Key Concepts - 1

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

US Particl e Accel er ator School

｜｜｜Why do we need high energy beams

䊩 Resolution of＂Matter＂Microscopes
\rightarrow Wavelength of Particles（ $\gamma, \mathrm{e}, \mathrm{p}, \ldots$ ）（de Broglie，1923）

$$
\lambda=\mathrm{h} / \mathrm{p}=1.2 \mathrm{fm} / p[\mathrm{GeV} / \mathrm{c}]
$$

\rightarrow Higher momentum $=>$ shorter wavelength $=>$ better the resolution

粦 Energy to Matter
\rightarrow Higher energy produces heavier particles

粦 Penetrate more deeply into matter

Figures of merit

|l| High Energy Physics Figure of Merit 2: Number of events

Events $=$ Cross - section $\times\langle$ Collision Rate $\rangle \times$ Time

Beam energy: sets scale of physics accessible

Luminosity $=\frac{\mathrm{N}_{1} \times \mathrm{N}_{2} \times \text { frequency }}{\text { Overlap Area }}=\frac{\mathrm{N}_{1} \times \mathrm{N}_{2} \times f}{4 \pi \sigma_{x} \sigma_{y}} \times$ Correction factors

We want large charge/bunch, high collision frequency \& small spot size

IIH- Matter to energy: Synchrotron radiation science

Synchrotron light source

FOM: Brilliance v. λ
$\mathrm{B}=\mathrm{ph} / \mathrm{s} / \mathrm{mm}^{2} / \mathrm{mrad}^{2} / 0.1 \% \mathrm{BW}$
粦 Science with X-rays

- Microscopy
- Spectroscopy

Special relativity

IIIT Thus we have the Lorentz transformation

$$
\begin{gathered}
x^{\prime}=\frac{x-v t}{\sqrt{1-v^{2} / c^{2}}}, \quad t^{\prime}=\frac{t-\left(v / c^{2}\right) x}{\sqrt{1-v^{2} / c^{2}}} \\
y^{\prime}=y, z^{\prime}=z
\end{gathered}
$$

Or in matrix form

$$
\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\gamma \beta & 0 & 0 \\
-\gamma \beta & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z^{\prime}
\end{array}\right)
$$

IIIT
 Proper time \＆length

粦 We define the proper time，τ ，as the duration measured in the rest frame

粦 The length of an object in its rest frame is L_{o}

米 As seen by an observer moving at v ，the duration，T ，is

$$
\mathrm{T}=\frac{\tau}{\sqrt{1-v^{2} / c^{2}}} \equiv \gamma \tau>\tau
$$

And the length，L ，is

$$
L=L_{o} / \gamma
$$

｜｜｜Velocity，energy and momentum

粦 For a particle with 3 －velocity \boldsymbol{v} ，the 4 －velocity is

$$
u^{\alpha}=(\gamma c, \gamma \mathbf{v})=\frac{d x^{\alpha}}{d \tau}
$$

粦 The total energy， E ，of a particle is its rest mass， m_{o} ，plus kinetic energy， T （what is cited as the energy of the beam）

$$
E=m_{o} c^{2}+T=\gamma m_{o} c^{2} \quad \text { and } \quad E^{2}=p^{2} c^{2}+m_{o}^{2} c^{4}
$$

粦 The 4－momentum，p^{μ} ，is

$$
\begin{gathered}
p^{\mu}=\left(c \gamma m_{0}, \gamma m_{0} \mathbf{v}\right) \\
p^{2}=m_{o}{ }^{2} c^{2}
\end{gathered}
$$

｜｜｜Doppler shift of frequency

Distinguish between coordinate transformations and observations

类 Yale sets his signal to flash at a constant interval，$\Delta \mathrm{t}^{\prime}$

羊 Harvard sees the interval foreshortened by $\mathrm{K}(\mathrm{v})$ as Yale approaches

粦 Harvard see the interval stretched by K（－v） as Yale moves away

$$
K(v)=\left(\frac{1+v}{1-v}\right)^{1 / 2} \approx 2 \gamma
$$

IIII Particle collisions

粦 Two particles have equal rest mass m_{0}.
Laboratory Frame (LF): one particle at rest, total energy is $\mathrm{E}_{\text {lab }}$.

$$
\mathbf{P}_{\mathbf{1}}=\left(E_{1} / c, \mathbf{p}_{\mathbf{1}}\right) \quad \mathbf{P}_{\mathbf{2}}=\left(m_{0} c, \mathbf{0}\right)
$$

Centre of Momentum Frame (CMF): Velocities are equal \& opposite, total energy is E_{cm}.

