stability: Will bunch of finite length stay together & be accelerated?

Let's say that the synchronous particle makes the i^{th} revolution in time: T_i

Will particles close to the synchronous particle in phase stay close in phase?

Discovered by MacMillan & by Veksler

What do we mean by phase? Let's consider non-relativistic ions

How does the ellipse change as B lags further behind A?

How does the size of the bucket change with ϕ_s ?

US Particl e Accel erator School

This behavior can be though of as phase or longitudinal focusing

- # Stationary bucket: A special case obtains when $\phi_s = 0$
 - \rightarrow The synchronous particle does not change energy
 - → All phases are trapped

***** We can expect an equation of motion in ϕ of the form

$$\frac{d^2\varphi}{ds^2} + \Omega^2 \sin\varphi = 0 \qquad Pendulum equation$$

Length of orbits in a bending magnet

$$\rho = \frac{p}{qB_z} = \frac{\beta \gamma m_0 c}{q B_z}$$

 L_0 = Trajectory length between A and B L = Trajectory length between A and C

where α is constant

For
$$\gamma >> 1 \implies \frac{\Delta L}{L_0} = \alpha \frac{\Delta p}{p_0} \cong \alpha \frac{\Delta E}{E_0}$$

In the sector bending magnet $L > L_0$ so that a > 0Higher energy particles will leave the magnet later.

US Particle Accelerator School

Definition: Momentum compaction

 $\Delta E/E = 0$

Х

S

where dispersion, D_x , is the change in the closed orbit as a function of energy

Momentum compaction, α , is the change in the closed orbit length as a function of momentum.

Phase stability: Basics

* Distance along the particle orbit between rf-stations is L

** Time between stations for a particle with velocity v is $\tau = L/v$ ** Then $\frac{\Delta \tau}{\tau} = \frac{\Delta L}{L} - \frac{\Delta v}{v}$ ** Note that $\Delta v = 1 \ \Delta p$ (Evercise)

$$\frac{\Delta v}{v} = \frac{1}{\gamma^2} \frac{\Delta p}{p}$$
 (Exercise)

\% For circular machines, L can vary with p

℁ For linacs L is independent of p

Phase stability: Slip factor & transition

Introduce γ_t such that

$$\frac{\Delta L}{L} = \frac{1}{\gamma_t^2} \frac{\Delta p}{p}$$

 $\eta \equiv \frac{1}{\gamma_t^2} - \frac{1}{\gamma^2}$

* Define a slip factor

** Now consider a particle with energy E_n and phase ψ_n w.r.t. the rf that enters station *n* at time T_n

Equation of motion for particle phase

* The phase at station n+1 is

$$\psi_{n+1} = \psi_n + \omega_{rf} (\tau + \Delta \tau)_{n+1}$$
$$= \psi_n + \omega_{rf} \tau_{n+1} + \omega_{rf} \tau_{n+1} \left(\frac{\Delta \tau}{\tau}\right)_{n+1}$$

By definition the synchronous particle stays in phase (mod 2π)
Refine the phase mod 2π

$$\phi_n = \psi_n - \omega_{rf} T_n$$

$$\phi_{n+1} = \phi_n + \omega_{rf} \tau_{n+1} \left(\frac{\Delta \tau}{\tau}\right)_{n+1} = \phi_n + \eta \omega_{rf} \tau_{n+1} \left(\frac{\Delta p}{p}\right)_{n+1}$$

harmonic number = $2\pi N$

Equation of motion in energy

 $(E_s)_{n+1} = (E_s)_n + eV\sin\phi_s$ and in general $E_{n+1} = E_n + eV\sin\phi_n$

Define
$$\Delta E = E - E_s$$
 $\Delta E_{n+1} = \Delta E_n + eV(\sin \phi_n - \sin \phi_s)$

Exercise: Show that $\frac{\Delta}{\Delta}$

$$\frac{\Delta p}{p} = \frac{c^2}{v^2} \frac{\Delta E}{E}$$

Then

$$\phi_{n+1} = \phi_n + \frac{\omega_{rf} \tau \eta c^2}{E_s v^2} \Delta E_{n+1}$$

Longitudinal phase space of beam

Solving the difference equations will show if there are areas of stability in the ($\Delta E/E$, ϕ) longitudinal phase space of the beam

US Particle Accelerator School

Phase stability, $\Delta E/E = 0.05$, $\phi_n = \phi_s$

Phase stability, $\Delta E/E = 0.1$, $\phi_n = \phi_s$

Phase stability, $\Delta E/E = 0.2$, $\phi_n = \phi_s$

Phase stability, $\Delta E/E = 0.3$, $\phi_n = \phi_s$

Phase stability, $\Delta E/E = 0.4$, $\phi_n = \phi_s$

US Particl e Accel erator School

Phase stability, $\Delta E/E = 0.45$, $\phi_n = \phi_s$

Phase stability, $\Delta E/E = 0.5$, $\phi_n = \phi_s$

US Partici e Accel erator School

Physical picture of phase stability

Here we've picked the case in which we are above the transition energy

(typically the case for electrons)

