Magnets and Lattices

Accelerator building blocks
Transverse beam dynamics
coordinate system

Magnets: building blocks of an accelerator

Both electric field and magnetic field can be used to guide the particles path.

$$\vec{F} = q(\vec{E} + \vec{V} \times \vec{B})$$

- Magnetic field is more effective for high energy particles, i.e. particles with higher velocity.
 - For a relativistic particle, what kind of the electric field one needs to match the Lorentz force from a 1 Telsla magnetic field?

Types of magnets in an accelerator

- Dipoles: uniform magnetic field in the gap
 - Bending dipoles
 - Orbit steering
- Quadrupoles
 - Providing focusing field to keep beam from being diverged
- Sextupoles:
 - Provide corrections of chromatic effect of beam dynamics
- Higher order multipoles

Dipole magnet

- Two magnetic poles separated by a gap
- homogeneous magnetic field between the gap
- Bending, steering, injection, extraction

$$\nabla \times \vec{B} = \mu_0 J$$
$$B = \mu_0 \frac{NI}{g}$$

Deflection of dipole

 For synchrotron, bending field is proportional to the beam energy

> $B\rho = \frac{p}{q}$; where p is the momentum of the particle and q is the charge of the particle

Quadrupole

 Magnetic field is proportional to the distance from the center of the magnet

$$B_x = ky; \quad B_y = kx$$

Produced by 4 poles which are shaped as

$$xy = \pm R^2 / 2$$

- Providing focusing/defoucing to the particle
 - Particle going through the center: F=0
 - Particle going off center

Quadrupole magnet

Theorem

$$\nabla \times \vec{B} = \mu_0 J$$

$$\oint \vec{B} \cdot dl = \mu_0 \mu_r I$$

Pick the loop for integral $\int_0^R B' r dr = \mu_0 \mu_r N I$

Focusing from quadrupole

$$\frac{x}{f} = \frac{l}{\rho} = l \frac{qB_y}{\gamma m v} = l \frac{qB'}{\gamma m v} x \longrightarrow \frac{1}{f} = \frac{qB'l}{\gamma m v} = k$$

 Required by Maxwell equation, a single quadrupole can has to provide focusing in one plane and defocusing in the other plane

Transfer matrix of a qudruploe

Thin lens: length of quadrupole is negligible to the displacement relative to the center of the magnet

Transfer matrix of a drift space

$$\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}$$

Lattice

Arrangement of magnets: structure of beam line

- Bending dipoles, Quadrupoles, Steering dipoles, Drift space and Other insertion elements
- Example:
 - FODO cell: alternating arrangement between focusing and defocusing quadrupoles

FODO lattice

$$\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2f} & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}$$
$$= \begin{pmatrix} 1 - 2\frac{L^2}{f^2} & 2L(1 + \frac{L}{f}) \\ -2(1 - \frac{L}{f})\frac{L}{f^2} & 1 - 2\frac{L^2}{f^2} \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}$$

Net effect is focusing

Provide focusing in both planes!

Curverlinear coordinate system

- Coordinate system to describe particle motion in an accelerator.
- Moves with the particle

Equation of motion

 $\frac{d\hat{s}(s)}{ds} = -\frac{1}{\rho}\hat{x}(s)$ $\frac{d\hat{x}(s)}{ds} = \frac{1}{\rho}\hat{s}(s)$ $\frac{d\hat{y}(s)}{ds} = 0$

Equation of motion in transverse plane

 $\vec{r}(s) = \vec{r}_0(s) + x\hat{x}(s) + y\hat{y}(s)$

Equation of motion

$$\frac{d\vec{r}(s)}{dt} = \frac{ds}{dt} \left[\frac{d\vec{r}_0}{ds} + x'\hat{x} + x\frac{d\hat{x}}{ds} + y'\hat{y} \right] = \frac{ds}{dt} \left[(1 + \frac{x}{\rho})\hat{s} + x'\hat{x} + y'\hat{y} \right]$$
$$\vec{v} = \frac{ds}{dt} \left[(1 + \frac{x}{\rho})\hat{s} + x'\hat{x} + y'\hat{y} \right] = v_s\hat{s} + v_x\hat{x} + v_y\hat{y}$$
$$v^2 = \left| \vec{v} \right| = \frac{ds}{dt} \left[(1 + \frac{x}{\rho})^2 + x'^2 + y'^2 \right]$$

$$\frac{d^{2}\vec{r}(s)}{dt^{2}} = \frac{ds}{dt}\frac{d\vec{v}}{ds} \approx \frac{v^{2}}{(1+\frac{x}{\rho})^{2}} [(x'' - \frac{\rho + x}{\rho})\hat{x} + \frac{x'}{\rho}\hat{s} + y''\hat{y}]$$