$$
\mathbf{P}_{\mathbf{1}}=\left(E_{\mathrm{cm}} /(2 c), \mathbf{p}\right)
$$

$$
\mathbf{P}_{\mathbf{2}}=\left(E_{\mathrm{cm}} /(2 c),-\mathbf{p}\right)
$$

Exercise: Relate E to $E_{c m}$

$$
E_{c m}=\sqrt{2 m c^{2} E_{l a b}}
$$

|l||i A simple problem - bending radius

粦 Compute the bending radius, R , of a non-relativistic particle particle in a uniform magnetic field, B .
\rightarrow Charge $=\mathrm{q}$
\rightarrow Energy $=\mathrm{mv}^{2} / 2$

$$
\begin{aligned}
F_{\text {Lorentz }} & =q \frac{v}{c} B=F_{\text {centripital }}=\frac{m v^{2}}{\rho} \\
& \Rightarrow \rho=\frac{m v c}{q B}=\frac{p c}{q B}
\end{aligned}
$$

$$
\rho(\mathrm{m})=3.34\left(\frac{p}{1 \mathrm{GeV} / \mathrm{c}}\right)\left(\frac{1}{q}\right)\left(\frac{1 \mathrm{~T}}{B}\right)
$$

IIIIT
 Lorentz transformations of E.M. fields

$$
\begin{array}{ll}
& B_{z^{\prime}}^{\prime}=B_{z} \\
E_{z^{\prime}}^{\prime}=E_{z} & B_{x^{\prime}}^{\prime}=\gamma\left(B_{x}+\frac{v}{c^{2}} E_{y}\right) \\
E_{x^{\prime}}^{\prime}=\gamma\left(E_{x}-v B_{y}\right) & B_{y^{\prime}}^{\prime}=\gamma\left(B_{y}-\frac{v}{c^{2}} E_{x}\right) \\
E_{y^{\prime}}^{\prime}=\gamma\left(E_{y}+v B_{x}\right) & \Rightarrow \mathbf{B}_{\perp}^{\prime}=\gamma \frac{\mathbf{v}}{c^{2}} \times \mathbf{E}
\end{array}
$$

Fields are invariant along the direction of motion, z

｜｜｜The E field gets swept into a thin cone

米 We have $\mathrm{E}_{\mathrm{x}}=\gamma \mathrm{E}_{\mathrm{x}}^{\prime}, \mathrm{E}_{\mathrm{y}}=\gamma \mathrm{E}_{\mathrm{y}}^{\prime}$ ，and $\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{\mathrm{z}}^{\prime}$
类 Transforming r^{\prime} gives $r^{\prime}=\sqrt{x^{2}+y^{2}+\gamma^{2}(z-v t)^{2}} \equiv \gamma R$
粦 Draw \mathbf{r} is from the current position of the particle to the observation point， $\mathrm{r}=(\mathrm{x}, \mathrm{y}, \mathrm{z}-\mathrm{vt})$

米 Then a little algebra gives us

$$
\mathbf{E}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q \mathbf{r}}{\gamma^{2} R^{3}}
$$

粦 The charge also generates a B－field

$$
\mathbf{B}=\frac{1}{c^{2}} \mathbf{v} \times \mathbf{E}
$$

||| Undulator radiation: What is $\lambda_{\text {rad }}$?

An electron in the lab oscillating at frequency, f, emits dipole radiation of frequency f

Electromagnetism

Iliit
 Newton＇s law

粦 We all know

$$
\mathbf{F}=\frac{d}{d t} \mathbf{p}
$$

粦 The 4 －vector form is

$$
F^{\mu}=\left(\gamma c \frac{d m}{d t}, \gamma \frac{d \mathbf{p}}{d t}\right)=\frac{d p^{u}}{d \tau}
$$

＊Differentiate $p^{2}=m_{o}{ }^{2} c^{2}$ with respect to τ

$$
p_{\mu} \frac{d p^{u}}{d \tau}=p_{\mu} F^{\mu}=\frac{d\left(m c^{2}\right)}{d t}-\mathbf{F} \mathbf{O} \mathbf{v}=0
$$

类 The work is the rate of changing mc^{2}

|| Harmonic oscillator

粦 Motion in the presence of a linear restoring force

$$
\begin{gathered}
F=-k x \\
\ddot{x}+\frac{k}{m} x=0 \\
x=A \sin \omega_{o} t \text { where } \omega_{o}=\sqrt{k / m}
\end{gathered}
$$

粦 It is worth noting that the simple harmonic oscillator is a linearized example of the pendulum equation

$$
\ddot{x}+\omega_{o}^{2} \sin (x) \approx \ddot{x}+\omega_{o}^{2}\left(x-x^{3} / 6\right)=0
$$

that governs the free electron laser instability

IIIT
 Electric displacement \& magnetic field

In vacuum,

粦 The electric displacement is $\mathbf{D}=\varepsilon_{0} \mathbf{E}$,

粦 The magnetic field is $\mathbf{H}=\mathbf{B} / \mu_{\text {o }}$
Where

$$
\varepsilon_{\mathrm{o}}=8.85 \times 10^{-12} \mathrm{farad} / \mathrm{m} \text { \& } \mu_{\mathrm{o}}=4 \pi \times 10^{-7} \text { henry } / \mathrm{m} .
$$

||| Maxwell's equations (1)

