

Introduction to Accelerators Unit 1 – Lectures 3 Preliminaries continued: Maxwell's Equations & Special Relativity

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

Reminder from Registrar

- * This is to remind all that ALL classes that meet on Tuesdays WILL NOT meet on Tuesday, February 19th.
- Classes that have a regular Monday scheduled class, WILL meet on Tuesday, February 19th.
- * http://web.mit.edu/registrar/www/calendar.html
- * This includes ALL classes lectures, recitations, labs, etc. all day long, including evening classes.
- If conflicts are reported to this office, we will do the best we can to solve problems, but I would appreciate your reminding all of your classes of the Institute wide schedule situation.

The Basics - Mechanics

US Particle Accelerator School

₩ We all know

Newton's law

$$\mathbf{F} = \frac{d}{dt}\mathbf{p}$$

∗ The 4-vector form is

$$F^{\mu} = \left(\gamma c \, \frac{dm}{dt}, \gamma \, \frac{d\mathbf{p}}{dt}\right) = \frac{dp^{\mu}}{d\tau}$$

* Differentiate $p^2 = m_o^2 c^2$ with respect to τ

$$p_{\mu}\frac{dp^{\mu}}{d\tau} = p_{\mu}F^{\mu} = \frac{d(mc^2)}{dt} - \mathbf{F} \circ \mathbf{v} = 0$$

* The work is the rate of changing mc²

***** Motion in the presence of a linear restoring force

$$F = -kx$$

$$\ddot{x} + \frac{k}{m}x = 0$$

$$x = A \sin \omega_o t$$
 where $\omega_o = \sqrt{k/m}$

It is worth noting that the simple harmonic oscillator is a linearized example of the pendulum equation

$$\ddot{x} + \omega_o^2 \sin(x) \approx \ddot{x} + \omega_o^2 (x - \frac{x^3}{6}) = 0$$

that governs the free electron laser instability

Solution to the pendulum equation

₭ Use energy conservation to solve the equation exactly

** Multiply
$$\ddot{x} + \omega_o^2 \sin(x) = 0$$
 by \dot{x} to get

$$\frac{1}{2} \frac{d}{dt} \dot{x}^2 - \omega_o^2 \frac{d}{dt} \cos x = 0$$

* Integrating we find that the energy is conserved

Stupakov: Chapter 1

- * Beams subject to non-linear forces are commonplace in accelerators
- # Examples include
 - → Space charge forces in beams with non-uniform charge distributions
 - \rightarrow Forces from magnets high than quadrupoles
 - → Electromagnetic interactions of beams with external structures
 - Free Electron Lasers
 - Wakefields

Properties of harmonic oscillators

$$U = \frac{p^2}{2m} + \frac{m\omega_o^2 x^2}{2}$$

If there are *slow* changes in *m* or ω , then $I = U/\omega_o$ remains *invariant*

US Particle Accelerator School

Hamiltonian systems

* In a Hamiltonian system, there exists generalized positions q_i , generalized momenta p_i , & a function H(q, p, t) describing the system evolution by

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i} \qquad \qquad \frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i} \qquad \qquad \overline{q} = \{ q_1, q_2, \dots, q_N \} \\ \overline{p} = \{ p_1, p_2, \dots, p_N \}$$

- # *H* is called the Hamiltonian and *q* & *p* are canonical conjugate variables
- ** For q = usual spatial coordinates {x, y, z} & p their conjugate momentum components { p_x, p_y, p_z }
 - \rightarrow *H* coincides with the total energy of the system

H = U + T = Potential Energy + Kinetic Energy

Dissipative, inelastic, & stochastic processes are non-Hamiltonian

Lorentz force on a charged particle

✤ Force, F, on a charged particle of charge q in an electric field E and a magnetic field, B

$$\mathbf{F} = q \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} \right)$$

- # E = electric field with units of force per unit charge, newtons/coulomb = volts/m.
- B = magnetic flux density or magnetic induction, with units of newtons/ampere-m = Tesla = Weber/m².

