Fundamentals - Computational Lab Designing a ring with the optics code

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

Illiit
 Download the optics code

粦 http://uspas.fnal.gov/PCprog.html
粦 This program allows you to design a storage ring.
\rightarrow It calculates single particle trajectories, betatron functions, periodic betatron/dispersion functions (if there is a solution).
\rightarrow After insertion of sextupole magnets it is possible to track particle trajectories, rf-parameters are calculated as well as beam lifetimes. Insertion of vacuum pumps allows the user to calculate the pressure profile.
\rightarrow Ample parameter lists are available for cut and paste into a word processing program.
\rightarrow Many graphs are available for particle trajectories, betatron functions, rf-phase space and tracking.
\rightarrow All graphs can be directly printed or saved in *.wmf format for inclusion into a word processor.

｜｜｜｜To initialize project start with＂beam line＂

粦 Compose a magnet structure for a superperiod
\rightarrow Set of magnets and drift spaces
\rightarrow The superperiod will repeat several times to make a ring
\rightarrow If you design a beam transport line that may not be the case．
米 To begin，select a set of lattice elements（all have the default length of 25 cm ）
\rightarrow Once you have the structure，click on each element to edit parameters
\rightarrow Click＂accept＂to accept your edits．
粦 To insert an element，
\rightarrow click the element behind the＂to be inserted element＂，
\rightarrow choose your insertion element，edit and＂accept＂．
粦 To add／insert an element at the end of the beam line click＂beam line＂．
\rightarrow＂Delete＂，eliminates the element clicked．
粦 To start from scratch，clear the whole beam line in＂beam line＂．

IIIT Test your lattice with some beam optics

粦 Click "beam optics"
粦 The first option there is to choose "z-step size".
\rightarrow If you don't, the lattice functions are plotted only at the end of elements.

- That's faster, but the curves look a bit unrealistic.
\rightarrow To plot in smaller steps click at "z-step size".

｜IHE Choose between single particle trajectories \＆lattice functions

粦 For lattice functions，you may select＂symmetric solution＂ as desired for storage ring superperiods
\rightarrow However，there may be no solutions！
\rightarrow In this case give the program some initial values for the lattice functions
－that＇s what the default values are for．
\rightarrow The display of the lattice functions will show where something goes wild

粦 Vary initial values，magnet parameters etc．until you get close to a symmetric solution
\rightarrow You should be successful in getting the＂symmetric solution＂
粦 Note，for symmetric solutions you must have a symmetric magnet lattice

\｜I－Now that you have a symmetric solution， you build your ring

粦 You have a ring when the beam gets deflected in a number of superperiods by 360 degrees．

粦 Click＂compose ring＂and the program will use a number of your superperiods which give close to 360 degrees

粦 To exactly make it 360 deg the program asks you if you want to change the magnet strength to make an exact ring
\rightarrow Answer YES
\rightarrow If you say NO the program asks you if you want the dipole lengths to be adjusted to make a ring
－Answer YES
\rightarrow If you answer NO you are on your own

Write a lab report about your ring design \＆what you have learned

米 Now you have a basic ring，magnet structure，lattice functions listed \＆ plotted

类 Save your creation in File／Save As
类 You may cut \＆paste any listing \＆transport it to a WORD document．
\rightarrow In the design panel，where the lattice functions \＆magnet arrangements are plotted use the＂print＂option in the＂File＂menu
\rightarrow This generates a metafile with the＊．wmf extension．
－This file can be＂inserted＂into WORD as a picture from file．Now you have magnet listing，lattice functions and graph all in one document
\rightarrow Add text to describe what you have done and what your goals are
类 You may also use any lattice file（there are a few for existing storage rings in the directory）and modify that one