粦 Electric charge density ρ is source of the electric field, \mathbf{E} (Gauss's law)

$$
\nabla \bullet \mathbf{E}=\rho
$$

粦 Electric current density $\mathbf{J}=\rho \mathbf{u}$ is source of the magnetic induction field \mathbf{B} (Ampere's law)

$$
\nabla \times \mathbf{B}=\mu_{o} \mathbf{J}+\mu_{0} \varepsilon_{o} \frac{\partial \mathbf{E}}{\partial t}
$$

If we want big magnetic fields, we need large current supplies

|||| Maxwell's equations (2)

粦 Field lines of \mathbf{B} are closed; i.e., no magnetic monopoles.

$$
\nabla \bullet \mathbf{B}=0
$$

粦 Electromotive force around a closed circuit is proportional to rate of change of \mathbf{B} through the circuit (Faraday's law).

$$
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
$$

||| Maxwell's equations: integral form

$$
\begin{aligned}
& \vec{\nabla} \bullet \vec{E}=\frac{\rho}{\varepsilon_{0}} \Rightarrow \oint_{S} \vec{E} \bullet d \vec{a}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}} \text { Gauss' Law } \\
& \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \Rightarrow \oint_{C} \vec{E} \bullet d \vec{l}=-\oint_{S} \frac{\partial \vec{B}}{\partial t} \bullet d \vec{a} \text { Faraday' s Law } \\
& \vec{\nabla} \times \vec{B}=\mu_{0} J+\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}=>\quad \text { Displacement current } \\
& \oint_{C} \vec{B} \bullet d \vec{l}=\mu_{0} I_{\text {enclosed }}+\mu_{0} \varepsilon_{0} \oint_{S}^{\oint \frac{\partial \vec{E}}{\partial t} \bullet d \vec{a} \text { Ampere' s Law }}
\end{aligned}
$$

\|Fe We computed the B-field from current loop ${ }_{\star}^{\star}$ with $I=$ constant

粦 By the Biot-Savart law we found that on the z -axis

$$
\mathbf{B}=\frac{I}{c r^{2}} R \sin \theta \int_{0}^{2 \pi} d \varphi \hat{\mathbf{z}}=\frac{2 \pi I R^{2}}{c\left(R^{2}+z^{2}\right)^{3 / 2}} \hat{\mathbf{z}}
$$

粦 What happens if we drive the current to have a time variation?

Iliit
 Question to ponder: What is the field from this situation?

We expect this situation to lead to radiation

IIT Boundary conditions for
 a perfect conductor, $\sigma=\infty$

1. If electric field lines terminate on a surface, they do so normal to the surface
a) any tangential component would quickly be neutralized by lateral motion of charge within the surface.
b) The E-field must be normal to a conducting surface
2. Magnetic field lines avoid surfaces
a) otherwise they would terminate, since the magnetic field is zero within the conductor
i. The normal component of B must be continuous across the boundary for $\sigma \neq \infty$

Properties of beams

Ilī̃
 Brightness of a beam source

类 A figure of merit for the performance of a beam source is the brightness

$$
B=\frac{\text { Beam current }}{\text { Beam area oBeam Divergence }}=\frac{\text { Emissivity }(\mathrm{J})}{\sqrt{\text { Temperature } / \mathrm{mass}}}
$$

$$
=\frac{J_{e}}{\left(\sqrt{\frac{k T}{\gamma m_{o} c^{2}}}\right)^{2}}=\frac{J_{e} \gamma}{\left(k T / m_{o} c^{2}\right)}
$$

Typically the normalized brightness is quoted for $\gamma=1$

Iliit
 Beams have directed energy

粦 The beam momentum refers to the average value of p_{z} of the particles

$$
\mathrm{p}_{\text {beam }}=\left\langle\mathrm{p}_{\mathrm{z}}\right\rangle
$$

粦 The beam energy refers to the mean value of

$$
E_{\text {beam }}=\left[\left\langle p_{z}\right\rangle^{2} c^{2}+m^{2} c^{4}\right]^{1 / 2}
$$

类 For highly relativistic beams $\mathrm{pc} \gg \mathrm{mc}^{2}$ ，therefore

$$
E_{\text {beam }}=\left\langle p_{z}\right\rangle c
$$

|||| Beams have internal (self-forces)

* 粦 Space charge forces
\rightarrow Like charges repel
\rightarrow Like currents attract
粦 For a long thin beam

$$
\begin{aligned}
& E_{s p}(V / \mathrm{cm})=\frac{60 I_{\text {beam }}(A)}{R_{\text {beam }}(\mathrm{cm})} \\
& B_{\theta}(\text { gauss })=\frac{I_{\text {beam }}(A)}{5 R_{\text {beam }}(\mathrm{cm})}
\end{aligned}
$$

|||| Envelope equation: Last steps

粦 Angular momentum conservation implies

$$
P_{\vartheta}=\gamma L+\gamma \omega_{c} \frac{R^{2}}{c}=\text { constant }
$$

