Magnets and Lattices

Accelerator building blocks
Transverse beam dynamics
coordinate system



Magnets: building blocks of an accelerator

Both electric field and magnetic field can be used to guide
the particles path.

— — —

F=q(E+V><B)

Magnetic field is more effective for high energy particles,
i.e. particles with higher velocity.

— For a relativistic particle, what kind of the electric field one

needs to match the Lorentz force from a | Telsla magnetic
field?



Types of magnets in an accelerator

Dipoles: uniform magnetic field in the gap

— Bending dipoles

— Orbit steering

Quadrupoles

— Providing focusing field to keep beam from being diverged
Sextupoles:

— Provide corrections of chromatic effect of beam dynamics

Higher order multipoles



Dipole magnet

» Two magnetic poles
separated by a gap

» homogeneous magnetic
field between the gap

» Bending, steering, injection,
extraction




Deflection of dipole

For synchrotron, bending field is proportional to the
beam energy

Bp =

; where p is the momentum of the particle and g

P
q

is the charge of the particle



Quadrupole

Magnetic field is proportional to the distance
from the center of the magnet

B.=ky, B, =kx

Produced by 4 poles which are shaped as
xy=+R"/2

Providing focusing/defoucsing to the particle
Particle going through the center: F=0

Particle going off center




Quadrupole magnet

» Theorem Imegraton Path
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For the gap is filled with air, B'[T/m]=2.51 5
R[mm~]




Focusing from quadrupole

fop oy oy T

Required by Maxwell equation, a single quadrupole can
has to provide focusing in one plane and defocusing in
the other plane



Transfer matrix of a qudruploe

Thin lens: length of quadrupole is negligible to the
displacement relative to the center of the magnet

B !
Ax'=—i=—lq - =—ﬂx=—kx

P ymy ymy




Transfer matrix of a drift space

Transfer matrix of a drift space

X] (. AT




Lattice

» Arrangement of magnets: structure of beam line

Bending dipoles, Quadrupoles, Steering dipoles, Drift space and
Other insertion elements

» Example:

FODO cell: alternating arrangement between focusing and

defocusing quadrupoles
f -f

ipop
I

€ >

» One FODO cell

>



FODO lattice
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Net effect is focusing

Provide focusing in both planes!



Curverlinear coordinate system

Coordinate system to describe particle motion in an
accelerator.

Moves with the particle

Set of unit vectors:

5(s) = )
) D5(s)
x(s)=-p s

y(s) = x(s) x 5(s)




Equation of motion
ds(s) 1

x ——Xx(s
o PO
dx(s) 1.
/ AB=As/p ds = ; S(S)
dy(s) _
ds

Equation of motion in transverse plane

F(s) =T, (s) + xx(s) + yy(s)



Equation of motion

dr(s) ds_dr, R dx ds

=—[—+x'x+x—+ =—[(1+>=)s+x'x+
” dt[ds s y'y] d[( p) y'y]
V= d—[(1+ =S+ XX+ Y'Y=V S+ XV Y
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d27(s) ds dv p 0+ X x' .
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Equation of motion

2— 2 ' — s
dr(s)z V [(x”_p+x)3c+£§+y”5;]=qva
2 X
A _4gb, g8’
X = (1+ ) e +
0’

1l B)C x
y'= (14 2y > Y'-—y=0

ym P



Solution of equation of motion

Comparison with harmonic oscillator: A system with a
restoring force which is proportional to the distance from
its equilibrium position, i.e. Hooker’s Law:

d’x(t
F = d);g ) = —kx(t) Where k is the spring constant
Equation of motion:
>
dd’igt ) + k(1) =0 x(t) = Acos(\kt + x)

Amplitude of the Frequency of
sinusoidal oscillation the oscillation



transverse motion: betatron oscillation

The general case of equation of motion in an accelerator

x"+kx =0  Where k can also be negative

For k>0
x(s) = Acos(Vks+x)  x'(s) = Ak sin(\ks + %)

For k<0

x(s) = Acosh(Wks+ %) x'(s)=—Ak sinh(+/ks + x)



Hill's equation

In an accelerator which consists individual magnets, the
equation of motion can be expressed as,

x'+k(s)x =0 k(s+ L)) =k(s)

Here, k(s) is an periodic function of L, which is the length of
the periodicity of the lattice, i.e. the magnet arrangement. It
can be the circumference of machine or part of it.

