
Magnets and Lattices 

-  Accelerator building blocks  
-  Transverse beam dynamics 
-  coordinate system 



 

  Both electric field and magnetic field can be used to guide 
the particles path. 

  Magnetic field is more effective for high energy particles, 
i.e. particles with higher velocity. 
-  For a relativistic particle, what kind of the electric field one 

needs to match the Lorentz force from a 1 Telsla magnetic 
field? 
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 
F = q(

 
E +
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V ×
 
B )



  Dipoles: uniform magnetic field in the gap 
-  Bending dipoles 
- Orbit steering 

  Quadrupoles 
-  Providing focusing field to keep beam from being diverged 

  Sextupoles:  
-  Provide corrections of chromatic effect of beam dynamics 

  Higher order multipoles 



  Two magnetic poles 
separated by a gap  

  homogeneous magnetic 
field between the gap 

  Bending, steering, injection, 
extraction 

  

€ 

∇ ×
 
B = µ0J

€ 

B = µ0
NI
g

g




  For synchrotron, bending field is proportional to the 
beam energy 

                         ;   where p is the momentum of the particle and q              

                                 is the charge of the particle 

€ 

Bρ =
p
q

ρ 

  

€ 

F = γm v 2

ρ
= q v ×

 
B 



Quadrupole 

  Magnetic field is proportional to the distance 
from the center of the magnet 

  Produced by 4 poles which are shaped as 

  Providing focusing/defoucsing to the particle 
  Particle going through the center: F=0 
  Particle going off center 

€ 

Bx = ky; By = kx

x 

y 

€ 

xy = ±R2 /2



Quadrupole magnet 

  Theorem 

  Pick the loop for integral 

For the gap is filled with air,  

  

€ 

∇ ×
 
B = µ0J

  

€ 

 
B ⋅ dl = µ0µrI∫

€ 

B'rdr
0

R
∫ = µ0µrNI

€ 

B'= 2µ0µr
NI
R2

€ 

B'[T /m] = 2.51 NI
R[mm2]



Focusing from quadrupole 

  Required by Maxwell equation, a single quadrupole can 
has to provide focusing in one plane and defocusing in 
the other plane  € 

x
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Transfer matrix of a qudruploe 

  Thin lens: length of quadrupole is negligible to the 
displacement relative to the center of the magnet  

€ 

x
x '
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 
 
 

 
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Transfer matrix of a drift space 

  Transfer matrix of a drift space 

€ 

x
x '
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 
 
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 
 =

1 L
0 1
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 
 
x
x '
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 
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 
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x 
Δx’ 
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s 



Lattice 

  Arrangement of magnets: structure of beam line 

  Bending dipoles, Quadrupoles, Steering dipoles, Drift space and 
Other insertion elements 

  Example: 
  FODO cell: alternating arrangement between focusing and 

defocusing quadrupoles 

L 

One FODO cell 

f -f 

L 



FODO lattice 
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x
x '
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 

 
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x
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 

  Net effect is focusing  
  Provide focusing in both planes! 



Curverlinear coordinate system 

  Coordinate system to describe particle motion in an 
accelerator.  

  Moves with the particle 

Set of unit vectors: 

  

€ 

ˆ s (s) =
d r 0(s)

ds

€ 

ˆ s 

€ 

ˆ x 

€ 

ˆ y 

  

€ 

 r 0(s)  

€ 

 r (s)

€ 

ˆ x (s) = −ρ
dˆ s (s)

ds

€ 

ˆ y (s) = ˆ x (s) × ˆ s (s)



Equation of motion 

  Equation of motion in transverse plane 

  

€ 

 r (s) =
 r 0(s) + xˆ x (s) + yˆ y (s)

€ 

dˆ s (s)
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1
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ˆ x (s)
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dˆ x (s)
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Δθ=Δs/ρ 
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Equation of motion 

  

