Magnets and Lattices

- Accelerator building blocks
- Transverse beam dynamics
- coordinate system

Magnets: building blocks of an accelerator

- Both electric field and magnetic field can be used to guide the particles path.

$$
\vec{F}=q(\vec{E}+\vec{V} \times \vec{B})
$$

- Magnetic field is more effective for high energy particles, i.e. particles with higher velocity.
- For a relativistic particle, what kind of the electric field one needs to match the Lorentz force from a I Telsla magnetic field?

Types of magnets in an accelerator

- Dipoles: uniform magnetic field in the gap
- Bending dipoles
- Orbit steering
- Quadrupoles
- Providing focusing field to keep beam from being diverged
- Sextupoles:
- Provide corrections of chromatic effect of beam dynamics
- Higher order multipoles

Dipole magnet

- Two magnetic poles separated by a gap
- homogeneous magnetic field between the gap
- Bending, steering, injection, extraction

$$
\begin{aligned}
& \nabla \times \vec{B}=\mu_{0} J \\
& B=\mu_{0} \frac{N I}{g}
\end{aligned}
$$

Deflection of dipole

- For synchrotron, bending field is proportional to the beam energy

$$
\begin{aligned}
& B \rho=\frac{p}{q} ; \text { where } \mathrm{p} \text { is the momentum of the particle and } \mathrm{q} \\
& \text { is the charge of the particle }
\end{aligned}
$$

Quadrupole

- Magnetic field is proportional to the distance from the center of the magnet

$$
B_{x}=k y ; \quad B_{y}=k x
$$

- Produced by 4 poles which are shaped as

$$
x y= \pm R^{2} / 2
$$

- Providing focusing/defoucsing to the particle
- Particle going through the center: $\mathrm{F}=0$
- Particle going off center

Quadrupole magnet

- Theorem

$$
\begin{aligned}
& \nabla \times \vec{B}=\mu_{0} J \\
& \oint \vec{B} \cdot d l=\mu_{0} \mu_{r} I
\end{aligned}
$$

- Pick the loop for integral

$$
\int_{0}^{R} B^{\prime} r d r=\mu_{0} \mu_{r} N I
$$

For the gap is filled with air,

$$
B^{\prime}[T / \mathrm{m}]=2.51 \frac{\mathrm{NI}}{R\left[\mathrm{~mm}^{2}\right]}
$$

Focusing from quadrupole

$$
\frac{x}{f}=\frac{l}{\rho}=l \frac{q B_{y}}{\gamma m v}=l \frac{q B^{\prime}}{\gamma m v} x \Rightarrow \frac{1}{f}=\frac{q B^{\prime} l}{\gamma m v}=k
$$

- Required by Maxwell equation, a single quadrupole can has to provide focusing in one plane and defocusing in the other plane

Transfer matrix of a qudruploe

- Thin lens: length of quadrupole is negligible to the displacement relative to the center of the magnet

$$
\begin{array}{r}
\Delta x^{\prime}=-\frac{l}{\rho}=-l \frac{q B_{y}}{\gamma m v}=-\frac{q B^{\prime} l}{\gamma m v} x=-k x \\
\binom{x}{x^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\binom{x}{x^{\prime}}
\end{array}
$$

Transfer matrix of a drift space

- Transfer matrix of a drift space

$$
\binom{x}{x^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{x}{x^{\prime}}
$$

Lattice

- Arrangement of magnets: structure of beam line
- Bending dipoles, Quadrupoles, Steering dipoles, Drift space and Other insertion elements
- Example:
- FODO cell: alternating arrangement between focusing and defocusing quadrupoles

FODO lattice

$$
\begin{aligned}
\binom{x}{x^{\prime}} & =\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2 f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2 f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\binom{x}{x^{\prime}} \\
& =\left(\begin{array}{cc}
1-2 \frac{L^{2}}{f^{2}} & 2 L\left(1+\frac{L}{f}\right) \\
-2\left(1-\frac{L}{f}\right) \frac{L}{f^{2}} & 1-2 \frac{L^{2}}{f^{2}}
\end{array}\right)\binom{x}{x^{\prime}}
\end{aligned}
$$

- Net effect is focusing
- Provide focusing in both planes!

