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Reminder from Registrar

This is to remind all that ALL classes that meet on Tuesdays WILL

NOT meet on Tuesday, February 19th.

Classes that have a regular Monday scheduled class, WILL meet on

Tuesday, February 19th.

http://web.mit.edu/registrar/www/calendar.html

This includes ALL classes - lectures, recitations, labs, etc. - all day

long , including evening classes.

If conflicts are reported to this office, we will do the best we can to

solve problems, but I would appreciate your reminding all of your

classes of the Institute wide schedule situation.
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The Basics - Mechanics
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Newton’s law

We all know

The 4-vector form is

Differentiate                     with respect to 

The work is the rate of changing mc2

F =
d 

dt
p

F μ = c
dm

dt
,

dp
dt

 

 
 

 

 
 =

dpμ

d

p2
= mo

2c 2

  

pμ
dpμ

d
= pμF

μ =
d(mc 2)

dt
F o v = 0
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Motion in the presence of a linear restoring force

It is worth noting that the simple harmonic oscillator is a
linearized example of the pendulum equation

   that governs the free electron laser instability

Harmonic oscillator

F = kx

˙ ̇ x +
k

m
x = 0

x = A sin ot  where  o = k
m

˙ ̇ x + o
2 sin(x) ˙ ̇ x + o

2(x x 3

6 ) = 0
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Solution to the pendulum equation

Use energy conservation to solve the equation exactly

Multiply     by          to get

Integrating we find that the energy is conserved

˙ ̇ x + o
2 sin(x) = 0 ˙ x 

1

2

d

dt
˙ x 2 o

2 d

dt
cos x = 0

1

2 o
2

˙ x 2 cos x = constant =  energy of the system = E

With x= 

Stupakov: Chapter 1
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Non-linear forces

Beams subject to non-linear forces are commonplace in

accelerators

Examples include

Space charge forces in beams with non-uniform charge

distributions

Forces from magnets high than quadrupoles

Electromagnetic interactions of beams with external structures

• Free Electron Lasers

• Wakefields
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Properties of harmonic oscillators

Total energy is conserved

If there are slow changes in m or , then I = U/ o remains

invariant

U =
p2

2m
+

m o
2x 2

2

o

o

=
U

U

This effect is important as a diagnostic 

in measuring resonant properties of structures 
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Hamiltonian systems

In a Hamiltonian system, there exists generalized positions qi, generalized

momenta pi, & a function H(q, p, t) describing the system evolution by

H is called the Hamiltonian and q & p are canonical conjugate variables

For q = usual spatial coordinates {x, y, z} & p their conjugate momentum

components {px, py, pz}

H coincides with the total energy of the system

Dissipative, inelastic, & stochastic processes are non-Hamiltonian

i

i

p

H

dt

dq
=

i

i

q

H

dt

dp
=

q  q1,q2,....,qN  { }

p  p1, p2,...., pN  { }

EnergyKineticEnergyPotential +=+= TUH
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Lorentz force on a charged particle

Force, F, on a charged particle of charge q

in an electric field E and a magnetic field, B

E =  electric field with units of force per unit charge,

newtons/coulomb = volts/m.

B = magnetic flux density or magnetic induction, with

units of newtons/ampere-m = Tesla = Weber/m2.

F = q E +
1

c
v B
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A simple problem - bending radius

Compute the bending radius, R, of a non-relativistic

particle  particle in a uniform magnetic field, B.

 Charge = q

 Energy = mv2/2

FLorentz =  q
v

c
B =  Fcentripital  =  

mv 2

         =
mvc

qB
=

pc

qB

 

B(T) m( ) = 3.34 
p

1 GeV/c

 

 
 

 

 
  

e

Qe
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The fields come from charges & currents

Coulomb’s Law

Biot-Savart Law

F1 2 = q2

1

4 o

q1

r1,2
2

ˆ r 1 2

 

 
 

 

 
 = q2E1

r1,2

r1,2

i1dl1

i2dl2

dF1 2 = i2dl2

μ0

4

(i1dl1
ˆ r 12)

r1,2
2

 

 
 

 

 
 = i2dl2 B1
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Compute the B-field from current loop

On axis there is  only Bz by symmetry

The Biot-Savart law says

sin = R
r    and   r = R2

+ z2

dl ˆ r = dl = Rd

B =
I

cr2 Rsin d  ˆ z  =  
2 IR2

c R2 + z2( )
3 / 2

0

2

 ˆ z 

R

r



US Particle Accelerator School

The far field B-field has
a static dipole form

Importantly the ring of current does not radiate
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Question to ponder:
What is the field from this situation?

R

r

We’ll return to this question in the second half of the course
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Electric displacement & magnetic field

In vacuum,

The electric displacement is D = oE,

The magnetic field is H = B/ o

Where

o = 8.85x10-12 farad/m   &   o= 4  x10-7  henry/m.
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Electric charge density  is source of the electric field, E

(Gauss’s law)

Electric current density J =  u is source of the magnetic

induction field B (Ampere’s law)

If we want big magnetic fields, we need large current supplies

Maxwell’s equations (1)

•E =

B = μoJ + μ0 o

E
t
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Field lines of B are closed; i.e., no magnetic monopoles.

