Unit 11 - Lecture 18 Synchrotron Radiation - I

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

Iliit
 What do we mean by radiation?

米 Energy is transmitted by the electromagnetic field to infinity
\rightarrow Applies in all inertial frames
\rightarrow Carried by an electromagnetic wave

粦 Source of the energy
\rightarrow Motion of charges

IIII
 Schematic of electric field

(a) Electric Field Lines

(b) Wavefronts

From: T. Shintake, New Real-time Simulation Technique for Synchrotron and
Undulator Radiations, Proc. LINAC 2002, Gyeongju, Korea

US Particl e Accel er ator School

IIF Static charge

$$
\begin{array}{r}
\star{ }^{\star}{ }^{\star}{ }^{\star} \\
\star \\
\star{ }^{\star} \\
\star
\end{array}
$$

US Particl e Accel er ator School

III Particle moving in a straight line with constant velocity

IIF Consider the fields from an electron with abrupt accelerations

米 At $r=c t, \exists$ a transition region from one field to the other. At large r, the field in this layer becomes the radiation field.

Field energy flows to infinity

|l|- Remember that fields add, we can compute

 radiation from a charge twice as long

The wavelength of the radiation doubles

IIT All these radiate

Not quantitatively correct because E is a vector; But we can see that the peak field hits the observer twice as often

IIIT
 Current loop: No radiation

Field is static

B field

Iliit
 Question to ponder: What is the field from this situation?

IIT QED approach：Why do particles radiate when accelerated？

粦 Charged particles in free space are＂surrounded＂by virtual photons
\rightarrow Appear \＆disappear \＆travel with the particles．

米 Acceleration separates the charge from the photons and＂kicks＂the photons onto the＂mass shell＂

粦 Lighter particles have less inertia \＆radiate photons more efficiently
粦 In the field of the dipoles in a synchrotron，charged particles move on a curved trajectory．
\rightarrow Transverse acceleration generates the synchrotron radiation

Electrons radiate $\sim \alpha \gamma$ photons per radian of turning

IIF Longitudinal vs. Transverse Acceleration

Radiation field quickly separates itself from the Coulomb field

$$
P_{\perp}=\frac{q^{2}}{6 \pi \varepsilon_{0} m_{0}^{2} c^{3}} \gamma^{2}\left(\frac{d \mathbf{p}_{\perp}}{d t}\right)^{2}
$$

Radiation field cannot separate itself from the Coulomb field

$$
P_{\perp}=\frac{c}{6 \pi \varepsilon_{0}} q^{2} \frac{(\beta \gamma)^{4}}{\rho^{2}} \quad \rho=\text { curvature radius }
$$

Radiated power for transverse acceleration increases dramatically with energy

Limits the maximum energy obtainable with a storage ring

Iliit

Energy lost per turn by electrons

$$
\frac{d U}{d t}=-P_{S R}=-\frac{2 c r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E^{4}}{\rho^{2}} \Rightarrow U_{0}=\int_{\text {fninie } \rho} P_{S R} d t \text { energy lost per turn }
$$

For relativistic electrons:

$$
s=\beta c t \cong c t \Rightarrow d t=\frac{d s}{c}
$$

$$
U_{0}=\frac{1}{c} \int_{\text {frinte }} P_{S R} d s=\frac{2 r_{e} E_{0}^{4}}{3\left(m_{0} c^{2}\right)^{3}} \int_{\text {fnite } \rho} \frac{d s}{\rho^{2}}
$$

For dipole magnets with constant radius r (iso-magnetic case):

$$
U_{0}=\frac{4 \pi r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E_{0}^{4}}{\rho}=\frac{e^{2}}{3 \varepsilon_{o}} \frac{\gamma^{4}}{\rho}
$$

The average radiated power is given by:

$$
\left\langle P_{S R}\right\rangle=\frac{U_{0}}{T_{0}}=\frac{4 \pi c r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E_{0}^{4}}{\rho L} \quad \text { where } L \equiv \text { ring circumference }
$$

|"- Energy loss via synchrotron radiation emission (practical units)