Similar to harmonic oscillator, expect solution as

x(s) = A(s)cos(y(s) + x)

or.

x(s) = Ay, (s)cos@p(s)+ x)  B.(s+L,)=p.(s)



Hill’s equation: cont’d

x'(s) =—A4/P, l/) (s)sin(y(s) + x) + P ( )Aw/l//i’ ( )cos(w(s) + %)

with

1 /3 /3'2

p.(s)

c=1

P'(s) =

Hill's equation x''+k(s)x =0 is satisfied

x(5) = Ay[B.(s) cos(s) + %)
x'(s) = =Ay1/B,(s) sin@(s) + x) + P "“Z(S) Ay1/B,(s) cos@(s) + x)




Betatron oscillation

» Beta function /3 %

Describes the envelope of the betatron oscillation in an accelerator

» Ph d :
ase advance W(s) = fo
B, (S)
» Betatron tune: number of betatron oscillations in one orbital turn
olIC R
0. YO 1C) gﬁ _

T N T T



Phase space

In a space of x-X’, the betatron oscillation projects an ellipse

12 2 I
Pp.x“+y x"+2a xx'=¢€

where
1 .
o, =——
X 2[))X
By.=1+a’

The are of the ellipse is 7T€



Courant-Snyder parameters

The set of parameter (3, a,andy,) which describe the
phase space ellipse

Courant-Snyder invariant: the area of the ellipse

2 2
e=P.x"+y x" + 20 xx'



Phase space transformation

» In a drift space from point | to point 2

U 7

» Effect of a focusing quadrupole

Focusing quad



Transfer Matrix of beam transport

Proof the transport matrix from point | to point 2 is

x'(s,) l+ o0, .

N

Hint;

ny, -+

( x(s2)) \/ﬁ? (c:os1/JS2S1 + simpszs1 )

SY_ \/E(cosws L —o,siny )
2°1 [))2 2°1 2°1

&,

BB,

2o

\ BB, Sinw%

x(s) = AqJB,(s) cos@(s) + x)
x'(s) = —Aw/l/[a’x(s) sin(yY(s) + x) + ﬁ'xz(s) Aw/l/ﬁx(s) cos(y(s) + x)

x(s))

x'(s,)

|



One Turn Map

Transfer matrix of one orbital turn
(cos2nQ, +a, , sin2zxQ ) B, sin2aQ,

)C(SO +C) 1+O{2 X(SO)
X¥'(s, +C) = B =0 8in 20, (cos2mQ. - a, ., sin27Q,) \ x'(s,)

X80

Stable condition

Tr(M,,,.)=2cos2nQ, m— |,

Closed orbit: (X(S + C)) _ ( X(S))
.X"(S + C) X'(S)

(x(s + C)) _ M(s+ C,S)( x(s))
x'(s+C) x'(s)

Tr(Ms s+C)




Stability of transverse motion

Matrix from point | to point 2
M. =M MM,

Stable motion requires each transfer matrix to be stable, i.e. its
eigen values are in form of oscillation

sy 18

1 O
M- Al1=0 With I=(0 1) and det(M)=1

X =Tr(M)A+det(M)=0

1
A= %T r(M) = \/i[Tr(M)]Z -1 ) ‘ETNM)

<1.0




How to measure betatron oscillation

How to measure betatron tune?

How to measure beta function!?

How to measure beam emittance!



Dispersion function

Transverse trajectory is function of particle momentum.

Momentum spread

A
Define X = D(S)—p

/ P

Dispersion function



Dispersion function

Transverse trajectory is function of particle momentum.