Equation of motion

Solution of equation of motion

Comparison with harmonic oscillator: A system with a restoring force which is proportional to the distance from its equilibrium position, i.e. Hooker's Law:

$$F = \frac{d^2 x(t)}{dt^2} = -kx(t)$$

Where *k* is the spring constant

• Equation of motion:

$$\frac{d^2x(t)}{dt^2} + kx(t) = 0 \qquad x(t) = A\cos(\sqrt{kt} + \chi)$$

Amplitude of the
sinusoidal oscillationFrequency of
the oscillation

transverse motion: betatron oscillation

The general case of equation of motion in an accelerator

x''+kx=0 Where k can also be negative

For k > 0

 $x(s) = A\cos(\sqrt{k}s + \chi) \quad x'(s) = -A\sqrt{k}\sin(\sqrt{k}s + \chi)$ For k < 0

 $x(s) = A\cosh(\sqrt{k}s + \chi)$ $x'(s) = -A\sqrt{k}\sinh(\sqrt{k}s + \chi)$

Hill's equation

In an accelerator which consists individual magnets, the equation of motion can be expressed as,

$$x''+k(s)x = 0$$
 $k(s+L_p) = k(s)$

- Here, k(s) is an periodic function of L_p, which is the length of the periodicity of the lattice, i.e. the magnet arrangement. It can be the circumference of machine or part of it.
- Similar to harmonic oscillator, expect solution as

$$x(s) = A(s)\cos(\psi(s) + \chi)$$

or:

$$x(s) = A\sqrt{\beta_x(s)}\cos(\psi(s) + \chi)$$
 $\beta_x(s + L_p) = \beta_x(s)$

Hill's equation: cont'd

$$x'(s) = -A\sqrt{\beta_x(s)}\psi'(s)\sin(\psi(s) + \chi) + \frac{\beta'_x(s)}{2}A\sqrt{1/\beta_x(s)}\cos(\psi(s) + \chi)$$

with

$$\psi'(s) = \frac{1}{\beta_x(s)}$$
 $\frac{\beta_x''}{2}\beta_x - \frac{\beta_x'^2}{4} + k\beta_x^2 = 1$

• Hill's equation x''+k(s)x=0 is satisfied

$$x(s) = A\sqrt{\beta_x(s)}\cos(\psi(s) + \chi)$$
$$x'(s) = -A\sqrt{1/\beta_x(s)}\sin(\psi(s) + \chi) + \frac{\beta'_x(s)}{2}A\sqrt{1/\beta_x(s)}\cos(\psi(s) + \chi)$$

Betatron oscillation

- Beta function β_x(s):
 Describes the envelope of the betatron oscillation in an accelerator
 (β)^{1/2}
 (β)^{1/2}
- Phase advance: $\psi(s) = \int_0^s \frac{1}{\beta_x(s)} ds$
- Betatron tune: number of betatron oscillations in one orbital turn

$$Q_x = \frac{\psi(0 \mid C)}{2\pi} = \oint \frac{ds}{\beta_x(s)} / 2\pi = \frac{R}{\langle \beta_x \rangle}$$

Phase space

In a space of x-x', the betatron oscillation projects an ellipse

Courant-Snyder parameters

- The set of parameter ($\beta_{x_{x}} \alpha_{x}$ and γ_{x}) which describe the phase space ellipse
- Courant-Snyder invariant: the area of the ellipse

$$\varepsilon = \beta_x x'^2 + \gamma_x x^2 + 2\alpha_x xx'$$

Phase space transformation

Transfer Matrix of beam transport

Proof the transport matrix from point 1 to point 2 is

$$\begin{pmatrix} x(s_2) \\ x'(s_2) \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta_2}{\beta_1}} (\cos\psi_{s_2s_1} + \alpha_1 \sin\psi_{s_2s_1}) & \sqrt{\beta_1\beta_2} \sin\psi_{s_2s_1} \\ -\frac{1 + \alpha_1\alpha_2}{\sqrt{\beta_1\beta_2}} \sin\psi_{s_2s_1} + \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1\beta_2}} \cos\psi_{s_2s_1} & \sqrt{\frac{\beta_1}{\beta_2}} (\cos\psi_{s_2s_1} - \alpha_2 \sin\psi_{s_2s_1}) \end{pmatrix} \begin{pmatrix} x(s_1) \\ x'(s_1) \end{pmatrix}$$