米 The energy \& virial equations combine to yield

$$
\ddot{R}+\frac{\dot{\gamma}}{\gamma} \dot{R}+\frac{U}{R}+\frac{\omega_{c}^{2} R}{4}-\frac{\mathrm{E}^{2}}{\gamma^{2} R^{3}}=\frac{1}{\gamma^{2} R^{3}} \int_{t_{o}}^{t} d t^{\prime}\left(\frac{2 \gamma R^{2}}{m} \varepsilon^{\prime}\right)
$$

where

$$
U=\left\langle\omega_{\beta}^{2} r^{2}\right\rangle=I / I_{\text {Alfiven }}
$$

and

$$
\mathrm{E}^{2}=\gamma^{2} R^{2}\left(V^{2}-(\dot{R})^{2}\right)+P_{\vartheta}^{2}
$$

|1H- Emittance describes the area in phase space of the ensemble of beam particles

Emittance - Phase space volume of beam

$$
\varepsilon^{2} \equiv R^{2}\left(V^{2}-\left(R^{\prime}\right)^{2}\right) / c^{2}
$$

Iliii

Force-free expansion of a beam

Notice: The phase space area is conserved

$$
\binom{x}{x^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}} \Longrightarrow \begin{gathered}
x=x_{0}+L x_{0}^{\prime} \\
x^{\prime}=x_{0}^{\prime}
\end{gathered}
$$

||| Matrix representation of a drift

粦 From the diagram we can write by inspection

$$
\begin{gathered}
\binom{x}{x^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}} \Rightarrow \begin{array}{c}
x=x_{0}+L x_{0}^{\prime} \\
x^{\prime}=x_{0}^{\prime}
\end{array} \\
\left\langle x^{2}\right\rangle=\left\langle\left(x_{0}+L x_{0}^{\prime}\right)^{2}\right\rangle=\left\langle x_{0}^{2}\right\rangle+L^{2}\left\langle x_{0}^{\prime 2}\right\rangle+2 L\left\langle x_{0} x_{0}^{\prime}\right\rangle \\
\left\langle x^{\prime 2}\right\rangle=\left\langle x_{0}^{\prime 2}\right\rangle \\
\left\langle x x^{\prime}\right\rangle=\left\langle\left(x_{0}+L x_{0}^{\prime}\right) x_{0}^{\prime}\right\rangle=L\left\langle x_{0}^{\prime 2}\right\rangle+\left\langle x_{0} x_{0}^{\prime}\right\rangle
\end{gathered}
$$

粦 Now write these last equations in terms of β_{T}, γ_{T} and α_{T}

\|\| Why is emittance an important concept

1) Liouville: Under conservative forces phase space evolves like an incompressible fluid ==>
2) Under linear forces macroscopic (such as focusing magnets) \&
$\gamma=$ constant
emittance is an invariant of motion

3) Under acceleration

$$
\gamma \varepsilon=\varepsilon_{\mathrm{n}}
$$

is an adiabatic invariant

IIIT
 Emittance during acceleration

粦 When the beam is accelerated, β \& γ change
$\rightarrow x$ and x^{\prime} are no longer canonical
\rightarrow Liouville theorem does not apply \& emittance is not invariant

Accelerate by \boldsymbol{E}_{z}

$$
\begin{aligned}
p_{z} & =\sqrt{\frac{T^{2}+2 T m_{0} c^{2}}{T_{0}^{2}+2 T_{0} m_{0} c^{2}}} p_{z 0} \\
T & \equiv \text { kinetic energy }
\end{aligned}
$$

Ilii Then...

$y_{0}^{\prime}=\tan \theta_{0}=\frac{p_{y 0}}{p_{z 0}}=\frac{p_{y 0}}{\beta_{0} \gamma_{0} m_{0} c} \quad y^{\prime}=\tan \theta=\frac{p_{y}}{p_{z}}=\frac{p_{y 0}}{\beta \gamma m_{0} c} \quad \frac{y^{\prime}}{y_{0}^{\prime}}=\frac{\beta_{0} \gamma_{0}}{\beta \gamma}$

$$
\text { In this case } \frac{\varepsilon_{y}}{\varepsilon_{y 0}}=\frac{y^{\prime}}{y_{0}^{\prime}} \quad \Rightarrow \quad \beta \gamma \varepsilon_{y}=\beta_{0} \gamma_{0} \varepsilon_{y 0}
$$

类 Therefore, the quantity $\beta \gamma \varepsilon$ is invariant during acceleration.
类 Define a conserved normalized emittance

$$
\varepsilon_{n i}=\beta \gamma \varepsilon_{i} \quad i=x, y
$$

Acceleration couples the longitudinal plane with the transverse planes
The 6D emittance is still conserved but the transverse ones are not

