1 Test-1

Determine the maximum value of the improvement factor that can be expected for the Q_{0} of a 500 MHz copper cavity if it is cooled down from room temperature to liquid helium temperature. The ρl product of copper is $6.8 \times 10^{-16} \Omega \mathrm{~m}^{2}$. The resistivity of copper at room temperature is $1.76 \times 10^{-8} \Omega \mathrm{~m}$ and the RRR of good-quality copper is 100 .

SOLUTION

$$
\begin{gather*}
R R R=\frac{\rho_{300 \mathrm{~K}}}{\rho_{4 \mathrm{~K}}} 3 p t \tag{1}\\
\rho_{4 \mathrm{~K}}=\frac{\rho_{300 \mathrm{~K}}}{\mathrm{RRR}}=1.76 \times 10^{-10} \Omega \mathrm{~m} 1 p t \tag{2}\\
l=\frac{\rho l}{\rho}=\frac{6.8 \times 10^{-16} \Omega \mathrm{~m}^{2}}{1.76 \times 10^{-10} \Omega \mathrm{~m}}=3.86 \mu \mathrm{~m} 1 p t \tag{3}\\
\alpha_{\mathrm{s}}=\frac{3}{4} \mu_{0} \omega\left(\frac{1}{\rho l}\right) l^{3} 4 p t \tag{4}\\
\alpha_{\mathrm{s}}=\frac{3}{4}\left(1.2566 \times 10^{-6} \frac{\mathrm{~m}-\mathrm{kg}}{\mathrm{~s}^{2} \mathrm{~A}^{2}}\right)\left[\frac{2 \pi(500 \mathrm{MHz})}{6.8 \times 10^{-16} \Omega \mathrm{~m}^{2}}\right](3.86 \mu \mathrm{~m})^{3} \tag{5}\\
R_{\mathrm{n}}(l=\infty)=3.789 \times 10^{-5} \omega^{2 / 3}(\rho l)^{1 / 3} 3 p t \tag{6}\\
R_{\mathrm{n}}(l=\infty)=2501 p t \tag{7}\\
\alpha_{\mathrm{s}}=3.789 \times 10^{-5}[2 \pi(500 \mathrm{MHz})]^{2 / 3}\left(6.8 \mathrm{x} 10^{-16} \Omega \mathrm{~m}^{2}\right)^{1 / 3} 1 p t \tag{8}\\
R_{\mathrm{n}}(l=\infty)=0.714 \mathrm{~m} \Omega 1 p t \tag{9}\\
R_{4 \mathrm{~K}}=R_{\infty}\left(1+1.157 \alpha_{s}^{-0.2757}\right) 3 p t \tag{10}\\
R_{4 \mathrm{~K}}=0.714 \mathrm{~m} \Omega\left[1+1.157\left(2.50 \times 10^{5}\right)^{-0.2757}\right]=0.894 \mathrm{~m} \Omega 1 p t \tag{11}\\
\rho=\frac{1}{\rho}=5.682 \times 10^{7} \Omega^{-1} \mathrm{~m} \mathrm{~m}^{-1} 2 p t \tag{12}\\
R_{300 \mathrm{~K}}=\sqrt{\frac{\omega \mu_{0}}{2 \sigma}} 4 p t \tag{13}\\
\hline
\end{gather*}
$$

$$
\begin{gather*}
R_{300 \mathrm{~K}}=\sqrt{\frac{2 \pi(500 \mathrm{MHz})\left(1.2566 \times 10^{-6} \frac{\mathrm{~m}-\mathrm{kg}}{\mathrm{~s}^{2} \mathrm{~A}^{2}}\right)}{2\left(5.682 \times 10^{7} \Omega^{-1} \mathrm{~m}^{-1}\right)}}=5.89 \mathrm{~m} \Omega 4 p t \tag{14}\\
\frac{Q_{4 \mathrm{~K}}}{Q_{300 \mathrm{~K}}}=\frac{R_{300 \mathrm{~K}}}{R_{4 K}}=\frac{5.89 \mathrm{~m} \Omega}{0.741 \mathrm{~m} \Omega}=6.593 p t \tag{15}
\end{gather*}
$$

2 Test-2

Derive an approximate expression for the input impedance $Z_{\text {in }}$ of a series RLC circuit in terms of the resistance R, Q, unloaded resonant angular frequency ω_{0}, and the difference $\Delta \omega$ of the driven angular frequency ω and ω_{0} that is valid to first order in $\Delta \omega / \omega$.
What is G / Q in terms of L and C ?