€ 

d r (s)
dt

=
ds
dt

[ d r 0
ds

+ x' ˆ x + x dˆ x 
ds

+ y ' ˆ y ] =
ds
dt

[(1+
x
ρ

)ˆ s + x ' ˆ x + y' ˆ y ]

  

€ 

d2 r (s)
dt 2 =

ds
dt

d v 
ds
≈

v 2

(1+
x
ρ

)2
[(x ' '− ρ + x

ρ
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ρ
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€ 

 v = ds
dt

[(1+
x
ρ

)ˆ s + x' ˆ x + y ' ˆ y ] = vsˆ s + vx ˆ x + vy ˆ y 
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v 2 =
 v =

ds
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x
ρ
)2 + x '2 +y '2 ]



Equation of motion 
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d2 r (s)
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x
ρ
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ρ
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ρ
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 
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x
ρ
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x
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Solution of equation of motion  

  Comparison with harmonic oscillator: A system with a 
restoring force which is proportional to the distance from 
its equilibrium position, i.e. Hooker’s Law: 

€ 

d2x(t)
dt 2

+ kx(t) = 0

€ 

x(t) = Acos( kt + χ)

Where k is the spring constant 

€ 

F =
d2x(t)
dt 2

= −kx(t)

  Equation of motion: 

Amplitude of the  
sinusoidal oscillation 

Frequency of  
the oscillation 



transverse motion: betatron oscillation 

  The general case of equation of motion in an accelerator  

€ 

x' '+kx = 0

€ 

x(s) = Acos( ks+ χ)

€ 

x'(s) = −A k sin( ks+ χ)

€ 

x(s) = Acosh( ks+ χ)

€ 

x'(s) = −A k sinh( ks+ χ)

  For k > 0 

Where k can also be negative 

  For k < 0 



Hill's equation 

  In an accelerator which consists individual magnets, the 
equation of motion can be expressed as,   

  Here, k(s) is an periodic function of Lp, which is the length of 
the periodicity of the lattice, i.e. the magnet arrangement. It 
can be the circumference of machine or part of it. 

  Similar to harmonic oscillator, expect solution as 

  or: 

€ 

x' '+k(s)x = 0

€ 

k(s+ Lp ) = k(s)

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

βx (s+ Lp ) = βx (s)

€ 

x(s) = A(s)cos(ψ(s) + χ)



Hill’s equation: cont’d 

€ 

x'(s) = −A βx s( )ψ '(s)sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)

€ 

ψ'(s) =
1

βx (s)

€ 

βx ' '
2
βx −

βx
' 2

4
+ kβx

2 =1

  with 

  Hill’s equation                               is satisfied 

€ 

x' '+k(s)x = 0

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

x'(s) = −A 1/βx s( ) sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)



Betatron oscillation 

  Beta function           : 
  Describes the envelope of the betatron oscillation in an accelerator 

  Phase advance: 

  Betatron tune: number of betatron oscillations in one orbital turn  

€ 

βx (s)

€ 

ψ(s) =
1

βx (s)0

s
∫ ds

€ 

Qx =
ψ(0 |C)
2π

=
ds

βx (s)
∫ /2π =

R
〈βx 〉



Phase space 

€ 

βx x '
2 +γ x x

2 + 2αx xx'= ε

€ 

βxγ x =1+αx
2

  In a space of x-x’, the betatron oscillation projects an ellipse 

where 

€ 

αx = −
1
2
βx
'

  The are of the ellipse is  

€ 

πε

€ 

εxβx
€ 

εx /βx
X’ 

X 



Courant-Snyder parameters 

€ 

ε = βx x '
2 +γ x x

2 + 2αx xx'

  The set of parameter (βx, αx and γx) which describe the 
phase space ellipse 

  Courant-Snyder invariant: the area of the ellipse 



Phase space transformation 

  In a drift space from point 1 to point 2 
X’ 

s 

X’ 
  Effect of a focusing quadrupole 

Focusing quad 

s 



Transfer Matrix of beam transport 

  Proof the transport matrix from point 1 to point 2 is 

€ 

x(s2)
x '(s2)
 