A simple problem - bending radius

- * Compute the bending radius, R, of a non-relativistic particle particle in a uniform magnetic field, B.
 - \rightarrow Charge = q
 - → Energy = $mv^2/2$

$$F_{Lorentz} = q \frac{v}{c} B = F_{centripital} = \frac{mv^2}{\rho}$$

$$\Rightarrow \rho = \frac{mvc}{qB} = \frac{pc}{qB}$$

$$B(T)\rho(m) = 3.34 \left(\frac{p}{1 \text{ GeV/c}}\right) \left(\frac{e}{Qe}\right)$$

The fields come from charges & currents

℁ Coulomb's Law

$$\mathbf{F}_{1\to 2} = q_2 \left(\frac{1}{4\pi\varepsilon_o} \frac{q_1}{r_{1,2}^2} \hat{\mathbf{r}}_{1\to 2} \right) = q_2 \mathbf{E}_1$$

* Biot-Savart Law
$$i_1 dl_1$$
 $r_{1,2}$ $i_2 dl_2$

$$d\mathbf{F}_{1\to 2} = i_2 d\mathbf{I}_2 \times \left(\frac{\mu_0}{4\pi} \frac{(i_1 d\mathbf{I}_1 \times \hat{\mathbf{r}}_{12})}{r_{12}^2}\right) = i_2 d\mathbf{I}_2 \times \mathbf{B}_1$$

US Particl e Accel erator School

Compute the B-field from current loop

On axis there is only B_z by symmetry

$$\mathbf{B} = \int_{\text{wire}} \left(\mathbf{d} \vec{\mathbf{B}} \right)_{z} = \int_{\text{wire}} \frac{I}{Cr^{2}} \left| d\vec{l} \times \hat{r} \right| \sin \theta$$

$$|d\mathbf{l} \times \hat{\mathbf{r}}| = |d\mathbf{l}| = Rd\varphi$$

$$\sin\theta = \frac{R}{r}$$
 and $r = \sqrt{R^2 + z^2}$

$$\mathbf{B} = \frac{I}{cr^2} R \sin \theta \int_{0}^{2\pi} d\varphi \, \hat{\mathbf{z}} = \frac{2\pi I R^2}{c \left(R^2 + z^2\right)^{3/2}} \, \hat{\mathbf{z}}$$

US Particle Accelerator School

Question to ponder: What is the field from this situation?

We'll return to this question in the second half of the course

US Particl e Accel erator School

Electric displacement & magnetic field

In vacuum,

***** The electric displacement is $\mathbf{D} = \varepsilon_0 \mathbf{E}$,

* The magnetic field is $\mathbf{H} = \mathbf{B}/\mu_{o}$

Where

 $\epsilon_{o} = 8.85 \times 10^{-12} \text{ farad/m} \& \mu_{o} = 4 \pi \times 10^{-7} \text{ henry/m}.$

Maxwell's equations (1)

* Electric charge density ρ is source of the electric field, **E** (Gauss's law)

$$\nabla \cdot \mathbf{E} = \rho$$

★ Electric current density $J = \rho u$ is source of the magnetic induction field B (Ampere's law)

$$\nabla \times \mathbf{B} = \mu_o \mathbf{J} + \mu_0 \varepsilon_o \frac{\partial \mathbf{E}}{\partial t}$$

If we want big magnetic fields, we need large current supplies

* Field lines of **B** are closed; i.e., no magnetic monopoles.

$$\nabla \bullet \mathbf{B} = 0$$

Electromotive force around a closed circuit is proportional to rate of change of **B** through the circuit (Faraday's law).

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Maxwell's equations: integral form

$$\vec{\nabla} \bullet \vec{E} = \frac{\rho}{\varepsilon_0} \implies \oint \vec{E} \bullet d\vec{a} = \frac{Q_{enclosed}}{\varepsilon_0}$$
 Gauss' Law

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \implies \oint_C \vec{E} \bullet d\vec{l} = -\oint_S \frac{\partial \vec{B}}{\partial t} \bullet d\vec{a} \text{ Faraday's Law}$$
$$\vec{\nabla} \times \vec{B} = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \implies Displacement \ current$$
$$\oint_C \vec{B} \bullet d\vec{l} = \mu_0 I_{enclosed} + \mu_0 \varepsilon_0 \oint_S \frac{\partial \vec{E}}{\partial t} \bullet d\vec{a} \text{ Ampere's Law}$$

US Particle Accelerator School

- **Exercise:** A charged particle has a kinetic energy of 50 keV. You wish to apply as large a force as possible. You may choose either an electric field of 500 kV/m or a magnetic induction of 0.1 T. Which should you choose
 - \rightarrow (a) for an electron,
 - \rightarrow (b) for a proton?