Hint:

$$x(s) = A\sqrt{\beta_x(s)}\cos(\psi(s) + \chi)$$
$$x'(s) = -A\sqrt{1/\beta_x(s)}\sin(\psi(s) + \chi) + \frac{\beta'_x(s)}{2}A\sqrt{1/\beta_x(s)}\cos(\psi(s) + \chi)$$

One Turn Map

Transfer matrix of one orbital turn

Stability of transverse motion

Matrix from point I to point 2

$$M_{s_2|s_1} = M_n \cdots M_2 M_1$$

Stable motion requires each transfer matrix to be stable, i.e. its eigen values are in form of oscillation

$$|M - \lambda I| = 0$$
 With $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $det(M) = 1$

$$\lambda^2 - Tr(M)\lambda + \det(M) = 0$$

$$\lambda = \frac{1}{2} Tr(M) \pm \sqrt{\frac{1}{4} [Tr(M)]^2 - 1} \qquad \qquad \left| \frac{1}{2} Tr(M) \right| \le 1.0$$

How to measure betatron oscillation

How to measure betatron tune?

How to measure beta function?

How to measure beam emittance?

Dispersion function

> Transverse trajectory is function of particle momentum.

Dispersion function

Transverse trajectory is function of particle momentum.

$$x'' - \frac{\rho + x}{\rho^2} = -\frac{qB_y}{\gamma m} (1 + \frac{x}{\rho})^2 \qquad B_y = B_0 + B'x$$
$$x'' + \left[\frac{1}{\rho^2} \frac{2p_0 - p}{p} + \frac{B'}{B\rho_0} \frac{p_0}{p}\right] x = \frac{1}{\rho} \frac{\Delta p}{p}$$
$$x = D(s) \frac{\Delta p}{p} \qquad D(s + C) = D(s)$$
$$D'' + \left[\frac{1}{\rho^2} \frac{2p_0 - p}{p} + \frac{B'}{B\rho_0} \frac{p_0}{p}\right] D = \frac{1}{\rho}$$

.

Dispersion function: cont'd

In drift space

$$\frac{1}{\rho} = 0 \quad \text{and} \quad B' = 0 \implies \qquad D'' = 0$$

dispersion function has a constant slope

In dipoles,

$$\frac{1}{\rho} \neq 0 \quad \text{and} \quad B' = 0 \qquad D'' + \left[\frac{1}{\rho^2} \frac{2p_0 - p}{p}\right] D = \frac{1}{\rho}$$

Dispersion function: cont'd

For a focusing quad,

$$\frac{1}{\rho} = 0 \quad \text{and} \quad B' > 0 \qquad \Longrightarrow D'' + B' \frac{p_0}{p} D = 0$$

dispersion function oscillates sinusoidally

For a defocusing quad,

$$\frac{1}{\rho} = 0$$
 and $B' < 0$ $\Rightarrow D'' - B' \frac{p_0}{p} D = 0$

dispersion function evolves exponentially

Compaction factor

The difference of the length of closed orbit between offmomentum particle and on momentum particle, i.e.

$$\frac{\Delta C}{C} = \alpha \frac{\Delta p}{p} = \frac{\oint \left(\rho + D \frac{\Delta p}{p}\right) d\theta - \oint \rho d\theta}{\oint \rho d\theta}$$

$$\alpha \frac{\Delta p}{p} = \langle \frac{D}{\rho} \rangle \frac{\Delta p}{p} \Longrightarrow \alpha = \langle \frac{D}{\rho} \rangle$$

Path length and velocity

▶ For a particle with velocity *v*,

$$L = vT \qquad \frac{\Delta L}{L} = \frac{\Delta v}{v} + \frac{\Delta T}{T} \qquad \frac{\Delta v}{v} = \frac{\Delta \beta}{\beta} = \frac{1}{\gamma^2} \frac{\Delta p}{p}$$

$$\frac{\Delta T}{T} = (\alpha - \frac{1}{\gamma^2})\frac{\Delta p}{p} = (\frac{1}{\gamma_t^2} - \frac{1}{\gamma^2})\frac{\Delta p}{p}$$

- Transition energy γ_t: when particles with different energies spend the same time for each orbital turn
 - Below transition energy: higher energy particle travels faster
 - Above transition energy: higher energy particle travels slower

Chromatic effect

 Comes from the fact the the focusing effect of an quadrupole is momentum dependent

$$\frac{1}{f} = \frac{q}{p} kl \longrightarrow \frac{\text{Particles with different momentum have}}{\text{different betatron tune}}$$