. p+x gbB X ,
x—p2 =—2(1+>) B, =B,+B'x

o ym -~ p

1 2p, — B pl|l 1A
x||+ 2p0 p+ p()x:__p

P P Bp, p P P

A
x=D)2L  D(s+C)=D(s)

p _
D"+ 122p0—p+ B pip L
P P bp, p P




Dispersion function: cont’d

In drift space

l=0 and p'_() = D'=0

0
dispersion function has a constant slope

In dipoles,

1.0 and B'=0 D" +[ 1221?0_])]D=l

p p° p o




Dispersion function: cont’d

For a focusing quad,

l=() and p's () =>D"+B'&D=O

P P

dispersion function oscillates sinusoidally

For a defocusing quad,

l:() and B () :D"—B'&D=O

P P

dispersion function evolves exponentially



Compaction factor

The difference of the length of closed orbit between off-
momentum particle and on momentum particle, i.e.

e A gﬁ(p+ DAp)dH -~ pd6

AC _ Ap _ p

C p P pdo
A D, A D
a="=(T) T = a= (")



Path length and velocity

» For a particle with velocity v,

AL _Av AT Av _AB_ 1 Ap
L=vl 7 T v B 7P

I 1A
=(a-—p) (-
r A A (R R

» Transition energy y, : when particles with different energies
spend the same time for each orbital turn

— Below transition energy: higher energy particle travels faster

— Above transition energy: higher energy particle travels slower



Chromatic effect

Comes from the fact the the focusing effect of an
quadrupole is momentum dependent

1 q A Particles with different momentum have

f p 4 different betatron tune

— Higher energy particle has less focusing

Chromaticity: tune spread due to momentum spread

Tune spread

g, = Lo
Xy Ap/p momentum spread




Chromaticity

» Transfer matrix of a thin quadrupole

I O 1 0
M=|_1 1= —l(l—%) 17| -
f fp

» Transfer matrix
1 O
L
f

M(s+ C,s) = M(B,A)

1 O

L

f

- M(B,A)




Chromaticity

M(s+C.,s) = l+a;,

1+

2

X,8)

X8

(cos2nQ, +a,, sm2xQ )

X,

1 Ap

(cos2nQ, + o, sm2aQ )+ —— sin27Q.

X,8)

1 Ap

/SX’SO sin27Q.

1 0
1 Ap
sin27Q. (cos2nQ, —a,, sin27aQ) | 7~ 1

fp

B, sin2mQ,

sin27Q, + (cos2nQ, —o sin2xQ )—— (cos2aQ, -a, sin2aQ )

cos[2x(Q. + AQ,)] = %Tr(M(s + C,s)

cos[2(Q, + AQ, )] = cos2mQ, + %ﬁx,so

P

sin27Q.

1 Ap

fp




Chromaticity

cos[2m(Q, + AQ,)]| =cos2mQ, + % B, sin2m ch Ap
P

Assuming the tune change due to momentum difference is small

cos2mQ, —2mAQ, sSin27aQ, = cos2aQ, + l/3' sin2mQ, } Ap
pP
[ A AO. 11
A __ﬁxso p gx = Q = _—_ﬁ(S)
f P Aplp 4m f
gx E ﬁxz

Ap/p



Chromaticity of a FODO cell

B+
; _ 2L(1 £ sin[Ay/2])
\} \/ M sin[Ay]
L\ | L
| ] | ] | s1n[AqJ/2]=7
One FODO cell

__ gLl g1 __ L Ly

5. = 4Jr(ﬁff ﬁdf) - 5 7 sinAy
. = —ltanA—w
JU




Chromaticity correction

» Nature chromaticity can be large and can result to large
tune spread and get close to resonance condition

» Solution:

— A special magnet which provides stronger focusing for particles
with higher energy: sextupole




Sextupole

B = mxy
B, = ~m(x* - y?)
> 2

Focusing strength in horizontal
plane:

B}=mx

Place sextupole after a bending dipole
where dispersion function is non zero
A
B =mx=mD=£ >0
' p



Effects of Errors

dipole errors
quadrupole errors
resonance



Closed orbit distortion

Dipole kicks can cause particle’s trajectory deviate away from
the designed orbit
— Dipole error .
— Quadrupole misalignment .