Ilit
 The Concept of Acceptance

Example: Acceptance of a slit

IIIT
 Measuring the emittance of the beam

$$
\varepsilon^{2}=R^{2}\left(V^{2}-\left(R^{\prime}\right)^{2}\right) / c^{2}
$$

粦 RMS emittance
\rightarrow Determine rms values of velocity \＆spatial distribution
米 Ideally determine distribution functions \＆compute rms values

粦 Destructive and non－destructive diagnostics

｜｜｜Example of pepperpot diagnostic

㐘 Size of image＝＝＞R
粦 Spread in overall image＝＝＞R＇
粦 Spread in beamlets＝＝＞V
粦 Intensity of beamlets＝＝＞current density

IT Maxwell forbids this!

$$
\nabla \times \mathbf{E}=-\frac{d \mathbf{B}}{d t}
$$

or in integral form

$$
\oint_{C} \mathbf{E} \cdot d \mathbf{s}=-\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot \mathbf{n} d a
$$

\therefore There is no acceleration without time-varying magnetic flux

Non-resonant accelerators

Iliit
 Characteristics of DC accelerators

粦 Voltage limited by electrical breakdown（ $\sim 10 \mathrm{kV} / \mathrm{cm}$ ）
\rightarrow High voltage
$==>$ Large size（ 25 m for 25 MV ）
\rightarrow Exposed high voltage terminal
＝＝＞Safety envelope
米 High impedance structures
\rightarrow Low beam currents
粦 Generates continuous beams

Sparking electric field limits in the Kilpatrick
model，including electrode gap dependence

|l|i| Synchronism in the Microtron

$$
\begin{gathered}
\frac{1}{r_{o r b i t}}=\frac{e B}{p c}=\frac{e B}{m c^{2} \beta \gamma} \\
\tau_{r e v}=\frac{2 \pi r_{o r b i t}}{v}=\frac{2 \pi r_{o r b i t}}{\beta c}=\frac{2 \pi m c}{e} \frac{\gamma}{B}
\end{gathered}
$$

Synchronism condition: $\Delta \tau_{\text {rev }}=N / f_{\text {rf }}$

$$
\Delta \tau=\frac{N}{f_{r f}}=\frac{2 \pi m c}{e} \frac{\Delta \gamma}{B}=\frac{\Delta \gamma}{f_{r f}}
$$

If $\mathrm{N}=1$ for the first turn @ $\gamma \sim 1$

$$
\text { Or } \Delta \gamma=1=\Rightarrow \mathbf{E}_{\mathrm{rf}}=\mathbf{m c}^{2}
$$

Possible for electrons but not for ions

IHE But long as $\gamma \approx 1, \tau_{\text {rev }} \approx$ constant! Let's curl up the Wiederoe linac

Bend the drift tubes

Connect equipotentials

Eliminate excess Cu

Supply magnetic field to bend beam

$$
\tau_{r e v}=\frac{1}{f_{r f}}=\frac{2 \pi m c}{e Z_{i o n}} \frac{\gamma}{B} \approx \frac{2 \pi m c}{e Z_{i o n} B}=\text { const }
$$

11|- Transformers are highly efficient and can drive large currents

Large units can transfer > 99\% of input power to the output

\|He Recall the ray transformer realized as the Betatron (D. Kerst, 1940)

The beam acts as a 1-turn secondary winding of the transformer Magnetic field energy is transferred directly to the electrons

For the orbit size to remain invariant

$$
\dot{\Phi}=2 \pi R^{2} \dot{B}_{s}
$$

This was good for up to 300 MeV electrons. What about electrons or ions?

Iliit
 Principle of inductive isolation

|"F The Linear Betatron:
 Linear Induction Accelerator

N. Christofilos

Synchrotrons \& phase stability

US Particl e Accel er ator School

The synchrotron introduces two new ideas：

 change $B_{\text {dipolc }} \&$ change ω_{rf}米 For low energy ions，$f_{\text {rev }}$ increases as $E_{i o n}$ increases

米＝＝＞Increase $\omega_{r f}$ to maintain synchronism

粦 For any $E_{i o n}$ circumference must be an integral number of rf wavelengths

$$
L=h \lambda_{r f}
$$

粦 h is the harmonic number

Iliit
 Ideal closed orbit in the synchrotron

粦 Beam particles will not have identical orbital positions \＆ velocities
粦 In practice，they will have transverse oscillatory motion（betatron oscillations）set by radial restoring forces
粦 An ideal particle has zero amplitude motion on a closed orbit along the axis of the synchrotron

Ilit
 Energy gain－II

类 The synchronism conditions for the synchronous particle
\rightarrow condition on rf－frequency，
\rightarrow relation between rf voltage \＆field ramp rate
粦 The rate of energy gain for the synchronous particle is

$$
\frac{d E_{s}}{d t}=\frac{\beta_{s} c}{L} e V \sin \varphi_{s}=\frac{c}{h \lambda_{r f}} e V \sin \varphi_{s}
$$

米 Its rate of change of momentum is

$$
\frac{d p_{s}}{d t}=e E_{o} \sin \varphi_{s}=\frac{e V}{L} \sin \varphi_{s}
$$

\|HE What do we mean by phase? Let's consider non-relativistic ions

How does the ellipse change as B lags further behind A ?

|le How does the ellipse change as B lags further behind A ?