Energy Loss per turn (per particle)

$$
\begin{array}{r}
U_{o, \text { electron }}(\mathrm{keV})=\frac{e^{2} \gamma^{4}}{3 \varepsilon_{0} \rho}=88.46 \frac{E(\mathrm{GeV})^{4}}{\rho(m)} \\
U_{o, p \text { rpoonen}}(k e V)=\frac{e^{2} \gamma^{4}}{3 \varepsilon_{0} \rho}=6.03 \frac{E(\mathrm{TeV})^{4}}{\rho(m)}
\end{array}
$$

Power radiated by a beam of average current I_{b} : to be restored by RF system

$$
N_{t o t}=\frac{I_{b} \cdot T_{r e v}}{e}
$$

$$
\begin{gathered}
P_{\text {elecrion }}(k W)=\frac{e \gamma^{4}}{3 \varepsilon_{0} \rho} I_{b}=88.46 \frac{E(G e V)^{4} I(A)}{\rho(m)} \\
P_{\text {proton }}(k W)=\frac{e \gamma^{4}}{3 \varepsilon_{0} \rho} I_{b}=6.03 \frac{E(\mathrm{TeV})^{4} I(A)}{\rho(m)}
\end{gathered}
$$

Power radiated by a beam of average current I_{b} in a dipole of length L (energy loss per second)

$$
P_{e}(k W)=\frac{e \gamma^{4}}{6 \pi \varepsilon_{0} \rho^{2}} L I_{b}=14.08 \frac{L(m) I(A) E(G e V)^{4}}{\rho(m)^{2}}
$$

Iliī

Frequency spectrum

米 Radiation is emitted in a cone of angle $1 / \gamma$
粦 Therefore the radiation that sweeps the observer is emitted by the particle during the retarded time period

$$
\Delta t_{r e t} \approx \rho / \gamma c
$$

米 Assume that γ and ρ do not change appreciably during $\Delta \mathrm{t}$ ．
粦 At the observer

$$
\Delta t_{\text {obs }}=\Delta t_{\text {ret }} \frac{d t_{\text {obs }}}{d t_{\text {ret }}}=\frac{1}{\gamma^{2}} \Delta t_{\text {ret }}
$$

粦 Therefore the observer sees $\Delta \omega \sim 1 / \Delta t_{\text {obs }}$

$$
\Delta \omega \sim \frac{c}{\rho} \gamma^{3}
$$

||Tritical frequency and critical angle

$$
\frac{d^{3} I}{d \Omega d \omega}=\frac{e^{2}}{16 \pi^{3} \varepsilon_{0} c}\left(\frac{2 \omega \rho}{3 c \gamma^{2}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left[K_{2 / 3}^{2}(\xi)+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}} K_{1 / 3}^{2}(\xi)\right]
$$

Properties of the modified Bessel function $==>$ radiation intensity is negligible for $\mathrm{x} \gg 1$

$$
\xi=\frac{\omega \rho}{3 c \gamma^{3}}\left(1+\gamma^{2} \theta^{2}\right)^{3 / 2} \gg 1
$$

Critical frequency $\omega_{c}=\frac{3}{2} \frac{c}{\rho} \gamma^{3}$

$$
\approx \omega_{r e \gamma} \gamma^{3}
$$

Critical angle $\quad \theta_{c}=\frac{1}{\gamma}\left(\frac{\omega_{c}}{\omega}\right)^{1 / 3}$

For frequencies much larger than the critical frequency and angles much larger than the critical angle the synchrotron radiation emission is negligible