 
 

 

 
 =

β2
β1
(cosψs2s1

+α1 sinψs2s1
) β1β2 sinψs2s1

−
1+α1α2

β1β2
sinψs2s1

+
α1 −α2

β1β2
cosψs2s1

β1
β2
(cosψs2s1

−α2 sinψs2s1
)

 

 

 
 
 
 

 

 

 
 
 
 

x(s1)
x '(s1)
 

 
 

 

 
 

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

x'(s) = −A 1/βx s( ) sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)

  Hint: 



One Turn Map 

  Transfer matrix of one orbital turn 

€ 

x(s0 + C)
x '(s0 + C)
 

 
 

 

 
 =

(cos2πQx +αx,s0
sin2πQx ) βx,s0 sin2πQx

−
1+αx,s0

2

βx,s0

sin2πQx (cos2πQx −αx,s0
sin2πQx )

 

 

 
 
 

 

 

 
 
 

x(s0)
x '(s0)
 

 
 

 

 
 

€ 

Tr(Ms,s+C ) = 2cos2πQx

€ 

1
2
Tr(Ms,s+C ) ≤1.0

  Closed orbit: 

€ 

x(s+ C)
x '(s+ C)
 

 
 

 

 
 =

x(s)
x'(s)
 

 
 

 

 
 

€ 

x(s+ C)
x '(s+ C)
 

 
 

 

 
 = M(s+ C,s)

x(s)
x '(s)
 

 
 

 

 
 

Stable condition 



Stability of transverse motion 

  Matrix from point 1 to point 2 

  

€ 

Ms2 |s1
= MnM2M1

  Stable motion requires each transfer matrix to be stable, i.e. its 
eigen values are in form of oscillation 

€ 

|M − λI | = 0

€ 

I =
1 0
0 1
 

 
 

 

 
 

€ 

λ2 −Tr M( )λ + det M( ) = 0

€ 

det M( ) =1

€ 

λ =
1
2
Tr M( ) ±

1
4
[Tr M( )]2 −1

€ 

1
2
Tr(M) ≤1.0

With  and  



How to measure betatron oscillation 

  How to measure betatron tune? 

  How to measure beta function? 

  How to measure beam emittance? 



Dispersion function 

  Transverse trajectory is function of particle momentum.   

ρ 

€ 

Δθ = θ
Δp
p

ρ+Δρ 

€ 

x = D(s)Δp
pDefine 

Dispersion function 

Momentum spread 



Dispersion function 

  Transverse trajectory is function of particle momentum.   

€ 

x' '− ρ + x
ρ2

= −
qBy

γm
(1+

x
ρ
)2

€ 

By = B0 + B' x

€ 

x' '+ 1
ρ2
2p0 − p

p
+

B'
Bρ0

p0
p

 

 
 

 

 
 x =

1
ρ
Δp
p

€ 

x = D(s)Δp
p

€ 

D(s+ C) = D(s)

€ 

D' '+ 1
ρ2
2p0 − p

p
+

B'
Bρ0

p0
p

 

 
 

 

 
 D =

1
ρ



Dispersion function: cont’d 

  In drift space 

   dispersion function has a constant slope   

€ 

1
ρ

= 0

€ 

B'= 0and  

€ 

⇒ D' '= 0

  In dipoles,  

€ 

1
ρ
≠ 0

€ 

B'= 0and  

€ 

D' '+[ 1
ρ2
2p0 − p

p
]D =

1
ρ



Dispersion function: cont’d 

  For a focusing quad,  

   dispersion function oscillates sinusoidally   
€ 

1
ρ

= 0

€ 

B'> 0and  

€ 

⇒ D' '+B' p0
p
D = 0

  For a defocusing quad,  

   dispersion function evolves exponentially    
€ 

1
ρ

= 0

€ 

B'< 0and  

€ 

⇒ D' '−B' p0
p
D = 0



Compaction factor 

  The difference of the length of closed orbit between off-
momentum particle and on momentum particle, i.e.  