Consider this case for a proton accelerator

Case of favorable transition crossing in an electron ring

Frequency of synchrotron oscillations

- * Phase-energy oscillations mix particles longitudinally within the beam
- * What is the time scale over which this mixing takes place?
- ** If ΔE and ϕ change slowly, approximate difference equations by differential equations with n as independent variable

Two first order equations ==> one second order equation

$$\frac{d\varphi}{dn} = \frac{\eta \omega_{rf} \tau}{\beta^2 E_s} \Delta E$$

and

$$\frac{\mathrm{d}\Delta \mathrm{E}}{\mathrm{d}n} = eV(\sin\varphi - \sin\varphi_s)$$

yield

$$\frac{d^2\varphi}{dn^2} = \frac{\eta\omega_{rf}\tau}{\beta^2 E_s} eV(\sin\varphi - \sin\varphi_s)$$
 (Pendulum equation)

if

$$V = \text{constant}$$
 and $\frac{dE_s}{dn}$ is sufficiently small

Multiply by $d\phi/dn$ & integrate

$$\int \frac{d^2 \varphi}{dn^2} \frac{d\varphi}{dn} dn = \frac{\eta \omega_{rf} \tau}{\beta^2 E_s} eV \int \frac{d\varphi}{dn} (\sin \varphi - \sin \varphi_s) dn$$

$$=> \frac{1}{2} \left(\frac{d\varphi}{dn}\right)^2 = -\frac{\eta \omega_{rf} \tau}{\beta^2 E_s} eV(\cos\varphi - \sin\varphi_s) + const$$

Rearranging

US Particle Accelerator School

Stable contours in phase space

Insert
$$\frac{d\varphi}{dn} = \frac{\eta \omega_{rf} \tau}{\beta^2 E_s} \Delta E$$

into
$$\frac{1}{2} \left(\frac{d\varphi}{dn}\right)^2 + \frac{\eta \omega_{rf} \tau}{\beta^2 E_s} eV(\cos\varphi - \sin\varphi_s) = const$$

$$\left(\Delta E\right)^{2} + 2eV\frac{\beta^{2}E_{s}}{\eta\omega_{rf}\tau}(\cos\varphi - \sin\varphi_{s}) = const$$

for all parameters held constant

 $\theta/2\pi$ Now let's return to the question of frequency

US Particle Accelerator School

For small phase differences, $\Delta \phi = \phi - \phi_s$, we can linearize our equations

$$\frac{d^{2}\varphi}{dn^{2}} = \frac{d^{2}\Delta\varphi}{dn^{2}} = \frac{\eta\omega_{rf}\tau}{\beta^{2}E_{s}} eV(\sin\varphi - \sin\varphi_{s})$$
$$= \frac{\eta\omega_{rf}\tau}{\beta^{2}E_{s}} eV(\sin(\varphi_{s} + \Delta\varphi) - \sin\varphi_{s})$$
$$\approx 4\pi^{2} \left(\frac{\eta\omega_{rf}\tau}{4\pi^{2}\beta^{2}E_{s}} eV\cos\varphi_{s}\right) \Delta\varphi$$
$$- \frac{\sqrt{s^{2}}}{\sqrt{s^{2}}} Synchrotron tune$$

$$\Omega_s = \frac{2\pi v_s}{\tau} = \sqrt{-\frac{\eta \omega_{rf}}{\tau \beta^2 E_s}} eV \cos \varphi_s = \text{synchrotron angular frequency}$$

Choice of stable phase depends on η

$$\Omega_{s} = \sqrt{-\frac{\eta \omega_{rf}}{\tau \beta^{2} E_{s}}} eV \cos \varphi_{s}$$

Below transition (γ < γ_t),
 → η < 0, therefore cos φ_s must be > 0

Above transition ($\gamma > \gamma_t$),

→ $\eta > 0$, therefore $\cos \phi_s$ must be < 0

- At transition $\Omega_s = 0$; there is no phase stability
- * Circular accelerators that must cross transition shift the synchronous phase at $\gamma > \gamma_t$
- # Linacs have no path length difference, $\eta = 1/\gamma^2$; particles stay locked in phase and $\Omega_s = 0$

Momentum acceptance: maximum momentum of any particle on a stable orbit

How can particles be lost

- ** Scattering out of the rf-bucket
 - \rightarrow Particles scatter off the collective field of the beam
 - → Large angle particle-particle scattering
- # RF-voltage too low for radiation losses

$$\Delta E_{Total} = qV + U(E)$$

Matching the beam on injection

- # Beam injection from another rf-accelerator is typically "bucket-to-bucket"
 - → rf systems of machines are phase-locked
 - → bunches are transferred directly from the buckets of one machine into the buckets of the other
- * This process is efficient for matched beams
 - → Injected beam hits the middle of the receiving rf-bucket
 - → Two machines are longitudinally matched.
 - They have the same aspect ratio of the longitudinal phase ellipse

Dugan simulations of CESR injection

Matched transfer - first hundred turns

US Particl e Accel erator School

Example of mismatched CESR transfer: phase error 60°