SOLUTION

$$
\begin{aligned}
G & =\frac{1}{R} \\
U_{\mathrm{e}} & =\frac{I^{2}}{4 \omega^{2} C} \\
U_{\mathrm{m}} & =\frac{I^{2} L}{4} \\
U & =\frac{L I^{2}}{2} \\
P_{\mathrm{d}} & =\frac{R I^{2}}{2} \\
Q & =\frac{\omega_{0} U}{P_{\mathrm{d}}}=\frac{\omega_{0} L}{R} 2 p t \\
\frac{G}{Q} & =\frac{1}{R Q}=\sqrt{\frac{C}{L}} 2 p t \\
\omega_{0} & =\frac{1}{\sqrt{L C}} 2 p t \\
\omega & =\omega_{0}+\Delta \omega
\end{aligned}
$$

$$
\begin{aligned}
Z_{\text {in }} & =R+\mathrm{j} \omega L-\mathrm{j}\left(\frac{1}{\omega C}\right) 3 p t \\
& =R+\mathrm{j} \omega L\left(1-\frac{1}{\omega^{2} L C}\right) \\
& =R+\mathrm{j} \omega L\left(1-\frac{\omega_{0}^{2}}{\omega^{2}}\right) 1 p t \\
& =R+\mathrm{j} \omega L \frac{\left(\omega+\omega_{0}\right)\left(\omega-\omega_{0}\right)}{\omega^{2}} \\
& =R+\mathrm{j} L\left(\omega_{0}+\Delta \omega\right) \frac{\left(2 \omega_{0}+\Delta \omega\right) \Delta \omega}{\left(\omega_{0}+\Delta \omega\right)^{2}} 2 p t \\
& \approx R+\mathrm{j} \omega_{0} L\left(\frac{2 \omega_{0} \Delta \omega}{\omega_{0}^{2}}\right)\left(1-2 \frac{\Delta \omega}{\omega_{0}}\right) 2 p t \\
& \approx R\left[1+\left(\frac{\mathrm{j} \omega_{0} L}{R}\right)\left(\frac{2 \Delta \omega}{\omega_{0}}\right)\right] 2 p t \\
& \approx R\left(1+\frac{2 \mathrm{j} Q \Delta \omega}{\omega_{0}}\right) 2 p t
\end{aligned}
$$

3 Test-3

A superconducting cavity has a surface resistance of $10 \mathrm{n} \Omega$ and operates CW in a mode with $R / Q=50 \Omega$ at a frequency of 1.3 GHz . The geometry constant is 250Ω.
What are the values of L, R, and C for an equivalent parallel lumped-element circuit model for this cavity mode?

SOLUTION

$$
\begin{aligned}
L & =\frac{1}{\omega_{0}}\left(\frac{R}{Q}\right) 3 p t \\
L & =\frac{50 \Omega}{2 \pi(1.3 \mathrm{GHz})}=6.12 \mathrm{nH} \mathrm{1pt} \\
C & =\frac{1}{\omega_{0}\left(\frac{R}{Q}\right)}=\frac{1}{2 \pi(1.3 \mathrm{GHz})(50 \Omega)}=2.45 \mathrm{pF} 4 p t \\
R & =\left(\frac{R}{Q}\right) Q=\left(\frac{R}{Q}\right) \frac{G}{R_{\mathrm{s}}}=(50 \Omega) \frac{250 \Omega}{10 \mathrm{n} \Omega}=1.25 \times 10^{12} \Omega 4 p t
\end{aligned}
$$

4 Test-4

What Q_{e} is required for reflectionless operation of a cavity operating in a mode with $V_{\mathrm{c}}=1 \mathrm{MV}, R / Q=50 \Omega, Q_{0}=10^{10}$, and a beam current of 200 mA ? What is the value of Q_{b}, the Q value associated with the beam power? What are these values if $Q_{0}=10^{4}$ instead?

SOLUTION

$$
\begin{aligned}
P_{\mathrm{b}} & =\frac{V_{\mathrm{c}}^{2}}{2 R_{\mathrm{b}}} 4 p t \\
R_{\mathrm{b}} & =\frac{V_{\mathrm{c}}^{2}}{2 P_{\mathrm{b}}}=\frac{1 \mathrm{MV}}{2(200 \mathrm{~kW})}=2.5 \times 10^{6} \Omega 2 p t \\
Q_{\mathrm{b}} & =\frac{R_{\mathrm{b}}}{\frac{R}{Q}}=\frac{2.5 \times 10^{6} \Omega}{50 \Omega}=5 \times 10^{4} 4 p t
\end{aligned}
$$

For reflectionless operation

$$
\begin{aligned}
\frac{1}{Q_{\mathrm{e}}} & =\frac{1}{Q_{0}}+\frac{1}{Q_{\mathrm{b}}} 4 p t \\
Q_{\mathrm{e}} & =\frac{Q_{0} Q_{\mathrm{b}}}{Q_{0}+Q_{\mathrm{b}}}=\frac{10^{10}\left(5 \times 10^{4}\right)}{10^{10}+5 \times 10^{4}}=5 \times 10^{4} .2 p t
\end{aligned}
$$

If $Q_{0}=10^{4}$ then Q_{b} is the same and

$$
Q_{\mathrm{e}}=\frac{10^{4}\left(5 \times 10^{4}\right)}{10^{4}+5 \times 10^{4}}=8.33 \times 10^{3} .3 p t
$$