€ 

ΔC
C

=α
Δp
p

=

ρ + DΔp
p

 

 
 

 

 
 dθ −∫ ρ∫ dθ

ρ∫ dθ

€ 

α
Δp
p

= 〈
D
ρ
〉
Δp
p
⇒α = 〈

D
ρ
〉



Path length and velocity 

  For a particle with velocity v,   

  Transition energy    :  when particles with different energies 
spend the same time for each orbital turn 
-  Below transition energy:  higher energy particle travels faster 
- Above transition energy: higher energy particle travels slower  € 

γ t

€ 

L = vT

€ 

ΔL
L

=
Δv
v

+
ΔT
T

€ 

Δv
v

=
Δβ
β

=
1
γ 2
Δp
p

€ 

ΔT
T

= (α − 1
γ 2
)Δp
p

= ( 1
γ t
2 −

1
γ 2
)Δp
p



Chromatic effect 

  Comes from the fact the the focusing effect of an 
quadrupole is momentum dependent 

- Higher energy particle has less focusing 

€ 

1
f

=
q
p
kl

  Chromaticity: tune spread due to momentum spread 

€ 

ξx,y =
ΔQx,y

Δp / p momentum spread 

Particles with different momentum have 
different betatron tune 

Tune spread 



Chromaticity 

  Transfer matrix 

€ 

M =
1 0
−
1
f

1
 

 

 
 

 

 

 
 
≈

1 0
−
1
f
(1− Δp

p
) 1

 

 

 
 

 

 

 
 

=
1 0
−
1
f

1
 

 

 
 

 

 

 
 

1 0
1
f
Δp
p

1
 

 

 
 

 

 

 
 

€ 

M(s+ C,s) = M(B,A)
1 0
−
1
f

1
 

 

 
 

 

 

 
 

= M(B,A)
1 0
−
1
f

1
 

 

 
 

 

 

 
 

1 0
1
f
Δp
p

1
 

 

 
 

 

 

 
 

A B 

  Transfer matrix of a thin quadrupole 



Chromaticity 

€ 

M(s+ C,s) =

(cos2πQx +αx,s0
sin2πQx ) βx,s0

sin2πQx

−
1+αx,s0

2

βx,s0

sin2πQx (cos2πQx −αx,s0
sin2πQx )

 

 

 
 
 

 

 

 
 
 

1 0
1
f
Δp
p

1
 

 

 
 

 

 

 
 

=

(cos2πQx +αx,s0
sin2πQx ) +

1
f
Δp
p
βx,s0 sin2πQx βx,s0

sin2πQx

−
1+αx,s0

2

βx,s0

sin2πQx + (cos2πQx −αx,s0
sin2πQx )

1
f
Δp
p

(cos2πQx −αx,s0
sin2πQx )

 

 

 
 
 
 

 

 

 
 
 
 

€ 

cos[2π (Qx + ΔQx )] =
1
2
Tr(M(s+ C,s)

€ 

cos[2π (Qx + ΔQx )] = cos2πQx +
1
2
βx,s0 sin2πQx

1
f
Δp
p



Chromaticity 

€ 

ξx =
ΔQx

Δp / p
= −

1
4π

1
f
β(s)

€ 

cos[2π (Qx + ΔQx )] = cos2πQx +
1
2
βx,s0 sin2πQx

1
f
Δp
p

Assuming the tune change due to momentum difference is small 

€ 

cos2πQx − 2πΔQx sin2πQx = cos2πQx +
1
2
βx,s0

sin2πQx
1
f
Δp
p

€ 

ΔQx = −
1
4π

βx,s0
1
f
Δp
p

€ 

ξx =
ΔQx

Δp / p
= −

1
4π

ki
i
∑ βx,i



Chromaticity of a FODO cell 

€ 

ξx = −
1
4π

β f
1
f
−βd

1
f

 

 
 

 

 
 