Boundary conditions for a perfect conductor, $\sigma = \infty$

- 1. If electric field lines terminate on a surface, they do so normal to the surface
 - a) any tangential component would quickly be neutralized by lateral motion of charge within the surface.
 - b) The E-field must be normal to a conducting surface
- 2. Magnetic field lines avoid surfaces
 - a) otherwise they would terminate, since the magnetic field is zero within the conductor
 - i. The normal component of B must be continuous across the boundary for $\sigma \neq \infty$

Lorentz transformations of E.M. fields

$$E'_{z'} = E_{z}$$

$$E'_{x'} = \gamma (E_{x} - \nu B_{y})$$

$$E'_{y'} = \gamma (E_{y} + \nu B_{x})$$

$$B'_{z'} = B_{z}$$

$$B'_{x'} = \gamma \left(B_{x} + \frac{v}{c^{2}} E_{y} \right)$$

$$B'_{y'} = \gamma \left(B_{y} - \frac{v}{c^{2}} E_{x} \right)$$

$$\Rightarrow \mathbf{B}'_{\perp} = \gamma \frac{\mathbf{v}}{c^{2}} \times \mathbf{E}$$

Fields are invariant along the direction of motion, z

The vector potential, A_{μ}

** The Electric and magnetic fields can be derived from a four-vector potential, $A_{\mu} = (\phi, A)$

 $\mathbf{E} = \nabla \phi$ $\mathbf{B} = \nabla \times \mathbf{A}$

 A_{μ} transforms like the vector (ct, **r**)

$$\phi' = \gamma (\phi - vA_z)$$
$$A'_x = A_x$$
$$A'_y = A_y$$
$$A'_z = \gamma \left(A_z - \frac{v}{c^2} \phi \right)$$

Energy balance & the Poynting theorem

\% The energy/unit volume of E-M field is

$$u = \frac{1}{2}(\boldsymbol{E} \cdot \boldsymbol{D} + \boldsymbol{H} \cdot \boldsymbol{B}) = \frac{\epsilon_0}{2}(E^2 + c^2 B^2)$$

** The Poynting vector, $S = E \times H$ = energy flux ** The Poynting theorem says

$$\frac{\partial}{\partial t} \int_{V} u dV = -\int_{V} \boldsymbol{j} \cdot \boldsymbol{E} dV - \int_{A} \boldsymbol{n} \cdot \boldsymbol{S} dA$$

Charges moving inside volume ${\cal V}$

rate of change of EM energy due to \pm - $\frac{1}{2}$ interaction with moving charges

work done by **E** on moving charges

EM energy flow through the enclosing surface

US Particle Accelerator School

Field energy in LHC magnets

* In the LHC dipoles there are no electric fields, so the stored field energy is

$$u = \frac{\varepsilon_o c^2}{2} B_d^2$$

* Putting in the numbers for $\tilde{B_d} = 8.3$ T, we find (in mixed units)

 $u = 30 \text{ J/cm}^3$

- [∗] The field energy is contained up to the outer radius of the coils (~ 15 cm diameter) ==> $V_B = 3x10^5$ cm³
- * Therefore the stored energy per magnet = $uV_B = 9 MJ!$

* There are > 1200 dipoles in LHC ==> ~11 GJ

Energy in SC dipoles as a function of aperture

Caspi ,Ferracin & Gourlay: IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 16, NO. 2, JUNE 2006

US Particle Accelerator School

Fields of a relativistic point charge

- * Let's evaluate the EM fields from a point charge q moving ultra-relativistically at velocity v in the lab
- * In the rest frame of the charge, it has a static **E** field only:

where \mathbf{r} is the vector from the charge to the observer

* To find **E** and **B** in the lab, use the Lorentz transformation for coordinates time and the transformation for the fields