Curverlinear coordinate system

- Coordinate system to describe particle motion in an accelerator.
- Moves with the particle

Set of unit vectors:

$$
\begin{aligned}
& \hat{s}(s)=\frac{d \vec{r}_{0}(s)}{d s} \\
& \hat{x}(s)=-\rho \frac{d \hat{s}(s)}{d s} \\
& \hat{y}(s)=\hat{x}(s) \times \hat{s}(s)
\end{aligned}
$$

Equation of motion

- Equation of motion in transverse plane

$$
\vec{r}(s)=\vec{r}_{0}(s)+x \hat{x}(s)+y \hat{y}(s)
$$

Equation of motion

$$
\begin{aligned}
& \frac{d \vec{r}(s)}{d t}=\frac{d s}{d t}\left[\frac{d \vec{r}_{0}}{d s}+x^{\prime} \hat{x}+x \frac{d \hat{x}}{d s}+y^{\prime} \hat{y}\right]=\frac{d s}{d t}\left[\left(1+\frac{x}{\rho}\right) \hat{s}+x^{\prime} \hat{x}+y^{\prime} \hat{y}\right] \\
& \vec{v}=\frac{d s}{d t}\left[\left(1+\frac{x}{\rho}\right) \hat{s}+x^{\prime} \hat{x}+y^{\prime} \hat{y}\right]=v_{s} \hat{s}+v_{x} \hat{x}+v_{y} \hat{y} \\
& v^{2}=|\vec{v}|=\frac{d s}{d t}\left[\left(1+\frac{x}{\rho}\right)^{2}+x^{\prime 2}+y^{\prime 2}\right] \\
& \frac{d^{2} \vec{r}(s)}{d t^{2}}=\frac{d s}{d t} \frac{d \vec{v}}{d s} \approx \frac{v^{2}}{\left(1+\frac{x}{\rho}\right)^{2}}\left[\left(x^{\prime \prime}-\frac{\rho+x}{\rho}\right) \hat{x}+\frac{x^{\prime}}{\rho} \hat{s}+y^{\prime \prime} \hat{y}\right]
\end{aligned}
$$

Equation of motion

$$
\begin{aligned}
& \frac{d^{2} \vec{r}(s)}{d t^{2}} \approx \frac{v^{2}}{\left(1+\frac{x}{\rho}\right)^{2}}\left[\left(x^{\prime \prime}-\frac{\rho+x}{\rho}\right) \hat{x}+\frac{x^{\prime}}{\rho} \hat{s}+y^{\prime \prime} \hat{y}\right]=\frac{q \vec{v} \times \vec{B}}{\gamma m} \\
& x^{\prime \prime}-\frac{\rho+x}{\rho^{2}}=-\frac{q B_{y}}{\gamma m}\left(1+\frac{x}{\rho}\right)^{2} \longrightarrow x^{\prime \prime}+\frac{q B^{\prime}}{\gamma m} x=0 \\
& y^{\prime \prime}=\frac{q B_{x}}{\gamma m}\left(1+\frac{x}{\rho}\right)^{2} \quad \Longrightarrow y^{\prime \prime}-\frac{q B^{\prime}}{\gamma m} y=0
\end{aligned}
$$

Solution of equation of motion

- Comparison with harmonic oscillator:A system with a restoring force which is proportional to the distance from its equilibrium position, i.e. Hooker's Law:

$$
F=\frac{d^{2} x(t)}{d t^{2}}=-k x(t) \quad \text { Where } k \text { is the spring constant }
$$

- Equation of motion:

$$
\frac{d^{2} x(t)}{d t^{2}}+k x(t)=0 \quad x(t)=A \cos (\sqrt{k} t+\chi)
$$

Amplitude of the Frequency of sinusoidal oscillation the oscillation

transverse motion: betatron oscillation

- The general case of equation of motion in an accelerator

$$
x^{\prime \prime}+k x=0 \quad \text { Where } k \text { can also be negative }
$$

- For k > 0

$$
x(s)=A \cos (\sqrt{k} s+\chi) \quad x^{\prime}(s)=-A \sqrt{k} \sin (\sqrt{k} s+\chi)
$$

- For k < 0

$$
x(s)=A \cosh (\sqrt{k} s+\chi) \quad x^{\prime}(s)=-A \sqrt{k} \sinh (\sqrt{k} s+\chi)
$$

Hill's equation

- In an accelerator which consists individual magnets, the equation of motion can be expressed as,

$$
x^{\prime \prime}+k(s) x=0 \quad k\left(s+L_{p}\right)=k(s)
$$

- Here, $k(s)$ is an periodic function of L_{p}, which is the length of the periodicity of the lattice, i.e. the magnet arrangement. It can be the circumference of machine or part of it.
- Similar to harmonic oscillator, expect solution as

$$
x(s)=A(s) \cos (\psi(s)+\chi)
$$

| or:

$$
x(s)=A \sqrt{\beta_{x}(s)} \cos (\psi(s)+\chi) \quad \beta_{x}\left(s+L_{p}\right)=\beta_{x}(s)
$$