- Higher energy particle has less focusing

Chromaticity: tune spread due to momentum spread

$$\xi_{x,y} = \frac{\Delta Q_{x,y}}{\Delta p / p} \longrightarrow \text{ momentum spread}$$

Chromaticity

Transfer matrix of a thin quadrupole

$$M = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ -\frac{1}{f}(1 - \frac{\Delta p}{p}) & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} \frac{\Delta p}{p} & 1 \end{pmatrix}$$

Transfer matrix
$$M(s + C, s) = M(B, A) \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$$
$$= M(B, A) \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} \frac{\Delta p}{p} & 1 \end{pmatrix}$$
Chromaticity

$$M(s+C,s) = \begin{pmatrix} (\cos 2\pi Q_x + \alpha_{x,s_0} \sin 2\pi Q_x) & \beta_{x,s_0} \sin 2\pi Q_x \\ -\frac{1 + \alpha_{x,s_0}^2}{\beta_{x,s_0}} \sin 2\pi Q_x & (\cos 2\pi Q_x - \alpha_{x,s_0} \sin 2\pi Q_x) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} \frac{\Delta p}{p} & 1 \end{pmatrix}$$
$$= \begin{pmatrix} (\cos 2\pi Q_x + \alpha_{x,s_0} \sin 2\pi Q_x) + \frac{1}{f} \frac{\Delta p}{p} \beta_{x,s_0} \sin 2\pi Q_x & \beta_{x,s_0} \sin 2\pi Q_x \\ -\frac{1 + \alpha_{x,s_0}^2}{\beta_{x,s_0}} \sin 2\pi Q_x + (\cos 2\pi Q_x - \alpha_{x,s_0} \sin 2\pi Q_x) \frac{1}{f} \frac{\Delta p}{p} & (\cos 2\pi Q_x - \alpha_{x,s_0} \sin 2\pi Q_x) \\ \cos [2\pi (Q_x + \Delta Q_x)] = \frac{1}{2} Tr(M(s+C,s))$$
$$\cos [2\pi (Q_x + \Delta Q_x)] = \cos 2\pi Q_x + \frac{1}{2} \beta_{x,s_0} \sin 2\pi Q_x \frac{1}{f} \frac{\Delta p}{p}$$

Chromaticity

$$\cos[2\pi(Q_x + \Delta Q_x)] = \cos 2\pi Q_x + \frac{1}{2}\beta_{x,s_0}\sin 2\pi Q_x \frac{1}{f}\frac{\Delta p}{p}$$

Assuming the tune change due to momentum difference is small

$$\cos 2\pi Q_x - 2\pi \Delta Q_x \sin 2\pi Q_x = \cos 2\pi Q_x + \frac{1}{2}\beta_{x,s_0} \sin 2\pi Q_x \frac{1}{f}\frac{\Delta p}{p}$$
$$\Delta Q_x = -\frac{1}{4\pi}\beta_{x,s_0}\frac{1}{f}\frac{\Delta p}{p} \qquad \xi_x = \frac{\Delta Q_x}{\Delta p/p} = -\frac{1}{4\pi}\frac{1}{f}\beta(s)$$
$$\xi_x = \frac{\Delta Q_x}{\Delta p/p} = -\frac{1}{4\pi}\sum_i k_i\beta_{x,i}$$

Chromaticity of a FODO cell

Chromaticity correction

- Nature chromaticity can be large and can result to large tune spread and get close to resonance condition
- Solution:
 - A special magnet which provides stronger focusing for particles with higher energy: sextupole

Sextupole

$$B_x = mxy$$
$$B_y = \frac{1}{2}m(x^2 - y^2)$$

Focusing strength in horizontal plane:

$$B'_{y} = mx$$

Place sextupole after a bending dipole where dispersion function is non zero

$$B'_{y} = mx = mD\frac{\Delta p}{p} > 0$$

- dipole errors
- quadrupole errors
- resonance

Closed orbit distortion

- Dipole kicks can cause particle's trajectory deviate away from the designed orbit
 - Dipole error
 - Quadrupole misalignment
- Assuming a circular ring with a single dipole error, closed orbit then becomes:

$$\begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = M(s,s_0) [M(s_0,s) \begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} + \begin{pmatrix} 0 \\ \theta \end{pmatrix}]$$