Stupakov: Ch. 15.1

The E field gets swept into a thin cone

- * We have $E_x = \gamma E'_x$, $E_y = \gamma E'_y$, and $E_z = E'_z$
- # Transforming r' gives $r' = \sqrt{x^2 + y^2 + \gamma^2 (z vt)^2} \equiv \gamma R$

✤ The charge also generates a B-field

$$\mathbf{B} = \frac{1}{c^2} \mathbf{v} \times \mathbf{E}$$

Space charge forces

* Consider 2 charges moving at constant velocity in the same direction. Compute the forces between the charges

₩ We have just showed that

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_o} \frac{q\mathbf{r}}{\gamma^2 \mathcal{R}^3} \quad \text{and} \quad \mathbf{B} = \frac{1}{c^2} \mathbf{v} \times \mathbf{E}$$

where

$$\mathcal{R} = \frac{1}{\gamma}\sqrt{x^2 + y^2 + \gamma^2(z - vt)^2}$$

Stupakov: Ch. 15.2

US Particle Accelerator School

Space charge forces go to zero for large γ

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_o} \frac{q\mathbf{r}}{\gamma^2 \left(\sqrt{x^2/\gamma^2 + \gamma^2 (z - vt)^2}\right)^3}$$

✤ Then, by simple substitution, for a co-moving charge

$$F_l = E_z = -\frac{1}{4\pi\epsilon_0} \frac{ql}{\gamma^2 (l^2 + x^2/\gamma^2)^{3/2}}$$

$$F_t = E_x - vB_y = \frac{1}{4\pi\epsilon_0} \frac{qx}{\gamma^4 (l^2 + x^2/\gamma^2)^{3/2}}$$

These equations show the that fields are concentrated in a thin $1/\gamma$ pancake

This effect will give us a way to diagnose a beam non-destructively

- ✤ Pass the charge through a hole in a conducting foil
- * The foil clips off the field for a time $\Delta t \sim a/c\gamma$
- The fields should look restored on the other side ==> radiation from the hole

The energy, U, removed by the foil must be re-radiated

$$E_{\rho} = cB_{\theta} = \frac{1}{4\pi\epsilon_0} \frac{\gamma q\rho}{(\rho^2 + \gamma^2 z^2)^{3/2}} ,$$

$$w = \frac{\epsilon_0}{2} (E_\rho^2 + cB_\theta^2) \,.$$

Integrating over r > a & over z yields

$$U = \int_{a}^{\infty} 2\pi \rho \, d\rho \int_{-\infty}^{\infty} dz \, w = \frac{3}{64\epsilon_0} \frac{q^2 \gamma}{a}$$

So expect radiated energy ~ U with frequencies up to a/γ

An accurate evaluation yields ...

- # A factor of 2 in total energy
- ✤ The functional form of the radiation
- **∗** For a finite bunch do the convolution
- # For solid foil replace "a" with r_{beam}

⋇ For a train of charges radiation from leading particles can influence trailing particles
→ For finite bunches consider 2 super particles

The simplest class of accelerators - DC

US Particl e Accel erator School

Simple DC (electrostatic) accelerator

Crockroft Walton high voltage dc accelerator column

Crockroft-Walton at FNAL accelerates H⁻ to 750keV

Van de Graaff generators

Van de Graaff's generator a Round Hill MA

US Particle Accelerator School

Why do we need RF structures & fields?

US Particl e Accel erator School

Possible DC accelerator?

$$\nabla \times \mathbf{E} = -\frac{d\mathbf{B}}{dt}$$

or in integral form

$$\oint_C \mathbf{E} \cdot d\mathbf{s} = -\frac{\partial}{\partial t} \int_S \mathbf{B} \cdot \mathbf{n} \, da$$

... There is no acceleration without time-varying magnetic flux

Characteristics of DC accelerators

₭ Voltage limited by electrical breakdown (~10 kV/cm)

Mechanics, Maxwell's Equations & Special Relativity

US Particl e Accel erator School

Relativity describes transformations of physical laws between inertial frames

In an inertial frame free bodies have no acceleration

Postulate of Galilean relativity

Under the Galilean transformation

$$x' = x - V_{x}t$$

$$y' = y \qquad \implies v'_{x} = v_{x} - V_{x}$$

$$z' = z$$

$$t' = t$$

the laws of physics remain invariant in all inertial frames.