How does the size of the bucket change with ϕ_{s} ?

11| Two first order equations ==> one second order pendulum equation

$$
\frac{d \varphi}{d n}=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} \Delta E
$$

and

$$
\frac{\mathrm{d} \Delta \mathrm{E}}{d n}=e V\left(\sin \varphi-\sin \varphi_{s}\right)
$$

yield

$$
\frac{d^{2} \varphi}{d n^{2}}=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\sin \varphi-\sin \varphi_{s}\right)
$$

if

$$
V=\text { constant and } \frac{\mathrm{dE}_{\mathrm{s}}}{\mathrm{dn}} \text { is sufficiently small }
$$

For $\phi_{\sigma}=0$ we have

We've seen this behavior for the pendulum

Now let's return to the question of frequency

IIF For small phase differences, $\Delta \phi=\phi-\phi_{s}$, we can linearize our equations

$$
\begin{aligned}
\frac{d^{2} \varphi}{d n^{2}}=\frac{d^{2} \Delta \varphi}{d n^{2}} & =\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\sin \varphi-\sin \varphi_{s}\right) \\
& =\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\sin \left(\varphi_{s}+\Delta \varphi\right)-\sin \varphi_{s}\right)
\end{aligned}
$$

(harmonic oscillator in $\Delta \phi$)

$$
\approx 4 \pi^{2}(\underbrace{\frac{\eta \omega_{r f} \tau}{4 \pi^{2} \beta^{2} E_{s}} e V \cos \varphi_{s}}_{-\mathbf{v}_{\mathbf{s}}^{2}}) \Delta \varphi
$$

$$
\Omega_{s}=\frac{2 \pi v_{s}}{\tau}=\sqrt{-\frac{\eta \omega_{r f}}{\tau \beta^{2} E_{s}} e V \cos \varphi_{s}}=\text { synchrotron angular frequency }
$$

｜｜｜Choice of stable phase depends on η

$$
\Omega_{s}=\sqrt{-\frac{\eta \omega_{r f}}{\tau \beta^{2} E_{s}} e V \cos \varphi_{s}}
$$

米 Below transition $\left(\gamma<\gamma_{t}\right)$ ，
$\rightarrow \eta<0$ ，therefore $\cos \phi_{\mathrm{s}}$ must be >0
米 Above transition $\left(\gamma>\gamma_{t}\right)$ ，
$\rightarrow \eta>0$ ，therefore $\cos \phi_{\mathrm{s}}$ must be <0
米 At transition $\Omega_{\mathrm{s}}=0$ ；there is no phase stability
＊Circular accelerators that must cross transition shift the synchronous phase at $\gamma>\gamma_{t}$
＊Linacs have no path length difference，$\eta=1 / \gamma^{2}$ ；particles stay locked in phase and $\Omega_{\mathrm{s}}=0$

|l||| Bunch length

粦 In electron storage rings, statistical emission of synchrotron radiation photons generates gaussian bunches

* The over voltage Q is usually large
\rightarrow Bunch "lives" in the small oscillation region of the bucket.
\rightarrow Motion in the phase space is elliptical

粦 For $\sigma_{p} / p_{0}=$ rms relative momentum spread, the rms bunch length is

$$
\sigma_{\Delta S}=\frac{c \eta_{C}}{\Omega} \frac{\sigma_{p}}{p_{0}}=\sqrt{\frac{c^{3}}{2 \pi q} \frac{p_{0} \beta_{0} \eta_{C}}{h f_{0}^{2} \hat{V} \cos \left(\varphi_{S}\right)}} \frac{\sigma_{p}}{p_{0}}
$$

IIIT
 Matching the beam on injection

粦 Beam injection from another rf-accelerator is typically
"bucket-to-bucket"
\rightarrow rf systems of machines are phase-locked
\rightarrow bunches are transferred directly from the buckets of one machine into the buckets of the other

粦 This process is efficient for matched beams
\rightarrow Injected beam hits the middle of the receiving rf-bucket
\rightarrow Two machines are longitudinally matched.