Hill's equation: cont'd

$$
x^{\prime}(s)=-A \sqrt{\beta_{x}(s)} \psi^{\prime}(s) \sin (\psi(s)+\chi)+\frac{\beta_{x}^{\prime}(s)}{2} A \sqrt{1 / \beta_{x}(s)} \cos (\psi(s)+\chi)
$$

- with

$$
\psi^{\prime}(s)=\frac{1}{\beta_{x}(s)} \quad \frac{\beta_{x}^{\prime \prime}}{2} \beta_{x}-\frac{\beta_{x}^{\prime 2}}{4}+k \beta_{x}^{2}=1
$$

- Hill's equation $x^{\prime \prime}+k(s) x=0$ is satisfied

$$
\begin{gathered}
x(s)=A \sqrt{\beta_{x}(s)} \cos (\psi(s)+\chi) \\
x^{\prime}(s)=-A \sqrt{1 / \beta_{x}(s)} \sin (\psi(s)+\chi)+\frac{\beta_{x}^{\prime}(s)}{2} A \sqrt{1 / \beta_{x}(s)} \cos (\psi(s)+\chi)
\end{gathered}
$$

Betatron oscillation

- Beta function $\beta_{x}(s)$:
- Describes the envelope of the betatron oscillation in an accelerator

- Phase advance:

$$
\psi(s)=\int_{0}^{s} \frac{1}{\beta_{x}(s)} d s
$$

- Betatron tune: number of betatron oscillations in one orbital turn

$$
Q_{x}=\frac{\psi(0 \mid C)}{2 \pi}=\oint \frac{d s}{\beta_{x}(s)} / 2 \pi=\frac{R}{\left\langle\beta_{x}\right\rangle}
$$

Phase space

- In a space of $x-x^{\prime}$, the betatron oscillation projects an ellipse
where

$$
\begin{aligned}
& \alpha_{x}=-\frac{1}{2} \beta_{x}^{\prime} \\
& \beta_{x} \gamma_{x}=1+\alpha_{x}^{2}
\end{aligned}
$$

- The are of the ellipse is $\pi \varepsilon$

Courant-Snyder parameters

- The set of parameter $\left(\beta_{x}, a_{x}\right.$ and $\left.\gamma_{x}\right)$ which describe the phase space ellipse
- Courant-Snyder invariant: the area of the ellipse

$$
\varepsilon=\beta_{x} x^{\prime 2}+\gamma_{x} x^{2}+2 \alpha_{x} x x^{\prime}
$$

Phase space transformation

- In a drift space from point I to point 2

- Effect of a focusing quadrupole

Transfer Matrix of beam transport

- Proof the transport matrix from point I to point 2 is

$$
\binom{x\left(s_{2}\right)}{x^{\prime}\left(s_{2}\right)}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \psi_{s_{2} s_{1}}+\alpha_{1} \sin \psi_{s_{s_{1}}}\right) & \sqrt{\beta_{1} \beta_{2}} \sin \psi_{s_{2} s_{1}} \\
-\frac{1+\alpha_{1} \alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \sin \psi_{s_{2} s_{1}}+\frac{\alpha_{1}-\alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \cos \psi_{s_{2} s_{1}} & \sqrt{\frac{\beta_{1}}{\beta_{2}}}\left(\cos \psi_{s_{2} s_{1}}-\alpha_{2} \sin \psi_{s_{2} s_{1}}\right)
\end{array}\right)\binom{x\left(s_{1}\right)}{x^{\prime}\left(s_{1}\right)}
$$

- Hint:

$$
\begin{aligned}
& x(s)=A \sqrt{\beta_{x}(s)} \cos (\psi(s)+\chi) \\
& x^{\prime}(s)=-A \sqrt{1 / \beta_{x}(s)} \sin (\psi(s)+\chi)+\frac{\beta_{x}^{\prime}(s)}{2} A \sqrt{1 / \beta_{x}(s)} \cos (\psi(s)+\chi)
\end{aligned}
$$

One Turn Map

- Transfer matrix of one orbital turn
$\binom{x\left(s_{0}+C\right)}{x^{\prime}\left(s_{0}+C\right)}=\left(\begin{array}{cc}\left(\cos 2 \pi Q_{x}+\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right) & \beta_{x, s_{0}} \sin 2 \pi Q_{x} \\ -\frac{1+\alpha_{x, s_{0}}^{2}}{\beta_{x, s_{0}}} \sin 2 \pi Q_{x} & \left(\cos 2 \pi Q_{x}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right)\end{array}\right)\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)}$
$\operatorname{Tr}\left(M_{s, s+C}\right)=2 \cos 2 \pi Q_{x} \quad$ Stable condition $\left|\frac{1}{2} \operatorname{Tr}\left(M_{s, s+C}\right)\right| \leq 1.0$
-Closed orbit: $\binom{x(s+C)}{x^{\prime}(s+C)}=\binom{x(s)}{x^{\prime}(s)}$