US Particl e Accel er ator School

II- Integrating over all angles yields the spectral density distribution

$$
\begin{gathered}
\frac{d I}{d \omega}=\iint_{4 \pi} \frac{d^{3} I}{d \omega d \Omega} d \Omega=\frac{\sqrt{3} e^{2}}{4 \pi \varepsilon_{0} c} \gamma \frac{\omega}{\omega_{C}} \int_{\omega / \omega_{C}}^{\infty} K_{5 / 3}(x) d x \\
\frac{d I}{d \omega} \approx \frac{e^{2}}{4 \pi \varepsilon_{0} c}\left(\frac{\omega \rho}{c}\right)^{1 / 3} \quad \omega \ll \omega_{c} \quad \frac{d I}{d \omega} \approx \sqrt{\frac{3 \pi}{2}} \frac{e^{2}}{4 \pi \varepsilon_{0} c} \gamma\left(\frac{\omega}{\omega_{c}}\right)^{1 / 2} e^{-\omega / \omega_{c}} \quad \omega \gg \omega_{c} \\
1.000 \\
\mathbf{S}\left(\omega / \omega_{n}\right)=1 \\
0.100 \\
0.010 \\
0.001 \\
0.0001
\end{gathered}
$$

|||Frequency distribution of radiation

The integrated spectral density up to the critical frequency contains half of the total energy radiated, the peak occurs approximately at $0.3 \omega_{c}$
where the critical photon energy is

$$
\varepsilon_{c}=\mathrm{h} \omega_{c}=\frac{3}{2} \frac{\mathrm{~h} c}{\rho} \gamma^{3}
$$

For electrons, the critical energy in practical units is

$$
\varepsilon_{c}[k e V]=2.218 \frac{E[\mathrm{GeV}]^{3}}{\rho[\mathrm{~m}]}=0.665 \cdot E[\mathrm{GeV}]^{2} \cdot B[T]
$$

｜｜｜｜Number of photons emitted

类 Since the energy lost per turn is

$$
U_{0} \sim \frac{e^{2} \gamma^{4}}{\rho}
$$

粦 And average energy per photon is the

$$
\left\langle\varepsilon_{\gamma}\right\rangle \approx \frac{1}{3} \varepsilon_{c}=\frac{\mathrm{h} \omega_{c}}{3}=\frac{1}{2} \frac{\mathrm{~h} c}{\rho} \gamma^{3}
$$

粦 The average number of photons emitted per revolution is

$$
\left\langle n_{\gamma}\right\rangle \approx 2 \pi \alpha_{\text {fine }} \gamma
$$

||| Comparison of S.R. Characteristics

		LDP200	LHC	SSC	HINRA	VLBC
Beam particle		$\mathrm{e}+\mathrm{e}-$	p	p	p	p
Circumference	km	26.7	26.7	82.9	6.45	95
Beam energy	TeV	0.1	7	20	0.82	50
Beam current	A	0.006	0.54	0.072	0.05	0.125
Critical energy of SR	eV	710^{5}	44	284	0.34	3000
SR power (total)	kW	1.710^{4}	7.5	8.8	310^{-4}	800
Linear power density	W / m	882	0.22	0.14	810^{-5}	4
Desorbing photons	$\mathrm{s}^{-1} \mathrm{~m}^{-1}$	2.410^{16}	110^{17}	6.610^{15}	none	310^{16}

|||- Synchrotron radiation plays a major role in electron storage ring dynamics

- Charged particles radiate when accelerated
- Transverse acceleration induces significant radiation (synchrotron radiation) while longitudinal acceleration generates negligible radiation $\left(1 / \gamma^{2}\right)$.