Not true for electrodynamics !

For example, the propagation of light

Observational basis of special relativity

Observation 1: Light **never** overtakes light in empty space => Velocity of light is the same for all observers

For this discussion let c = 1

Space-time diagramsWorld line
of physicist
at restWorld line
velocity v
v = c = 1

Relativistic invariance

Observation 2:

All the laws of physics are the same in all inertial frames

* This requires the invariance of the space-time interval

$$(ct')^{2} - x'^{2} - y'^{2} - z'^{2} = (ct)^{2} - x^{2} - y^{2} - z^{2}$$
World line of physicist moving at velocity v
$$v = c = 1$$
with the set of the se

The Galilean transformation is replaced by the Lorentz boost

$$ct' = \gamma (ct - \beta z)$$
$$x' = x$$
$$y' = y$$
$$z' = \gamma (z - \beta ct)$$

Where Einstein's relativistic factors are

Thus we have the Lorentz transformation

$$x' = \frac{x - vt}{\sqrt{1 - v^2/c^2}} , \quad t' = \frac{t - (v/c^2)x}{\sqrt{1 - v^2/c^2}}$$

$$y' = y$$
, $z' = z$

Or in matrix form

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z' \end{pmatrix}$$

US Particle Accelerator School

* We define the proper time, τ_i as the duration measured in the rest frame

* The length of an object in its rest frame is L_o

* As seen by an observer moving at v, the duration, T, is

$$\Gamma = \frac{\tau}{\sqrt{1 - \frac{v^2}{c^2}}} \equiv \gamma \tau > \tau$$

And the length, *L*, is

$$L = L_o / \gamma$$

Four-vectors

* Introduce 4-vectors, w^{α} , with 1 time-like and 3 space-like components ($\alpha = 0, 1, 2, 3$)

$$\Rightarrow x^{\alpha} = (ct, x, y, z) \quad [Also, x_{\alpha} = (ct, -x, -y, -z)]$$

→ Note Latin indices i =1, 2, 3

* Norm of
$$W^{\alpha}$$
 is $|w| = (w^{\alpha}w_{\alpha})^{1/2} = (w_o^2 - w_1^2 - w_2^2 - w_3^2)^{1/2}$

 $|w|^2 = g_{\mu\nu}w^{\mu}w^{\nu}$ where the metric tensor is

$$g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Velocity, energy and momentum

* For a particle with 3-velocity v, the 4-velocity is

$$u^{\alpha} = (\gamma c, \gamma \mathbf{v}) = \frac{dx^{\alpha}}{d\tau}$$

$$E = m_o c^2 + T = \gamma m_o c^2$$

* The 4-momentum, p^{μ} , is

$$p^{\mu} = (c\gamma m_0, \gamma m_0 \mathbf{v})$$
$$p^2 = m_o^2 c^2$$

Doppler shift of frequency

Distinguish between coordinate transformations and observations

- ∗ Yale sets his signal to flash at a constant interval, $\Delta t'$
- # Harvard sees the interval foreshortened by K(v) as Yale approaches
- # Harvard see the interval stretched by K(-v) as Yale moves away

Homework: Show $K(v) = K^{-1}(-v)$ & for γ large find $K(\gamma)$

Head-on Compton scattering by an ultra-relativistic electron

* What wavelength is the photon scattered by 180°?

US Particl e Accel erator School

Undulator radiation: What is λ_{rad} ?

An electron in the lab oscillating at frequency, f, emits dipole radiation of frequency f

Particle collisions

Two particles have equal rest mass m₀.

Laboratory Frame (LF): one particle at rest, total energy is E.

Centre of Momentum Frame (CMF): Velocities are equal & opposite, total energy is E_{cm} .

Exercise: Relate E to E_{cm}

US Particle Accelerator School