$$
\binom{x(s+C)}{x^{\prime}(s+C)}=M(s+C, s)\binom{x(s)}{x^{\prime}(s)}
$$

Stability of transverse motion

- Matrix from point I to point 2

$$
M_{s_{2} \mid s_{1}}=M_{n} \cdots M_{2} M_{1}
$$

- Stable motion requires each transfer matrix to be stable, i.e. its eigen values are in form of oscillation

$$
\begin{gathered}
|M-\lambda I|=0 \quad \text { With } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and } \operatorname{det}(M)=1 \\
\lambda^{2}-\operatorname{Tr}(M) \lambda+\operatorname{det}(M)=0 \\
\lambda=\frac{1}{2} \operatorname{Tr}(M) \pm \sqrt{\frac{1}{4}[\operatorname{Tr}(M)]^{2}-1} \quad\left|\frac{1}{2} \operatorname{Tr}(M)\right| \leq 1.0
\end{gathered}
$$

How to measure betatron oscillation

- How to measure betatron tune?
- How to measure beta function?
- How to measure beam emittance?

Dispersion function

- Transverse trajectory is function of particle momentum.

$$
\Delta \theta=\theta \frac{\Delta p}{p}
$$

Momentum spread
Define $\quad x=D(s) \frac{\Delta p}{p}$
Dispersion function

Dispersion function

- Transverse trajectory is function of particle momentum.

$$
\begin{aligned}
& x^{\prime \prime}-\frac{\rho+x}{\rho^{2}}=-\frac{q B_{y}}{\gamma m}\left(1+\frac{x}{\rho}\right)^{2} \quad B_{y}=B_{0}+B^{\prime} x \\
& x^{\prime \prime}+\left[\frac{1}{\rho^{2}} \frac{2 p_{0}-p}{p}+\frac{B^{\prime}}{B \rho_{0}} \frac{p_{0}}{p}\right] x=\frac{1}{\rho} \frac{\Delta p}{p} \\
& x=D(s) \frac{\Delta p}{p} \quad D(s+C)=D(s) \\
& D^{\prime \prime}+\left[\frac{1}{\rho^{2}} \frac{2 p_{0}-p}{p}+\frac{B^{\prime}}{B \rho_{0}} \frac{p_{0}}{p}\right] D=\frac{1}{\rho}
\end{aligned}
$$

Dispersion function: cont'd

- In drift space

$$
\frac{1}{\rho}=0 \quad \text { and } \quad B^{\prime}=0 \Rightarrow \quad D^{\prime \prime}=0
$$

dispersion function has a constant slope

- In dipoles,

$$
\frac{1}{\rho} \neq 0 \quad \text { and } \quad B^{\prime}=0 \quad D^{\prime \prime}+\left[\frac{1}{\rho^{2}} \frac{2 p_{0}-p}{p}\right] D=\frac{1}{\rho}
$$

Dispersion function: cont'd

- For a focusing quad,

$$
\frac{1}{\rho}=0 \quad \text { and } \quad B^{\prime}>0 \quad \Rightarrow D^{\prime \prime}+B^{\prime} \frac{p_{0}}{p} D=0
$$

dispersion function oscillates sinusoidally

- For a defocusing quad,

$$
\frac{1}{\rho}=0 \quad \text { and } \quad B^{\prime}<0 \quad \Rightarrow D^{\prime \prime}-B^{\prime} \frac{p_{0}}{p} D=0
$$

dispersion function evolves exponentially

Compaction factor

- The difference of the length of closed orbit between offmomentum particle and on momentum particle, i.e.

$$
\begin{gathered}
\frac{\Delta C}{C}=\alpha \frac{\Delta p}{p}=\frac{\oint\left(\rho+D \frac{\Delta p}{p}\right) d \theta-\oint \rho d \theta}{\oint \rho d \theta} \\
\alpha \frac{\Delta p}{p}=\left\langle\frac{D}{\rho}\right\rangle \frac{\Delta p}{p} \Rightarrow \alpha=\left\langle\frac{D}{\rho}\right\rangle
\end{gathered}
$$

Path length and velocity

- For a particle with velocity v,

$$
\begin{aligned}
& L=v T \quad \frac{\Delta L}{L}=\frac{\Delta v}{v}+\frac{\Delta T}{T} \quad \frac{\Delta v}{v}=\frac{\Delta \beta}{\beta}=\frac{1}{\gamma^{2}} \frac{\Delta p}{p} \\
& \frac{\Delta T}{T}=\left(\alpha-\frac{1}{\gamma^{2}}\right) \frac{\Delta p}{p}=\left(\frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}}\right) \frac{\Delta p}{p}
\end{aligned}
$$