Iliit
 RF system restores energy loss

Particles change energy according to the phase of the field in the RF cavity

$$
\Delta E=e V(t)=e V_{o} \sin \left(\omega_{R F} t\right)
$$

For the synchronous particle

$$
\Delta E=U_{0}=e V_{0} \sin \left(\varphi_{s}\right)
$$

11| Energy loss + dispersion lead to longitudinal oscillations

Longitudinal dynamics are described by

1) ε, energy deviation, w.r.t the synchronous particle
2) τ, time delay w.r.t. the synchronous particle

$$
\varepsilon^{\prime}=\frac{q V_{0}}{L}\left[\sin \left(\phi_{s}+\omega \tau\right)-\sin \phi_{s}\right] \quad \text { and } \quad \tau^{\prime}=-\frac{\alpha_{c}}{E_{s}} \varepsilon
$$

Linearized equations describe elliptical phase space trajectories

$$
\varepsilon^{\prime}=\frac{e}{T_{0}} \frac{d V}{d t} \tau \quad \tau^{\prime}=-\frac{\alpha_{c}}{E_{s}} \varepsilon
$$

$\omega_{s}^{2}=\frac{\alpha_{c} e{ }^{\kappa}}{T_{0} E_{0}}$ angular synchrotron frequency

||| Radiation damping of energy fluctuations

Say that the energy loss per turn due to synchrotron radiation loss is U_{0}

The synchronous phase is such that $U_{0}=e V_{0} \sin \left(\varphi_{s}\right)$
But U_{0} depends on energy $E==>$ Rate of change of the energy will be given

$$
\frac{\Delta E}{T_{0}}=\frac{e V(t)-U_{0}(E)}{T_{0}}
$$

For $\Delta \mathrm{E} \ll \mathrm{E}$ and $\tau \ll \mathrm{T}_{0}$ we can expand

$$
\begin{gathered}
\frac{d \varepsilon}{d t}=\frac{\left(U_{0}(0)+e \frac{d V}{d t} \tau\right)-\left(U_{0}(0)+\frac{d U_{0}}{d E} \varepsilon\right)}{T_{0}}=\frac{e}{T_{o}} \frac{d V}{d t} \tau-\frac{1}{T_{0}} \frac{d U_{0}}{d E} \varepsilon \\
\frac{d \tau}{d t}=-\alpha_{c} \frac{\varepsilon}{E_{s}}
\end{gathered}
$$

|l|| Energy damping

The derivative $\frac{d U_{0}}{d E} \quad(>0)$
is responsible for the damping of the longitudinal oscillations

Combine the two equations for (ε, τ) in a single $2^{\text {nd }}$ order differential equation

$$
\frac{d^{2} \varepsilon}{d t^{2}}+\frac{2}{\tau_{s}} \frac{d \varepsilon}{d t}+\omega_{s}^{2} \varepsilon=0 \quad \longrightarrow \quad \varepsilon=A e^{-t / \tau_{s}} \sin \left(\sqrt{\omega_{s}^{2}-\frac{4}{\tau_{s}^{2}}} t+\varphi\right)
$$

$\omega_{s}^{2}=\frac{\alpha e V^{\delta}}{T_{0} E_{0}} \quad$ angular synchrotron frequency
$\frac{1}{\tau_{s}}=\frac{1}{2 T_{0}} \frac{d U_{0}}{d E} \quad$ longitudinal damping time

IIII
 Damping Coefficients

$$
\frac{d U}{d t}=-P_{S R}=-\frac{2 c r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E^{4}}{\rho^{2}} \quad \alpha_{D}=-\left.\frac{1}{2 T_{0}} \frac{d U}{d E}\right|_{E_{0}}=\frac{1}{2 T_{0}} \frac{d}{d E}\left[\oint P_{S R}\left(E_{0}\right) d t\right]
$$

By performing the calculation one obtains:

$$
\alpha_{D}=\frac{U_{0}}{2 T_{0} E_{0}}(2+D)
$$

Where D depends on the lattice parameters. For the iso-magnetic separate function case:

$$
D=\alpha_{C} \frac{L}{2 \pi \rho} \quad(\ll 1)
$$

Damping time \sim time required to replace all the original energy
Analogously, for the transverse plane:

$$
\alpha_{X}=\frac{U_{0}}{2 T_{0} E_{0}}(1-D)
$$

and

$$
\alpha_{Y}=\frac{U_{0}}{2 T_{0} E_{0}}
$$

IIIT
 Damping times

粦 The energy damping time \sim the time for beam to radiate its original energy

粦 Typically

$$
T_{i}=\frac{4 \pi}{C_{\gamma}} \frac{R \rho}{J_{i} E_{o}^{3}}
$$

米 Where $\mathrm{J}_{\mathrm{e}} \approx 2, \mathrm{~J}_{\mathrm{x}} \approx 1, \mathrm{~J}_{\mathrm{y}} \approx 1$ and $C_{\gamma}=8.9 \times 10^{-5}$ meter $-\mathrm{GeV}^{-3}$