Electromotive force around a closed circuit is proportional

to rate of change of B through the circuit (Faraday’s law).

Maxwell’s equations (2)

•B = 0

E =
B
t
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Maxwell’s equations: integral form

Displacement current
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Exercise from Whittum

Exercise:  A charged particle has a kinetic energy of 50

keV. You wish to apply as large a force as possible. You

may choose either an electric field of 500 kV/m or a

magnetic induction of 0.1 T. Which should you choose

(a) for an electron,

(b) for a proton?
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Boundary conditions for

a perfect conductor,  = 

1. If electric field lines terminate on a surface, they do so

normal to the surface

a) any tangential component would quickly be neutralized by lateral

motion of charge within the surface.

b) The E-field must be normal to a conducting surface

2. Magnetic field lines avoid surfaces

a) otherwise they would terminate, since the magnetic field is zero

within the conductor

i. The normal component of B must be continuous across the

boundary for   
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Lorentz transformations of E.M. fields

Fields are invariant along the direction of motion, z

 E  z = Ez

 E  x = Ex vBy( )
 E  y = Ey + vBx( )

 B  z = Bz

 B  x = Bx +
v

c 2 Ey

 

 
 

 

 
 

 B  y = By

v

c 2 Ex

 

 
 

 

 
 

 B =
v
c 2 E
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The vector potential, A

 The Electric and magnetic fields can be derived from a

four-vector potential, Aμ = ( ,  )

Aμ transforms like the vector (ct, r)

  = vAz( )
 A x = Ax

 A y = Ay

 A z = Az

v

c 2

 

 
 

 

 
 

E =

B = A
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Energy balance & the Poynting theorem

The energy/unit volume of E-M field is

The Poynting vector, S = E  H  = energy flux

The Poynting theorem says

Stupakov: Ch. 1, p 9, 10

rate of change of 

EM energy due to 

interaction 

with moving charges

work done by E 

on moving charges

EM energy flow 

through the

enclosing surface
=  - -
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Field energy in LHC magnets

In the LHC dipoles there are no electric fields, so the
stored field energy is

Putting in the numbers for Bd = 8.3 T, we find (in mixed
units)

u = 30 J/cm3

The field energy is contained up to the outer radius of the
coils (~ 15 cm diameter) ==> VB = 3x105 cm3

Therefore the stored energy per magnet = uVB  = 9 MJ!

There are > 1200 dipoles in LHC ==> ~11 GJ

u = oc
2

2
Bd

2
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Energy in SC dipoles as a
function of aperture

Caspi ,Ferracin & Gourlay: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 16, NO. 2, JUNE 2006
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Fields of a relativistic point charge

Let’s evaluate the EM fields from a point charge q moving

ultra-relativistically at velocity v in the lab

In the rest frame of the charge, it has a static E field only:

where r is the vector from the charge to the observer

To find E and B in the lab, use the Lorentz transformation

for coordinates time and the transformation for the fields

z E =
1

4 o

q  r 
 r 3

Stupakov: Ch. 15.1
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The E field gets swept into a thin cone

We have Ex = E´x, Ey = E´y, and Ez = E´z

Transforming r´ gives

Draw r from the current position of the particle to the

observation point, r = (x, y, z vt)

Then a little algebra gives us

The charge also generates a B-field

  
 r = x 2

+ y 2
+

2(z vt)2
R

  

E =
1

4 o

qr
2
R

3

B =
1

c 2 v E
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Space charge forces

Consider 2 charges moving at constant velocity in the

same direction.  Compute the forces between the charges

We have just showed that

where

Stupakov: Ch. 15.2
  

R
1

x 2
+ y 2

+
2(z vt)2

  

E =
1

4 o

qr
2
R

3
B =

1

c 2 v Eand
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Space charge forces go to zero for large 

Rewrite E

Then, by simple substitution, for a co-moving charge

These equations show the that fields are concentrated in a thin

1/  pancake

E =
1

4 o

qr
2 x 2 / 2 + 2(z vt)2( )

3
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This effect will give us a way to diagnose
a beam non-destructively

Pass the charge through a hole in a conducting foil

The foil clips off the field for a time t  ~ a/c

The fields should look restored on the other side

==> radiation from the hole

Stupakov: Ch.16.4
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The energy, U,  removed by the foil must
be re-radiated

In the lab frame in cylindrical coordinates

The energy density of the EM field is

Integrating over  r > a & over z yields

So expect radiated energy ~ U with frequencies up to a/



US Particle Accelerator School

An accurate evaluation yields …

A factor of 2 in total energy

The functional form of the radiation

For a finite bunch do the convolution

For solid foil replace “a” with rbeam

For a train of charges radiation from leading

particles can influence trailing particles

For finite bunches consider 2 super particles
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The simplest class of accelerators - DC



US Particle Accelerator School

Simple DC (electrostatic) accelerator

   High 
  voltage 
generator +

-
Parallel plates

Electrical ground

 Vacuum 
enclosure

+

Experiment

+
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Crockroft Walton

high voltage dc accelerator column

Crockroft-Walton at FNAL accelerates H- to 750keVEout = Nstage Eac

beam
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Van de Graaff generators

Van de Graaff’s generator a Round Hill MA
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Why do we need RF structures & fields?
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Possible DC accelerator?