- Transition energy γ_{t} : when particles with different energies spend the same time for each orbital turn
- Below transition energy: higher energy particle travels faster
- Above transition energy: higher energy particle travels slower

Chromatic effect

- Comes from the fact the the focusing effect of an quadrupole is momentum dependent

$$
\frac{1}{f}=\frac{q}{p} k l
$$

Particles with different momentum have different betatron tune

- Higher energy particle has less focusing
- Chromaticity: tune spread due to momentum spread

$$
\xi_{x, y}=\frac{\Delta Q_{x, y}}{\Delta p / p} \Longrightarrow \text { Tune spread }
$$

Chromaticity

- Transfer matrix of a thin quadrupole

$$
M=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right) \approx\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f}\left(1-\frac{\Delta p}{p}\right) & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} \frac{\Delta p}{p} & 1
\end{array}\right)
$$

- Transfer matrix

$$
\begin{aligned}
& M(s+C, s)=M(B, A)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right) \\
& =M(B, A)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} \frac{\Delta p}{p} & 1
\end{array}\right)
\end{aligned}
$$

Chromaticity

$$
\begin{aligned}
& M(s+C, s)=\left(\begin{array}{cc}
\left(\cos 2 \pi Q_{x}+\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right) & \beta_{x, s_{0}} \sin 2 \pi Q_{x} \\
-\frac{1+\alpha_{x, s_{0}}^{2}}{\beta_{x, s_{0}}} \sin 2 \pi Q_{x} & \left(\cos 2 \pi Q_{x}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right)
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{f} \frac{\Delta p}{p} & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(\cos 2 \pi Q_{x}+\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right)+\frac{1}{f} \frac{\Delta p}{p} \beta_{x, s_{0}} \sin 2 \pi Q_{x} & \beta_{x, s_{0}} \sin 2 \pi Q_{x} \\
-\frac{1+\alpha_{x, s_{0}}^{2}}{\beta_{x, s_{0}}} \sin 2 \pi Q_{x}+\left(\cos 2 \pi Q_{x}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right) \frac{1}{f} \frac{\Delta p}{p} & \left(\cos 2 \pi Q_{x}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right)
\end{array}\right) \\
& \cos \left[2 \pi\left(Q_{x}+\Delta Q_{x}\right)\right]=\frac{1}{2} \operatorname{Tr}(M(s+C, s) \\
& \cos \left[2 \pi\left(Q_{x}+\Delta Q_{x}\right)\right]=\cos 2 \pi Q_{x}+\frac{1}{2} \beta_{x, s_{0}} \sin 2 \pi Q_{x} \frac{1}{f} \frac{\Delta p}{p}
\end{aligned}
$$

Chromaticity

$$
\cos \left[2 \pi\left(Q_{x}+\Delta Q_{x}\right)\right]=\cos 2 \pi Q_{x}+\frac{1}{2} \beta_{x, s_{0}} \sin 2 \pi Q_{x} \frac{1}{f} \frac{\Delta p}{p}
$$

Assuming the tune change due to momentum difference is small

$$
\begin{gathered}
\cos 2 \pi Q_{x}-2 \pi \Delta Q_{x} \sin 2 \pi Q_{x}=\cos 2 \pi Q_{x}+\frac{1}{2} \beta_{x, s_{0}} \sin 2 \pi Q_{x} \frac{1}{f} \frac{\Delta p}{p} \\
\Delta Q_{x}=-\frac{1}{4 \pi} \beta_{x, s_{0}} \frac{1}{f} \frac{\Delta p}{p} \quad \xi_{x}=\frac{\Delta Q_{x}}{\Delta p / p}=-\frac{1}{4 \pi} \frac{1}{f} \beta(s) \\
\xi_{x}=\frac{\Delta Q_{x}}{\Delta p / p}=-\frac{1}{4 \pi} \sum_{i} k_{i} \beta_{x, i}
\end{gathered}
$$

Chromaticity of a FODO cell

$$
\begin{aligned}
& \beta_{f, d}=\frac{2 L(1 \pm \sin [\Delta \psi / 2])}{\sin [\Delta \psi]} \\
& \sin [\Delta \psi / 2]=\frac{L}{f}
\end{aligned}
$$

$$
\xi_{x}=-\frac{1}{4 \pi}\left(\beta_{f} \frac{1}{f}-\beta_{d} \frac{1}{f}\right) \quad \xi_{x}=-\frac{1}{\pi} \frac{L / f}{\sin \Delta \psi}
$$

$$
\xi_{x}=-\frac{1}{\pi} \tan \frac{\Delta \psi}{2}
$$

Chromaticity correction

- Nature chromaticity can be large and can result to large tune spread and get close to resonance condition
- Solution:
- A special magnet which provides stronger focusing for particles with higher energy: sextupole