粦 Note $\Sigma \mathrm{J}_{\mathrm{i}}=4$（partition theorem）

Iliit
 Quantum Nature of Synchrotron Radiation

粦 Synchrotron radiation induces damping in all planes．
\rightarrow Collapse of beam to a single point is prevented by the quantum nature of synchrotron radiation
粦 Photons are randomly emitted in quanta of discrete energy
\rightarrow Every time a photon is emitted the parent electron＂jumps＂in energy and angle
粦 Radiation perturbs excites oscillations in all the planes．
\rightarrow Oscillations grow until reaching equilibrium balanced by radiation damping．

US Particle Accel er ator School

｜｜｜｜Energy fluctuations

粦 Expected $\Delta \mathrm{E}_{\text {quantum }}$ comes from the deviation of $\left\langle\mathrm{N}_{\gamma}\right\rangle$ emitted in one damping time，τ_{E}

粦 $\left\langle\mathrm{N}_{\gamma}\right\rangle=\mathrm{n}_{\gamma} \tau_{\mathrm{E}}$

$$
=\Rightarrow \Delta\left\langle\mathrm{N}_{\gamma}\right\rangle=\left(\mathrm{n}_{\gamma} \tau_{\mathrm{E}}\right)^{1 / 2}
$$

粦 The mean energy of each quantum $\sim \varepsilon_{\text {crit }}$
㐘 $==>\sigma_{\varepsilon}=\varepsilon_{\text {crit }}\left(n_{\gamma} \tau_{\mathrm{E}}\right)^{1 / 2}$
米 Note that $n_{\gamma}=P_{\gamma} / \varepsilon_{\text {crit }}$ and $\tau_{E}=E_{o} / P_{\gamma}$

Therefore，．．．
粦 The quantum nature of synchrotron radiation emission generates energy fluctuations

$$
\frac{\Delta E}{E} \approx \frac{\left\langle E_{c r i t} E_{o}\right\rangle^{1 / 2}}{E_{o}} \approx \frac{C_{q} \gamma_{o}^{2}}{J_{\varepsilon} \rho_{c u r v} E_{o}} \sim \frac{\gamma}{\rho}
$$

where C_{q} is the Compton wavelength of the electron

$$
\mathrm{C}_{\mathrm{q}}=3.8 \times 10^{-13} \mathrm{~m}
$$

粦 Bunch length is set by the momentum compaction \＆ V_{rf}

$$
\sigma_{z}^{2}=2 \pi\left(\frac{\Delta E}{E}\right) \frac{\alpha_{c} R E_{o}}{e \dot{V}}
$$

粦 Using a harmonic rf－cavity can produce shorter bunches

||| Schematic of radiation cooling

Transverse cooling:

Passage through dipoles

Acceleration in RF cavity

Limited by quantum excitation

Iliit
 Emittance and Momentum Spread

- At equilibrium the momentum spread is given by:

$$
\left(\frac{\sigma_{p}}{p_{0}}\right)^{2}=\frac{C_{q} \gamma_{0}^{2}}{J_{S}} \frac{\oint 1 / \rho^{3} d s}{\oint 1 / \rho^{2} d s} \quad \text { where } C_{q}=3.84 \times 10^{-13} \mathrm{~m}
$$

$$
\begin{aligned}
& \left(\frac{\sigma_{p}}{p_{0}}\right)^{2}=\frac{C_{q} \gamma_{0}^{2}}{J_{S} \rho} \\
& \text { iso - magnetic case }
\end{aligned}
$$