Assuming a circular ring with a single
dipole error, closed orbit then becomes:

x(s) Y ‘M x(s) O]
X'(s) = M(s,s,) (Sy,9) X'(s) + 9



Closed orbit: single dipole error

Let’s first solve the closed orbit at the location where the
dipole error is

()~ s ol Z600) ()
x'(sy) x'(sy) v,

x(sy) = P.(Sy) o costQ,

2 sin O,

0
nJstQ

X

x(5) = ~/B.(55)B.(5) Y cos[y(s,s,) — 0, |

The closed orbit distortion reaches its maximum at the
opposite side of the dipole error location



Closed orbit distortion

In the case of multiple dipole errors distributed around the
ring. The closed orbit is

x(8) = /B, (s) 2\//3 (s,

Amplitude of the closed orbit distortion is inversely
proportion to sinTiQ,

2 an cos|yY(s;,s,) — Q. |

- No stable orbit if tune is integer!



Measure closed orbit

» Distribute beam position monitors around ring.

Beam <== Lattice: Yellow
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Control closed orbhit

minimized the closed orbit distortion.

Large closed orbit distortions cause limitation on the
physical aperture

Need dipole correctors and beam position monitors
distributed around the ring

Assuming we have m beam position monitors and n
dipole correctors, the response at each beam
position monitor from the n correctors is:

FEE

COS[I/J(S”SO) — JTQx]

2smn



Control closed orbhit

Or, /xl\ /61\

0,

=)

\ X/ \0,)

To cancel the closed orbit measured at all the bpms, the
correctors are then

(6, [ x,)

(o)




Quadrupole errors

» Misalignment of quadrupoles
— dipole-like error: kx

— results in closed orbit distortion

» Gradient error:
— Cause betatron tune shift

— induce beta function deviation: beta beat



Tune change due to a single gradient error

» Suppose a quadrupole has an error in its gradient, i.e.

. 1 0 1 0 (1 O 1 O
ek 1) \=k+Ak) 1) \=k 1)\-Ak 1
(cos2nQ , + o, sin2mQ ) B s 8in27Q0,

1 O
M = 1+a’
(s+C,s) 9 in2aQ., (cos2nQ,, —a,, sin2xQ ) (—Ak 1)

X,

cos2m(Q., +00,) = %TI’(M(S + C,s)) 00, = %ﬁx’soAk
T



Tune shift due to multiple gradient errors

» In a circular ring with a multipole gradient errors, the tune
shift is

6Qx = ﬁ zﬁx,si Ak,



Beta beat

» In a circular ring with a gradient error at s0, the tune shiff is
So

M(s+ C,s) = M(S,SO)(_ik O)M(SO,S)

1

B.(s)sin2aQ_ = ,(s)sin270 , +

Ak ﬁxo(s)f 20050) 652710, + 2 1 A, o D]

A/J) ﬁxO(SO)
/3 2 Sil ) 2.7 EQ_XO S( on wS,SO )

Unstable betatron motion if tune is half integer!



Resonance condition

» Tune change due to a single quadrupole error

cos[27(Q,, + 060,)] = cos2mQ,, - %ﬁx,soAk SI 270,

1
» If O, =Qk+ 1)5 + €, the above equation becomes

cos[2m(Q., +00 )] =1+ %[D’x,soAké‘

and Qx can become a complex number which means the
betatron motion can become unstable



resonaince

Integer resonance Half Integer resonance



I FFT and Nyquist Theorem




Fourier transform

» Computes the response in frequency domain of a time domain
function x(t)

x(f)=— f x(t)e 2" dt

» For a simple harmonic oscillator, its frequency response is a
delta function at its oscillating frequency.



Fast Fourier transform

» Discrete Fourier transform

» For a signal which is sampled at a frequency of fs
N , m
—lznkﬁ
X, = E X, e
m=1

» Calculates the response at frequency km/N

» For large data sets, a lot of computations, O(N?)