Sextupole

$$
\begin{aligned}
& B_{x}=m x y \\
& B_{y}=\frac{1}{2} m\left(x^{2}-y^{2}\right)
\end{aligned}
$$

- Focusing strength in horizontal plane:

$$
B_{y}^{\prime}=m x
$$

- Place sextupole after a bending dipole where dispersion function is non zero

$$
B_{y}^{\prime}=m x=m D \frac{\Delta p}{p}>0
$$

Effects of Errors

- dipole errors
- quadrupole errors
- resonance

Closed orbit distortion

- Dipole kicks can cause particle's trajectory deviate away from the designed orbit
- Dipole error
- Quadrupole misalignment
- Assuming a circular ring with a single dipole error, closed orbit then becomes:

$$
\binom{x(s)}{x^{\prime}(s)}=M\left(s, s_{0}\right)\left[M\left(s_{0}, s\right)\binom{x(s)}{x^{\prime}(s)}+\binom{0}{\theta}\right]
$$

Closed orbit: single dipole error

- Let's first solve the closed orbit at the location where the dipole error is

$$
\begin{aligned}
\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)} & =M\left(s_{0}+C, s_{0}\right)\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)}+\binom{0}{\theta} \\
x\left(s_{0}\right) & =\beta_{x}\left(s_{0}\right) \frac{\theta}{2 \sin \pi Q_{x}} \cos \pi Q_{x}
\end{aligned}
$$

$$
x(s)=\sqrt{\beta_{x}\left(s_{0}\right) \beta_{x}(s)} \frac{\theta}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s, s_{0}\right)-\pi Q_{x}\right]
$$

- The closed orbit distortion reaches its maximum at the opposite side of the dipole error location

Closed orbit distortion

- In the case of multiple dipole errors distributed around the ring. The closed orbit is

$$
x(s)=\sqrt{\beta_{x}(s)} \sum_{i} \sqrt{\beta_{x}\left(s_{i}\right)} \frac{\theta_{i}}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s_{i}, s_{0}\right)-\pi Q_{x}\right]
$$

- Amplitude of the closed orbit distortion is inversely proportion to $\sin \pi Q_{x, y}$
- No stable orbit if tune is integer!

Measure closed orbit

- Distribute beam position monitors around ring.

Control closed orbit

- minimized the closed orbit distortion.
- Large closed orbit distortions cause limitation on the physical aperture
- Need dipole correctors and beam position monitors distributed around the ring
- Assuming we have m beam position monitors and n dipole correctors, the response at each beam position monitor from the n correctors is:

$$
x_{k}=\sqrt{\beta_{x, k}} \sum_{k=1}^{n} \sqrt{\beta_{x, i}} \frac{\theta_{i}}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s_{i}, s_{0}\right)-\pi Q_{x}\right]
$$

Control closed orbit

- Or,

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)=(M)\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right)
$$

- To cancel the closed orbit measured at all the bpms, the correctors are then

$$
\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right)=\left(M^{-1}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)
$$

Quadrupole errors

- Misalignment of quadrupoles
- dipole-like error:kx
- results in closed orbit distortion
- Gradient error:
- Cause betatron tune shift
- induce beta function deviation: beta beat

Tune change due to a single gradient error

- Suppose a quadrupole has an error in its gradient, i.e.

$$
\begin{gathered}
M=\left(\begin{array}{cc}
1 & 0 \\
-k & 1
\end{array}\right) \approx\left(\begin{array}{cc}
1 & 0 \\
-(k+\Delta k) & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-k & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\Delta k & 1
\end{array}\right) \\
M(s+C, s)=\left(\begin{array}{cc}
\left(\cos 2 \pi Q_{x 0}+\alpha_{x, s_{0}} \sin 2 \pi Q_{x 0}\right) & \beta_{x, s 0} \sin 2 \pi Q_{x 0} \\
-\frac{1+\alpha_{x, s_{0}}^{2}}{\beta_{x, s_{0}}} \sin 2 \pi Q_{x 0} & \left(\cos 2 \pi Q_{x 0}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x 0}\right)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\Delta k & 1
\end{array}\right) \\
\cos 2 \pi\left(Q_{x 0}+\delta Q_{x}\right)=\frac{1}{2} \operatorname{Tr}(M(s+C, s)) \quad \delta Q_{x}=\frac{1}{4 \pi} \beta_{x, s_{0}} \Delta k
\end{gathered}
$$