- For the horizontal emittance at equilibrium:

$$
\varepsilon=C_{q} \frac{\gamma_{0}^{2}}{J_{X}} \frac{\oint H / \rho^{3} d s}{\oint 1 / \rho^{2} d s}
$$

$$
\text { where: } \quad H(s)=\beta_{T} D^{\prime 2}+\gamma_{T} D^{2}+2 \alpha_{T} D D^{\prime}
$$

- In the vertical plane, when no vertical bend is present, the synchrotron radiation contribution to the equilibrium emittance is very small
- Vertical emittance is defined by machine imperfections \& nonlinearities that couple the horizontal \& vertical planes:

$$
\varepsilon_{Y}=\frac{\kappa}{\kappa+1} \varepsilon \quad \text { and } \quad \varepsilon_{X}=\frac{1}{\kappa+1} \varepsilon
$$

$$
\text { with } \kappa \equiv \text { coupling factor }
$$

IIII Equilibrium emittance \& $\Delta \mathrm{E}$

Growth rate due to fluctuations (linear) $=$ exponential damping rate due to radiation $==>$ equilibrium value of emittance or $\Delta \mathrm{E}$

$$
\varepsilon_{\text {natural }}=\varepsilon_{1} e^{-2 t / \tau_{d}}+\varepsilon_{e q}\left(1-e^{-2 t / \tau_{d}}\right)
$$

｜｜｜｜Quantum lifetime

米 At a fixed observation point，transverse particle motion looks sinusoidal

$$
x_{T}=a \sqrt{\beta_{n}} \sin \left(\omega_{\beta_{n}} t+\varphi\right) \quad T=x, y
$$

类 Tunes are chosen in order to avoid resonances．
\rightarrow At a fixed azimuth，turn－after－turn a particle sweeps all possible positions within the envelope
粦 Photon emission randomly changes the＂invariant＂a
\rightarrow Consequently changes the trajectory envelope as well．
粦 Cumulative photon emission can bring the envelope beyond acceptance at some azimuth
\rightarrow The particle is lost．
This mechanism is called the transverse quantum lifetime

|ne Quantum lifetime was first estimated by Bruck and Sands

$\tau_{Q_{T}} \cong \tau_{D_{T}} \frac{\sigma_{T}^{2}}{A_{T}^{2}} \exp \left(A_{T}^{2} / 2 \sigma_{T}^{2}\right) \quad T=x, y$
Transverse quantum lifetime
where $\quad \sigma_{T}^{2}=\beta_{T} \varepsilon_{T}+\left(D_{T} \frac{\sigma_{E}}{E_{0}}\right)^{2} \quad T=x, y$
$\tau_{D_{T}} \equiv$ transverse damping time

$$
\tau_{Q_{L}} \cong \tau_{D_{L}} \exp \left(\Delta E_{A}^{2} / 2 \sigma_{E}^{2}\right)
$$

Longitudinal quantum lifetime
For an iso-magnetic ring:

$$
\begin{aligned}
& \frac{\Delta E_{A}^{2}}{2 \sigma_{E}^{2}} \approx \frac{J_{L} E_{0}}{\alpha_{C} h E_{1}}\left(2 \frac{e \hat{V}_{R F}}{U_{0}}-\pi\right) \\
& E_{1} \cong 1.08 \times 10^{8} \mathrm{eV}
\end{aligned}
$$

米 τ_{Q} varies very strongly with the ratio between acceptance \& rms size.

> Values for this ratio > 6 are usually required.

｜｜Fe Several time scales govern particle dynamics in storage rings

粦 Damping：several ms for electrons，～infinity for heavier particles

粦 Synchrotron oscillations：～tens of ms
类 Revolution period：～hundreds of ns to ms
粦 Betatron oscillations：\sim tens of ns