» FFT: Optimized DFT algorithm,, O(N/logN)

» sample algorithms can be found in Numerical Recipes.



Nyquist theorem

» FFT(DFT) can only extract frequency less than half of the
sampling frequency

» For tune measurement using FFT of turn by turn beam
position data

» FFT spectrumis:0— 0.5

» Can’t determine the integer part of the tune



Transverse Resonances

Linear coupling
resonances mechanisms
Resonance conditions
3 order resonances



Source of linear coupling

» Skew quadrupole

B =-gx; B, =qy

X Y

Bl

Y

x"+K (8)°x = ——2 =—qy
bp

B
bp

V'+K (8)7y === =—gx



Coupled harmonic oscillator

» Equation of motion

" 2 2 1 2.2
X'to, x=qy y't+to y=qx
» Assume solutions are:
X=Aeia)t y=Be
: 24 = B+w,°'B=q’A
-0 A+w A=g'B ~WbL+W, b=(qg

Lot

(0, -0 o, -w)=q"

_ w; + w; * \/(a)i —w.)* +4q"
2

2
0);




Coupled harmonic oscillator

2

2 2 2 2\2 4
. _a)x+a)y4_-\/(a)x—a)y) +4q

2

» The two frequencies of the

harmonic oscillator are
functions of the two w
unperturbed frequencies

Y

» When the unperturbed
frequencies are the same, a
minimum frequency
difference 2

q Pq

Aw = —
W



Resonance mechanism

» Errors in the accelerators perturbs beam motions

» Coherent buildup of perturbations



Driven harmonic oscillator

» Equation of motion

d X(t) + a)zx(t) _ f(t) _ Ecmeia)mt

dt’
» for f(1)=C e

d’x(1)
dt’

» Assume solution is like x(7) = Ae'” + Amelwmt

+w’x(t)=C e




Resonance response

» Response of the harmonic oscillator to a periodic force is

x(t) = Ae™ + ——m




Betatron oscillation

» Equation of motion
x"'+K(5)x=0 K(s+L))=K(s)
X = A\/Ecos(lp + %)

» In the presence of field errors including mis-aglinments, the
equation of motion then becomes

AB
x"+K(s)x =——=
Bp

AB, = B\ (b, + byx + bx" + ....)

where

Dipole error  quadrupole error  sextupole error



Floquet Transformation

» Re-define () as:
x"'+K(5)x=0 K(s+L))=K(s)
C(s) = x(8)/~/B,(s) @(s)=y(s)/Q, or¢'=1/(Qp,)

» In the presence of field errors including mis-aglinments, the
equation of motion then becomes

d’c
where d¢2

&PE o
O

20n3/2

QBO[b +B.bE + BbE" +-




Resonance contd

» For each n:

A o OB o
2 + ng =~ /3x bng
d¢ Bp
» When the term on the right side of the equation contain same
frequency as Qx, a resonance occurs. And the solution has a form of

_.Qx(p
C=Ace"

» Express the perturbation term as:

(n+3)/27. ik
ﬁx bn — Ecke

k

k-nQ, =0, k=(n+1)0,




Resonance condition

» In the absence of coupling between horizontal and vertical

k=(n+DQO,
dipole 0 Qx,y=integer
quadrupole I 2Qx,y=integer
Sextupole 2 3Qx,y=integer
Octupole 3 4Qx,y=integer

» In the presence of coupling between horizontal and vertical

MQ, + NQ, =k




Tune diagram

n+ |
* the resonance strength
decreases as the order
0, goes higher
* the working point should
n be located in an area

between resonances
there are enough tune
space to accommodate
tune spread of the beam




Phase space: 3™ order resonance

In the phase space of x, Px

X = A\/E COSY

10

* separatrix: boundery between
stable region and
unstable region =S

* Fixed points: where *

dx dP,

dn dn

O -10




Phase space: 4t! order resonane
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