- They have the same aspect ratio of the longitudinal phase ellipse

Key concepts - 2

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

US Particl e Accel er ator School

General Envelope Equation for Cylindrically Symmetric Beams

Can be generalized for sheet beams and beams
with quadrupole focusing

Illii
 Without scattering \& in equilibrium

$$
\begin{gathered}
\ddot{R}+\frac{\dot{\gamma}}{\gamma} \dot{R}+\frac{U}{R}+\frac{\omega_{c}^{2} R}{4}-\frac{\mathrm{E}^{2}}{\gamma^{2} R^{3}}=\frac{1}{\gamma^{2} R^{3}} \int_{t_{o}}^{t} d t^{\prime}\left(\frac{2 \gamma R^{2}}{m} \varepsilon^{\prime}\right) \\
\therefore \quad \frac{U}{R}+\frac{1 / 4 \omega_{c}^{2} R^{2}}{R}-\frac{\mathrm{E}^{2}}{\gamma^{2} R^{3}}=0 \\
\text { Self-forces Focusing Emittance }
\end{gathered}
$$

More generally, $\frac{U}{R}+\frac{\left\langle\omega_{\beta}^{2} R^{2}\right\rangle}{R}-\frac{\mathrm{E}^{2}}{\gamma^{2} R^{3}}=0$

RF Cavities

｜l｜il Basic principles and concepts

米 Superposition

粦 Energy conservation

粦 Orthogonality（of cavity modes）

粦 Causality

||- Translate circuit model to a cavity model: Directly driven, re-entrant RF cavity

Outer region: Large, single turn Inductor

$$
L=\frac{\mu_{o} \pi a^{2}}{2 \pi(R+a)}
$$

Central region: Large plate Capacitor

$$
\begin{gathered}
C=\varepsilon_{o} \frac{\pi R^{2}}{d} \\
\omega_{o}=1 / \sqrt{L C}=c\left[\frac{2((R+a) d}{\pi R^{2} a^{2}}\right]^{1 / 2}
\end{gathered}
$$

Q - set by resistance in outer region

$$
Q=\sqrt{L / C} / R
$$

｜｜Properties of the RF pillbox cavity

$\sigma_{w a l l s}=\infty$

粦 We want lowest mode：with only $\mathbf{E}_{\mathrm{z}} \& \mathbf{B}_{\theta}$
粦 Maxwell＇s equations are：

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)=\frac{1}{c^{2}} \frac{\partial}{\partial t} E_{z} \quad \text { and } \frac{\partial}{\partial r} E_{z}=\frac{\partial}{\partial t} B_{\theta}
$$

粦 Take derivatives

$$
\begin{gathered}
\frac{\partial}{\partial t}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)\right]=\frac{\partial}{\partial t}\left[\frac{\partial B_{\theta}}{\partial r}+\frac{B_{\theta}}{r}\right]=\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial t^{2}} \\
\frac{\partial}{\partial r} \frac{\partial E_{z}}{\partial r}=\frac{\partial}{\partial r} \frac{\partial B_{\theta}}{\partial t}
\end{gathered}
$$

$$
==>\quad \frac{\partial^{2} E_{z}}{\partial r^{2}}+\frac{1}{r} \frac{\partial E_{z}}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial t^{2}}
$$

I\| For a mode with frequency ω

$$
E_{z}(r, t)=E_{z}(r) e^{i \omega t}
$$

* Therefore, $\quad E_{z}^{\prime \prime}+\frac{E_{z}^{\prime}}{r}+\left(\frac{\omega}{c}\right)^{2} E_{z}=0$
\rightarrow (Bessel's equation, 0 order)

粦 Hence,

$$
E_{z}(r)=E_{o} J_{o}\left(\frac{\omega}{c} r\right)
$$

米 For conducting walls, $\mathrm{E}_{\mathrm{z}}(\mathrm{R})=0$, therefore

$$
\frac{2 \pi f}{c} b=2.405
$$

｜｜｜Simple consequences of pillbox model

粦 Increasing R lowers frequency
\Rightarrow Stored Energy， $\mathbf{E} \sim \omega^{-2}$
米

$$
E \sim E_{z}^{2}
$$

米 Beam loading lowers E_{z} for the next bunch

粦 Lowering ω lowers the fractional beam loading

类 Raising ω lowers $Q \sim \omega^{-1 / 2}$
粦 If time between beam pulses，

$$
\mathrm{T}_{\mathrm{s}} \sim Q / \omega
$$

almost all \mathbf{E} is lost in the walls

Cavity figures of merit

US Particl e Accel er ator School

||| Figure of Merit: Accelerating voltage

类 The voltage varies during time that bunch takes to cross gap
\rightarrow reduction of the peak voltage by Γ (transt time factor)

$$
\Gamma=\frac{\sin (\vartheta / 2)}{\vartheta / 2} \text { where } \vartheta=\omega d / \beta c
$$

For maximum acceleration $\quad T_{\mathrm{cav}}=\frac{d}{c}=\frac{T_{\mathrm{rf}}}{2} \quad \Rightarrow \quad=>2 / \pi$