L 

One FODO cell 

L 

β 

βf βd 

€ 

β f ,d =
2L(1± sin[Δψ /2])

sin[Δψ]

€ 

ξx = −
1
π
tanΔψ

2

€ 

sin[Δψ /2] =
L
f

€ 

ξx = −
1
π

L / f
sinΔψ



Chromaticity correction 

  Nature chromaticity can be large and can result to large 
tune spread and get close to resonance condition 

  Solution: 
-  A special magnet which provides stronger focusing for particles 

with higher energy: sextupole   

€ 

Δp
p

> 0

€ 

Δp
p

< 0
€ 

Δp
p

= 0



Sextupole 

  Focusing strength in horizontal 
plane: 

€ 

Bx = mxy

€ 

By =
1
2
m(x 2 − y 2)

€ 

B'y = mx

€ 

B'y = mx = mDΔp
p

> 0

  Place sextupole after a bending dipole 
where dispersion function is non zero 



Effects of Errors 

-  dipole errors  
-  quadrupole errors 
-  resonance 



Closed orbit distortion 

  Dipole kicks can cause particle’s trajectory deviate away from 
the designed orbit 
-  Dipole error 
-  Quadrupole misalignment 

€ 

x(s)
x '(s)
 

 
 

 

 
 = M(s,s0)[M(s0,s)

x(s)
x '(s)
 

 
 

 

 
 +

0
θ

 

 
 
 

 
 ]

  Assuming a circular ring with a single 
dipole error,  closed orbit then becomes: 

s0 

BPM 

s 



Closed orbit: single dipole error 

€ 

x(s0)
x '(s0)
 

 
 

 

 
 = M(s0 + C,s0)

x(s0)
x '(s0)
 

 
 

 

 
 +

0
θ

 

 
 
 

 
 

  Let’s first solve the closed orbit at the location where the 
dipole error is 

€ 

x(s) = βx (s0)βx (s)
θ

2sinπQx

cos ψ(s,s0) −πQx[ ]
€ 

x(s0) = βx (s0)
θ

2sinπQx

cosπQx

  The closed orbit distortion reaches its maximum at the 
opposite side of the dipole error location  



Closed orbit distortion 

  In the case of multiple dipole errors distributed around the 
ring. The closed orbit is 

€ 

x(s) = βx (s) βx (si)
i
∑ θi

2sinπQx

cos ψ(si,s0) −πQx[ ]

  Amplitude of the closed orbit distortion is inversely 
proportion to sinπQx,y 
- No stable orbit if tune is integer! 



Measure closed orbit 

  Distribute beam position monitors around ring. 



Control closed orbit 

  minimized the closed orbit distortion. 
  Large closed orbit distortions cause limitation on the 

physical aperture  
  Need dipole correctors and beam position monitors 

distributed around the ring 
  Assuming we have m beam position monitors and n 

dipole correctors, the response at each beam 
position monitor from the n correctors is:  

€ 

xk = βx,k βx,i
θi

2sinπQx

cos ψ(si,s0) −πQx[ ]
k=1

n

∑



Control closed orbit 

  Or, 

  To cancel the closed orbit measured at all the bpms, the 
correctors are then 

  

€ 

θ1
θ2


θn

 

 

 
 
 
 

 

 

 
 
 
 

= M−1( )

x1
x2


xm

 

 

 
 
 
 

 

 

 
 
 
 

  

€ 

x1
x2


xm

 

 

 
 
 
 

 

 

 
 
 
 

= M( )

θ1
θ2


θn

 

 

 
 
 
 

 

 

 
 
 
 



Quadrupole errors 

  Misalignment of quadrupoles 
-  dipole-like error: kx 
-  results in closed orbit distortion 

  Gradient error: 
- Cause betatron tune shift 
-  induce beta function deviation: beta beat 



Tune change due to a single gradient error 

  Suppose a quadrupole has an error in its gradient, i.e. 

