

ADMINISTRATIVE ITEMS

Introduction to Particle Accelerators 8.277 and 6.608

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

My goals for this course

- # Get you interested in accelerator science & technology for graduate study
- Make you knowledgeable about how "machines" influence accelerator-based science
- * Put fundamental concepts of the topic above complicated mathematics
- ***** Be responsive to your interests and goals
- # Have an interactive experience in which we learn from each other

Credit Requirements

- ℁ Students will be evaluated based on
 - \rightarrow 10 homework assignments (30 % of final grade)
 - Discussion of problems is okay
 - Final work product must be independent
 - → In lieu of periodic exams (35 % of final grade)
 - "Research" assignment & oral presentation (April 28) (20 % of grade)
 - Topic related to accelerator-based science
 - (10 min presentation, 5 slides) + 3 page write up
 - Projects separate, but collaboration is encouraged
 - Get topic approved by March 19
 - Cyclotron lectures & project (graded) with Dr. Timothy Antaya (March 31 & April 2) (15 % of grade)
 - → Final exam (35% of final grade) two hours
 - Date to be determine by next week

Calendar: Assignments & special topics

February 2008							March 2008						
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
.27	.2.9	29	30-		1	1 2	24	•Accel class Homework due	26	27 •Accel class	28	29	1
					0		2	2 3 4 •Accel class Homework due	4	5	6	7	8
3	4	5	•Accel class	1	8	g			 Accel class 				
							9	10 Accel class	11	12 Accel class	13	14	15
10	Accel class	12	13 •Accel class Homework due	14	15	16		Homework due					
							16	17 • Accel class	18	19 • Accel class	20	21	22
17	18 <mark>Holiday</mark>	19	20 • Accel class	21	22	23		Homework due		Approve to	pics		
							23	24	25	26	27	28	29
24	25	26	27	28	29	1							
	Accel class Homework due Special lect	ture	 Accel class 				30	31 • Accel class • antaya lecture	1	2 •Accel class • antaya lecture	3	4	5

April 2008						May 2008							
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
30	Accel class Antaya lecture	1	2 •Accel class •Antaya lecture scheduled	3	4	5	27	28 • Accel class Homework due	29	30 •Accel class	1	2	3
6	7 • Accel class Homework due	8	• Accel class	10	11	12	4	5 •Accel class Homework due	6	• Accel class	8	9	10
13	14 •Accel class Homework due	15	16 • Accel class	17	18	19	11	12 •Accel class	13	14 •Accel class	15	16	17
20	21 Holiday	22	23 • Accel class • Visit Bates	24	25	26	18 • Exam week	19	20 E	21 XAM WEEI	22	23	24
27	28 •Accel class Student talks	29	30 •Accel class	Ì	2	3	25	26	27	28	29	30	31

Outline of Instructional Units

- # Unit 1 Motivation & Fundamentals
 - Special relativity & electromagnetism prerequisites
 - Properties of particle beams, phase space & emittance
 - Measuring beam properties
- # Unit 2 Figures of merit from accelerator based science
 - Historical development of accelerator types
 - Synchronism and Phase Stability-1
- ℁ Unit 3 RF cavities basic principles
 - Lumped circuit analogy
 - Characteristic metrics
- ℁ Unit 4 RF Pillbox cavity
 - Coupled rf-cavities
 - Standing wave structures
- ℁ Unit 5 Slow wave structures
 - Traveling wave linacs
 - Scaling relationships for linacs

Instructional Units - continued

- ℁ Unit 6 Energy gain & beam loading
 - Wakefields & instabilities
- ✤ Unit 7 Linear optics
 - Beam transport and focusing
 - Accelerator visit
- # Unit 8 Modern synchrotrons and storage rings
 - Optical functions and betatron motion
 - Bending and focusing magnets
 - Characteristic ring parameters
- # Unit 9 Longitudinal dynamics & phase space
 - Synchrotron and betatron motion
 - Tune space
- # Unit 10 Practicum Designing a cyclotron