Tune shift due to multiple gradient errors

- In a circular ring with a multipole gradient errors, the tune shift is

$$
\delta Q_{x}=\frac{1}{4 \pi} \sum_{i} \beta_{x, s_{i}} \Delta k_{i}
$$

Beta beat

- In a circular ring with a gradient error at s 0 , the tune shiff is

$$
\begin{aligned}
& M(s+C, s)=M\left(s, s_{0}\right)\left(\begin{array}{cc}
1 & 0 \\
-\Delta k & 1
\end{array}\right) M\left(s_{0}, s\right) \\
& \beta_{x}(s) \sin 2 \pi Q_{x}=\beta_{x 0}(s) \sin 2 \pi Q_{x 0}+ \\
& \Delta k \frac{\beta_{x 0}(s) \beta_{x 0}\left(s_{0}\right)}{2}\left[\cos \left(2 \pi Q_{x 0}+2 \mid \Delta \psi_{s, s 0} \mathrm{l}\right)\right]
\end{aligned}
$$

$$
\frac{\Delta \beta}{\beta}=\Delta k \frac{\beta_{x 0}\left(s_{0}\right)}{2 \sin 2 \pi Q_{x 0}} \cos \left(2 \pi Q_{x 0}+2 \mid \Delta \psi_{s, s 0} \mathrm{I}\right)
$$

Unstable betatron motion if tune is half integer!

Resonance condition

- Tune change due to a single quadrupole error
$\cos \left[2 \pi\left(Q_{x 0}+\delta Q_{x}\right)\right]=\cos 2 \pi Q_{x 0}-\frac{1}{2} \beta_{x, s_{0}} \Delta k \sin 2 \pi Q_{x 0}$
- If $Q_{x 0}=(2 k+1) \frac{1}{2}+\varepsilon$, the above equation becomes

$$
\cos \left[2 \pi\left(Q_{x 0}+\delta Q_{x}\right)\right] \approx 1+\frac{1}{2} \beta_{x, s_{0}} \Delta k \varepsilon
$$

and Qx can become a complex number which means the betatron motion can become unstable

resonance

Integer resonance

Half Integer resonance

FFT and Nyquist Theorem

Fourier transform

- Computes the response in frequency domain of a time domain function $x(t)$

$$
x(f)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(t) e^{-i 2 \pi f t} d t
$$

- For a simple harmonic oscillator, its frequency response is a delta function at its oscillating frequency.

Fast Fourier transform

- Discrete Fourier transform
- For a signal which is sampled at a frequency of fs

$$
X_{k}=\sum_{m=1}^{N} x_{m} e^{-i 2 \pi k \frac{m}{N}}
$$

- Calculates the response at frequency km / N
- For large data sets, a lot of computations, $\mathrm{O}\left(\mathrm{N}^{2}\right)$
- FFT: Optimized DFT algorithm, , O(N/logN)
- sample algorithms can be found in Numerical Recipes.

Nyquist theorem

- FFT(DFT) can only extract frequency less than half of the sampling frequency
- For tune measurement using FFT of turn by turn beam position data
- FFT spectrum is: $0-0.5$
- Can't determine the integer part of the tune

Transverse Resonances

- Linear coupling
- resonances mechanisms
- Resonance conditions
- $3^{\text {rd }}$ order resonances

Source of linear coupling

- Skew quadrupole

$$
\begin{aligned}
& B_{x}=-q x ; \quad B_{y}=q y \\
& x^{\prime \prime}+K_{x}(s)^{2} x=-\frac{B_{y} l}{B \rho}=-q y \\
& y^{\prime \prime}+K_{y}(s)^{2} y=\frac{B_{x} l}{B \rho}=-q x
\end{aligned}
$$

Coupled harmonic oscillator

- Equation of motion

$$
x^{\prime \prime}+\omega_{x}^{2} x=q^{2} y \quad y^{\prime \prime}+\omega_{y}^{2} y=q^{2} x
$$

- Assume solutions are:

$$
\begin{gathered}
x=A e^{i \omega t} \quad y=B e^{i \omega t} \\
-\omega^{2} A+\omega_{x}^{2} A=q^{2} B \quad-\omega^{2} B+\omega_{y}^{2} B=q^{2} A \\
\left(\omega_{x}^{2}-\omega^{2}\right)\left(\omega_{y}^{2}-\omega^{2}\right)=q^{4}
\end{gathered}
$$

$$
\omega^{2}=\frac{\omega_{x}^{2}+\omega_{y}^{2} \pm \sqrt{\left(\omega_{x}^{2}-\omega_{y}^{2}\right)^{2}+4 q^{4}}}{2}
$$