€ 

M =
1 0
−k 1
 

 
 

 

 
 ≈

1 0
−(k + Δk) 1
 

 
 

 

 
 =

1 0
−k 1
 

 
 

 

 
 
1 0
−Δk 1
 

 
 

 

 
 

€ 

cos2π (Qx0 + δQx ) =
1
2
Tr(M(s+ C,s))

€ 

M(s+ C,s) =

(cos2πQx0 +αx,s0
sin2πQx0) βx,s0 sin2πQx0

−
1+αx,s0

2

βx,s0

sin2πQx0 (cos2πQx0 −αx,s0
sin2πQx0)

 

 

 
 
 

 

 

 
 
 

1 0
−Δk 1
 

 
 

 

 
 

€ 

δQx =
1
4π

βx,s0
Δk



Tune shift due to multiple gradient errors 

  In a circular ring with a multipole gradient errors, the tune 
shift is 

€ 

δQx =
1
4π

βx,si
Δki

i
∑



Beta beat 

  In a circular ring with a gradient error at s0, the tune shift is 
s0 

s 

€ 

M(s+ C,s) = M(s,s0)
1 0
−Δk 1
 

 
 

 

 
 M(s0,s)

€ 

βx (s)sin2πQx = βx0(s)sin2πQx0 +

Δk βx0(s)βx0(s0)
2

[cos(2πQx0 + 2 |Δψs,s0 |)]

€ 

Δβ
β

= Δk βx0(s0)
2sin2πQx0

cos(2πQx0 + 2 |Δψs,s0 |)

Unstable betatron motion if tune is half integer! 



Resonance condition 

  Tune change due to a single quadrupole error 

€ 

cos[2π (Qx0 + δQx )]= cos2πQx0 −
1
2
βx,s0

Δk sin2πQx0

  If                            , the above equation becomes 

    and Qx can become a complex number which means the 
betatron motion can become unstable 

€ 

Qx0 = (2k +1) 1
2

+ ε

€ 

cos[2π (Qx0 + δQx )] ≈1+
1
2
βx,s0

Δkε



resonance  

X’ 

x 

Integer resonance Half Integer resonance 

x 



FFT and Nyquist Theorem 



Fourier transform 

  Computes the response in frequency domain of a time domain 
function x(t) 

  For a simple harmonic oscillator, its frequency response is a 
delta function at its oscillating frequency. 

€ 

x( f ) =
1
2π

x(t)e−i2πftdt
−∞

∞

∫



Fast Fourier transform 

  Discrete Fourier transform 
  For a signal which is sampled at a frequency of fs  

€ 

Xk = xme
−i2πk m

N

m=1

N

∑

  Calculates the response at frequency km/N 
  For large data sets, a lot of computations, O(N2) 

  FFT: Optimized DFT algorithm, , O(N/logN) 
   sample algorithms can be found in Numerical Recipes. 



Nyquist theorem 

  FFT(DFT) can only extract frequency less than half of the 
sampling frequency 

  For tune measurement using FFT of turn by turn beam 
position data 
  FFT spectrum is: 0 – 0.5 
  Can’t determine the integer part of the tune 



Transverse Resonances 

-  Linear coupling 
-  resonances mechanisms 
-  Resonance conditions 
-  3rd order resonances 



Source of linear coupling 

  Skew quadrupole 

€ 

x' '+Kx (s)
2 x = −

Byl
Bρ

= −qy

€ 

y' '+Ky (s)
2 y =

Bxl
Bρ

= −qx
€ 

Bx = −qx; By = qy



Coupled harmonic oscillator 

  Equation of motion 

€ 

x' '+ωx
2x = q2y

€ 

y' '+ωy
2y = q2x

  Assume solutions are: 

€ 

x = Aeiωt

€ 

y = Beiωt

€ 

−ω 2A +ωx
2A = q2B

€ 

−ω 2B +ωy
2B = q2A

€ 

(ωx
2 −ω 2)(ωy

2 −ω 2) = q4

€ 

ω 2 =
ωx
2 +ωy

2 ± (ωx
2 −ωy

2)2 + 4q4

2



Coupled harmonic oscillator 

  The two frequencies of the 
harmonic oscillator are 
functions of the two 
unperturbed frequencies 