Instructional Units - continued

- ✤ Unit 11 Synchrotron radiation
 - Emittance control and beam cooling
 - Beam control and timing
- ✤ Unit 12 Light sources & free electron lasers
- ✤ Unit 13 Special topics -I
 - Colliders
 - Accelerator visit -II
- ✤ Unit 14 Special topics II
 - Beam sources
 - Radiation and shielding
 - Accelerators for radiation therapy (Feb. 25)

No required text, but I will suggest readings

- * Please download the following classic report
 - → Physics of Electron Storage Rings, M. Sands, SLAC-r-121 www.slac.stanford.edu/pubs/slacreports/slac-r-121.html

This a great piece of physics pedagogical writing. Not really a text but a monograph meant to educate. It is the best introduction that I know of the physics of storage rings

- → I also recommend reports & lecture write-ups on the next slide & available on the web,
- ₭ I have asked the physics reading room to order two text as references that you may find helpful. I will use some exercises from these books
 - → Accelerator Physics: Volume I & II by H. Wiedemann, (Springer Student Edition, Advanced Texts in Physics), 2004
 - → Introduction to the Physics of High Energy Accelerators, D.A. Edwards and M.J. Syphers, J. Wiley Series

Lectures write-ups on the web

- # US Particle Accelerator School lectures <u>http://uspas.fnal.gov/lect_note.html</u>
 - → Introduction to Microwave Linacs, D.H. Whittum, SLAC-PUB 8026
 - → Lecture notes on Classical Mechanics and Electro-magnetism in Accelerator Physics, G. Stupakov
- * CERN Accelerator School lectures <u>http://cas.web.cern.ch</u>
 - → Beam Diagnostics for Accelerators, H. Kozial
 - → Introduction to Radio-Frequency Linear Accelerators, J. LeDuff
 - → Cyclotrons, T. Stammbach
 - → Transverse Motion, E. J. N. Wilson
 - → Transverse Beam Dynamics, E. J. N. Wilson
 - → Synchrotron Radiation, R. Walker
 - → Beam Cooling, D. Möhl
 - → Induction Linacs, J. de Mascureau
- # University of Berlin Technical Engineering Notes (1996)

http://www-tet.ee.tu-berlin.de/tet_note.html

- → Introduction to High Energy Linear Accelerators, H. Henke
- → Introduction to Radio-Frequency Linear Accelerators, H. Henke

And a word from my sponsor

US PARTICLE ACCELERATOR SCHOOL

What can you do after this course?

S-2008 USPAS at the University of Maryland

		-								
Guest Lecture: Frontiers of Accelerator Technology										
Two Weeks										
Accelerator Fundamentals	Y. Wu & S. Mikhailov (Duke), J. Wu (SLAC)									
Accelerator Physics	W. MacKay & T. Satogata (BNL)									
Beam Dynamics Experiments at UMD	R. Kishek (Univ. of Md.) & UMd Team	E	Experimental course							
RF Superconductivity	J. Delayen (JLAB)									
Beam Physics with Intense Space Charge	J. Barnard & S. Lund (LLNL)									
One Week										
Applications of Accelerators in Medicine (include treatment planning if possible)	J. Flanz (Mass Gen)		Radiation Detection & Imaging for Medicine & Security	T. Budinger (LBL)						
Laser Plasma Accelerators	C. Schroeder & E. Esarey (LBL)	1	Applications of Lasers in Accelerators	Y. Li (ANL)						
Vacuum Tube Engineering	Lecturer from Thales Components Corp		Microwave Sources	B. Carlsten and S. Russell (LANL)						
Beam-Based Diagnostics	C. Steier & G. Portmann (LBNL) & J. Safranek, SLAC		Control Room Physics Application Programs	J. Galambos and C. Allen (ORNL)						

Come to Maryland this June

US PARTICLE ACCELERATOR SCHOOL

- Since 1987 USPAS is organized as a university course program (academic courses for credit)
- ₭ Typical attendance per school ~ 130 students
 - → Scholarships available for matriculated, for-credit students
 - Covers tuition, room, breakfast & dinner, books