IIIT
 Figure of merit from circuits - Q

$$
\begin{gathered}
Q=\frac{\omega_{o} \text { o Energy stored }}{\text { Time average power loss }}=\frac{2 \pi \text { oEnergy stored }}{\text { Energy lost per cycle }} \\
\mathrm{E}=\frac{\mu_{o}}{2} \int_{v}|H|^{2} d v=\frac{1}{2} L I_{o} I_{o}^{*} \\
\langle\mathrm{P}\rangle=\frac{R_{\text {suff }}}{2} \int_{s}|H|^{2} d s=\frac{1}{2} I_{o} I_{o}^{*} R_{\text {surf }} \\
R_{\text {surf }}=\frac{1}{\text { Conductivity oSkin depth }} \sim \omega^{1 / 2}
\end{gathered}
$$

$$
\therefore Q=\frac{\sqrt{L / C}}{R_{\text {surf }}}=\left(\frac{\Delta \omega}{\omega_{o}}\right)^{-1}
$$

||| Compute the voltage gain correctly

The voltage gain seen by the beam can computed in the co-moving frame, or we can use the transit-time factor, Γ \& compute V at fixed time

$$
V_{o}^{2}=\Gamma \int_{z_{1}}^{z_{2}} E(z) d z
$$

Illii
 Keeping energy out of higher order modes

Choose cavity dimensions to stay far from crossovers

|1H Figure of merit for accelerating cavity: power to produce the accelerating field

Resistive input (shunt) impedance at ω_{o} relates power dissipated in walls to accelerating voltage

$$
R_{i n}=\frac{\left\langle V^{2}(t)\right\rangle}{\mathbf{P}}=\frac{V_{o}^{2}}{2 \mathbf{P}}=Q \sqrt{L / C}
$$

Linac literature commonly defines "shunt impedance" without the " 2 "

$$
\mathrm{R}_{\text {in }}=\frac{V_{o}^{2}}{\mathrm{P}} \sim \frac{1}{R_{\text {surf }}}
$$

Typical values 25-50 M Ω

Unit 4 - Lecture 10

RF-accelerators: Standing wave linacs

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

Iliit
 Linacs cells are linked to minimize cost

==> coupled oscillators ==>multiple modes

Zero mode

т mode

Iliit
 Example of $\mathbf{3}$ coupled cavities

||F Lumped circuit of a transmission line coupled cavity without beam

$$
\begin{gathered}
\begin{array}{l}
\omega_{0}^{2}=\frac{1}{L C} \begin{array}{c}
\text { resonance frequency } \\
\text { of RF-structure } \\
f_{0} \approx 50 \mathrm{MHz}-3 \mathrm{GHz}
\end{array} \\
\frac{1}{Z_{c}}=Y_{c}
\end{array}=\frac{I_{L}+I_{c}+I_{R_{s}}}{U_{Z_{c}}}=i \omega C+\frac{1}{i \omega L}+\frac{1}{R_{s}} \\
Z_{c}=\frac{R_{s}}{1+i \frac{R_{s}}{\omega L}\left(\frac{\omega^{2}}{\omega_{0}^{2}}-1\right)}=\frac{R_{s}}{1+i Q_{0} \frac{\omega_{0}}{\omega}\left(\frac{\omega^{2}}{\omega_{0}^{2}}-1\right)}=\frac{R_{s}}{1+i Q_{0}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)} \quad \begin{array}{r}
Q_{0}=\frac{R_{s}}{\omega_{0} L}=R_{s} \omega_{0} C \\
\text { unloansmitter quality } \\
\text { factor of cavity }
\end{array}
\end{gathered}
$$

IIF At resonance, the rf source $\&$ the beam have the following effects

粦 The accelerating voltage is the sum of these effects

$$
V_{\text {accel }}=\sqrt{R_{\text {shunt }} P_{\text {gen }}}\left[\frac{2 \sqrt{\beta}}{1+\beta}\left(1-\frac{K}{\sqrt{\beta}}\right)\right]=\sqrt{R_{\text {shunt }} P_{\text {wall }}}
$$

where $\mathrm{K}=\frac{I_{d c}}{2} \sqrt{R_{\text {shunt }} / P_{g e n}}$ is the "loading factor"
粦 $==>\mathrm{V}_{\mathrm{acc}}$ decreases linearly with increasing beam current

|| Power flow in standing wave linac

IIIT
 Comparison of SC and NC RF

Superconducting RF

粦 High gradient
＝＝＞ 1 GHz ，meticulous care
粦 Mid－frequencies
$==>$ Large stored energy， $\mathbf{E}_{\text {s }}$
类 Large $\mathrm{E}_{\text {s }}$
$==>$ very small $\Delta \mathrm{E} / \mathrm{E}$
粦 Large Q
＝＝＞high efficiency

Normal Conductivity RF

粦 High gradient
$==>$ high frequency（ $5-17 \mathrm{GHz}$ ）
粦 High frequency
＝＝＞low stored energy
粦 Low E_{s}
$==>\sim 10 x$ larger $\Delta \mathrm{E} / \mathrm{E}$
粦 Low Q
＝＝＞reduced efficiency