  When the unperturbed 
frequencies are the same, a 
minimum frequency 
difference 

€ 

ω 2 =
ωx
2 +ωy

2 ± (ωx
2 −ωy

2)2 + 4q4

2

€ 

ωx

€ 

ωy

€ 

ω1

€ 

ω2

€ 

Δω ≈
q2

ω



Resonance mechanism 

  Errors in the accelerators perturbs beam motions 
  Coherent buildup of perturbations 



Driven harmonic oscillator 

  Equation of motion 

€ 

d2x(t)
dt 2

+ω 2x(t) = f (t)

€ 

f (t) = Cme
iωmt

€ 

x(t) = Aeiωt + Ame
iωmt

€ 

d2x(t)
dt 2

+ω 2x(t) = Cme
iωmt

€ 

= Cme
iωmt

m= 0
∑

  for 

  Assume solution is like 

€ 

Am =
Cm

ω 2 −ωm
2



Resonance response 

€ 

x(t) = Aeiωt +
Cm

ω 2 −ωm
2

  Response of the harmonic oscillator to a periodic force is 

€ 

ωm

€ 

ωm

€ 

ω



Betatron oscillation 

  Equation of motion 

  In the presence of field errors including mis-aglinments, the 
equation of motion then becomes 

€ 

x = A βx cos(ψ + χ)

€ 

x' '+K(s)x = 0

€ 

K(s+ Lp ) = K(s)

€ 

x' '+K(s)x = −
ΔBy

Bρ

€ 

ΔBy = B0(b0 + b1x + b2x
2 + ....)

Dipole error!  quadrupole error! sextupole error!

where 



Floquet Transformation 

  Re-define () as:  

  In the presence of field errors including mis-aglinments, the 
equation of motion then becomes 

€ 

ζ (s) = x(s) / βx (s)

€ 

x' '+K(s)x = 0

€ 

K(s+ Lp ) = K(s)

€ 

d2ζ
dφ 2

+Qx
2ζ = −Qx

2βx
3 / 2 ΔBy

Bρwhere 

€ 

φ(s) =ψ(s) /Qx or φ'=1/(Qxβx )

  

€ 

d2ζ
dφ 2

+Qx
2ζ = −

Qx
2B0
Bρ

[b0 + βxb1ζ + βx
2b2ζ

2 +]



Resonance contd 

  For each n: 

  When the term on the right side of the equation contain same 
frequency as Qx, a resonance occurs.  And the solution has a form of   

€ 

βx
(n+3)/ 2bn = ck

k
∑ eikφ

€ 

k − nQx =Qx

€ 

d2ζ
dφ 2

+Qx
2ζ = −

Qx
2βx

3 / 2

Bρ
βx
nbnζ

n

  Express the perturbation term as:  

€ 

ζ = Ake
−iQxφ

€ 

k = (n +1)Qx



Resonance condition 

error n 
dipole 0 Qx,y=integer 

quadrupole 1 2Qx,y=integer 

Sextupole 2 3Qx,y=integer 

Octupole 3 4Qx,y=integer 

  In the absence of coupling between horizontal and vertical 

€ 

k = (n +1)Qx,y

  In the presence of coupling between horizontal and vertical 

€ 

MQx + NQy = k



Tune diagram 

•  the resonance strength  
  decreases as the order  
  goes higher 

•  the working point should 
  be located in an area  
  between resonances 
  there are enough tune  
  space to accommodate  
  tune spread of the beam 



Phase space: 3rd order resonance 

X’ 

Px 

€ 

Px = βx x '+αx x = −A βx sinψ

€ 

x = A βx cosψ

In the phase space of x, Px 

•  separatrix: boundery between 
                    stable region and 
                    unstable region 
•  Fixed points: where  

€ 

dx
dn

=
dPx
dn

= 0



Phase space: 4th order resonane 