+ V -

B 

C
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Maxwell forbids this!

+ V -

B 
or in integral form

E =
dB
dt

E
C

ds =
t

B
S

 n da

 There is no acceleration 

without time-varying magnetic flux

C
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What is final energy of the beam?

+ V - + V - + V -

•••
+ V -

N cells

beam



US Particle Accelerator School

Characteristics of DC accelerators

Voltage limited by electrical breakdown (~10 kV/cm)

High voltage

 ==> Large size (25 m for 25 MV)

Exposed high voltage terminal

 ==> Safety envelope

High impedance structures

Low beam currents

Generates continuous beams

Sparking electric field limits in the Kilpatrick

model, including electrode gap dependence
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Mechanics,

Maxwell’s Equations

&

Special Relativity
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Relativity describes transformations of
physical laws between inertial frames

v

What is an inertial frame?

How can you tell?

x

y

z

x

y

z

In an inertial frame free bodies have no acceleration
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Under the Galilean transformation

the laws of physics remain invariant in all inertial frames.

Postulate of Galilean relativity

 x = x Vxt

 y = y

 z = z

t'= t

Not true for electrodynamics !

For example, the propagation of light

  v x = vx Vx
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Observational basis of special relativity

Observation 1: Light never overtakes light in empty space

==> Velocity of light is the same for all observers

For this discussion let c = 1

x

t

v = c = 1

World line

of physicist

at rest

World line

of physicist

moving at

velocity v

Space-time diagrams
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Relativistic invariance

Observation 2:

All the laws of physics are the same in all inertial frames

 This requires the invariance of the space-time interval

c  t ( )
2

 x 2  y 2  z 2 = ct( )
2

x 2 y 2 z2

x

t

v = c = 1
World line

of physicist

at rest

World line of physicist

moving at velocity vt

x
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The Galilean transformation is replaced
by the Lorentz boost

Where Einstein’s relativistic factors are
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Thus we have the Lorentz transformation

Or in matrix form

 x =
x vt

1 v 2 /c 2
  ,    t =

t (v /c 2)x

1 v 2 /c 2

 

                  y = y  ,    z = z

c  t 

 x 

 y 

 z 

 

 

 
 
 
 

 

 

 
 
 
 

=

0 0

0 0

0 0 1 0

0 0 0 1

 

 

 
 
 
 

 

 

 
 
 
 

 

ct

x

y

 z 
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Proper time & length

We define the proper time, , as the duration measured in

the rest frame

The length of an object in its rest frame is Lo

As seen by an observer moving at v, the duration, T , is

And the length, L,  is

  

T =

1 v 2

c 2

>

L = Lo/
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Four-vectors

Introduce 4-vectors, w , with 1 time-like and 3 space-like

components (  = 0, 1, 2, 3)

x  = (ct, x, y, z)  [Also, x  = (ct, -x, -y, -z)

Note Latin indices i =1, 2, 3

Norm of w  is w = (w w )1/ 2
= (wo

2 w1
2 w2

2 w3
2)1/ 2

w
2

= gμ wμw    where the metric tensor is 

        gμ =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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Velocity, energy and momentum

For a particle with 3-velocity v, the 4-velocity is

The total energy, E, of a particle is its rest mass, mo, plus

kinetic energy, T

The 4-momentum, p , is

E = moc
2

+ T = moc
2

u = ( c, v) =
dx

d

pμ = (c m0, m0v)

p2
= mo

2c 2
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Doppler shift of frequency

Distinguish between coordinate

transformations and observations

Yale sets his signal to flash at a

constant interval, t'

Harvard sees the interval

foreshortened by K(v) as Yale

approaches

Harvard see  the interval stretched

by K(-v) as Yale moves away

Light 

cone

Light 

cone

Harvard 

at rest

Yale rows 

past at 

velocity v

Homework: Show K(v) = K-1(-v)  &  for  large find K( ) 

K<1

K>1
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Head-on Compton scattering by
an ultra-relativistic electron

What wavelength is the photon scattered by 180°?

E= mc2
out

in
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Undulator radiation: What is rad?

An electron in the lab oscillating at frequency, f, 

emits dipole radiation of frequency f

 f

What about the

relativistic electron?
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Particle collisions

Two particles have equal rest mass m0.

Laboratory Frame (LF): one particle at rest, total energy is E.

Centre of Momentum Frame (CMF): Velocities are

equal & opposite, total energy is Ecm.

Exercise: Relate E to Ecm