Coupled harmonic oscillator

$$
\omega^{2}=\frac{\omega_{x}^{2}+\omega_{y}^{2} \pm \sqrt{\left(\omega_{x}^{2}-\omega_{y}^{2}\right)^{2}+4 q^{4}}}{2}
$$

- The two frequencies of the harmonic oscillator are functions of the two $\quad \omega_{y}$ unperturbed frequencies
- When the unperturbed frequencies are the same, a minimum frequency difference

$$
\Delta \omega \approx \frac{q^{2}}{}
$$

Resonance mechanism

- Errors in the accelerators perturbs beam motions
- Coherent buildup of perturbations

Driven harmonic oscillator

- Equation of motion

$$
\frac{d^{2} x(t)}{d t^{2}}+\omega^{2} x(t)=f(t)=\sum_{m=0} C_{m} e^{i \omega_{m} t}
$$

- for $f(t)=C_{m} e^{i \omega_{m} t}$

$$
\frac{d^{2} x(t)}{d t^{2}}+\omega^{2} x(t)=C_{m} e^{i \omega_{m} t}
$$

- Assume solution is like $x(t)=A e^{i \omega t}+A_{m} e^{i \omega_{m} t}$

$$
A_{m}=\frac{C_{m}}{\omega^{2}-\omega_{m}^{2}}
$$

Resonance response

- Response of the harmonic oscillator to a periodic force is

Betatron oscillation

- Equation of motion

$$
\begin{aligned}
& x^{\prime \prime}+K(s) x=0 \quad K\left(s+L_{p}\right)=K(s) \\
& x=A \sqrt{\beta_{x}} \cos (\psi+\chi)
\end{aligned}
$$

- In the presence of field errors including mis-aglinments, the equation of motion then becomes
where

$$
x^{\prime \prime}+K(s) x=-\frac{\Delta B_{y}}{B \rho}
$$

$$
\begin{aligned}
& \Delta B_{y}=B_{0}(b_{0}+b_{1} x+\underbrace{}_{2} x^{2}+\ldots) \\
& \text { Dipole error quadrupole error } \text { sextupole error }
\end{aligned}
$$

Floquet Transformation

- Re-define () as:

$$
\begin{aligned}
& x^{\prime \prime}+K(s) x=0 \quad K\left(s+L_{p}\right)=K(s) \\
& \zeta(s)=x(s) / \sqrt{\beta_{x}(s)} \quad \phi(s)=\psi(s) / Q_{x} \quad \text { or } \phi^{\prime}=1 /\left(Q_{x} \beta_{x}\right)
\end{aligned}
$$

- In the presence of field errors including mis-aglinments, the equation of motion then becomes
where

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-Q_{x}^{2} \beta_{x}^{3 / 2} \frac{\Delta B_{y}}{B \rho}
$$

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-\frac{Q_{x}^{2} B_{0}}{B \rho}\left[b_{0}+\beta_{x} b_{1} \zeta+\beta_{x}^{2} b_{2} \zeta^{2}+\cdots\right]
$$

Resonance contd

- For each n :

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-\frac{Q_{x}^{2} \beta_{x}^{3 / 2}}{B \rho} \beta_{x}^{n} b_{n} \zeta^{n}
$$

- When the term on the right side of the equation contain same frequency as Qx , a resonance occurs. And the solution has a form of

$$
\zeta=A_{k} e^{-i Q_{x} \phi}
$$

- Express the perturbation term as:

$$
\begin{array}{r}
\beta_{x}^{(n+3) / 2} b_{n}=\sum_{k} c_{k} e^{i k \phi} \\
k-n Q_{x}=Q_{x} \quad k=(n+1) Q_{x}
\end{array}
$$

Resonance condition

- In the absence of coupling between horizontal and vertical

$$
k=(n+1) Q_{x, y}
$$

error	n	
dipole	0	$Q x, y=$ integer
quadrupole	1	$2 Q x, y=$ integer
Sextupole	2	$3 Q x, y=$ integer
Octupole	3	$4 Q x, y=$ integer

- In the presence of coupling between horizontal and vertical

$$
M Q_{x}+N Q_{y}=k
$$

Tune diagram

- the resonance strength decreases as the order goes higher
- the working point should be located in an area between resonances there are enough tune space to accommodate tune spread of the beam

Phase space: $\mathbf{3}^{\text {rd }}$ order resonance

In the phase space of x, Px
$x=A \sqrt{\beta_{x}} \cos \psi$
$P_{x}=\beta_{x} x^{\prime}+\alpha_{x} x=-A \sqrt{\beta_{x}} \sin \psi$

- separatrix: boundery between stable region and unstable region
- Fixed points: where

$$
\frac{d x}{d n}=\frac{d P_{x}}{d n}=0
$$

Phase space: $4^{\text {th }}$ order resonane