Closed orbit: single dipole error

Let's first solve the closed orbit at the location where the dipole error is

$$\begin{pmatrix} x(s_0) \\ x'(s_0) \end{pmatrix} = M(s_0 + C, s_0) \begin{pmatrix} x(s_0) \\ x'(s_0) \end{pmatrix} + \begin{pmatrix} 0 \\ \theta \end{pmatrix}$$

$$x(s_0) = \beta_x(s_0) \frac{\theta}{2\sin \pi Q_x} \cos \pi Q_x$$

$$x(s) = \sqrt{\beta_x(s_0)\beta_x(s)} \frac{\theta}{2\sin\pi Q_x} \cos[\psi(s,s_0) - \pi Q_x]$$

The closed orbit distortion reaches its maximum at the opposite side of the dipole error location

Closed orbit distortion

In the case of multiple dipole errors distributed around the ring. The closed orbit is

$$x(s) = \sqrt{\beta_x(s)} \sum_i \sqrt{\beta_x(s_i)} \frac{\theta_i}{2\sin \pi Q_x} \cos[\psi(s_i, s_0) - \pi Q_x]$$

- Amplitude of the closed orbit distortion is inversely proportion to $sin \pi Q_{x,y}$
 - No stable orbit if tune is integer!

Measure closed orbit

Distribute beam position monitors around ring.

Control closed orbit

minimized the closed orbit distortion.

- Large closed orbit distortions cause limitation on the physical aperture
- Need dipole correctors and beam position monitors distributed around the ring
 - Assuming we have m beam position monitors and n dipole correctors, the response at each beam position monitor from the n correctors is:

$$x_k = \sqrt{\beta_{x,k}} \sum_{k=1}^n \sqrt{\beta_{x,i}} \frac{\theta_i}{2\sin \pi Q_x} \cos[\psi(s_i, s_0) - \pi Q_x]$$

Control closed orbit

• Or, $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = (M) \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix}$

• To cancel the closed orbit measured at all the bpms, the correctors are then

$$\begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix} = \left(M^{-1} \right) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

Quadrupole errors

- Misalignment of quadrupoles
 - dipole-like error: kx
 - results in closed orbit distortion
- Gradient error:
 - Cause betatron tune shift
 - induce beta function deviation: beta beat

Tune change due to a single gradient error

• Suppose a quadrupole has an error in its gradient, i.e.

$$M = \begin{pmatrix} 1 & 0 \\ -k & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ -(k + \Delta k) & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -k & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\Delta k & 1 \end{pmatrix}$$

$$M(s+C,s) = \begin{pmatrix} (\cos 2\pi Q_{x0} + \alpha_{x,s_0} \sin 2\pi Q_{x0}) & \beta_{x,s_0} \sin 2\pi Q_{x0} \\ -\frac{1 + \alpha_{x,s_0}^2}{\beta_{x,s_0}} \sin 2\pi Q_{x0} & (\cos 2\pi Q_{x0} - \alpha_{x,s_0} \sin 2\pi Q_{x0}) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\Delta k & 1 \end{pmatrix}$$

$$\cos 2\pi (Q_{x0} + \delta Q_x) = \frac{1}{2} Tr(M(s+C,s)) \qquad \delta Q_x = \frac{1}{4\pi} \beta_{x,s_0} \Delta k$$

Tune shift due to multiple gradient errors

In a circular ring with a multipole gradient errors, the tune shift is

$$\delta Q_x = \frac{1}{4\pi} \sum_i \beta_{x,s_i} \Delta k_i$$

Beta beat

▶ In a circular ring with a gradient error at s0, the tune shift is

S₀

$$M(s+C,s) = M(s,s_0) \begin{pmatrix} 1 & 0 \\ -\Delta k & 1 \end{pmatrix} M(s_0,s)$$

$$\beta_{x}(s)\sin 2\pi Q_{x} = \beta_{x0}(s)\sin 2\pi Q_{x0} + \Delta k \frac{\beta_{x0}(s)\beta_{x0}(s_{0})}{2} [\cos(2\pi Q_{x0} + 2|\Delta \psi_{s,s0}|)]$$

$$\frac{\Delta\beta}{\beta} = \Delta k \frac{\beta_{x0}(s_0)}{2\sin 2\pi Q_{x0}} \cos(2\pi Q_{x0} + 2|\Delta\psi_{s,s0}|)$$

Unstable betatron motion if tune is half integer!

Resonance condition

• Tune change due to a single quadrupole error

$$\cos[2\pi(Q_{x0} + \delta Q_x)] = \cos 2\pi Q_{x0} - \frac{1}{2}\beta_{x,s_0}\Delta k \sin 2\pi Q_{x0}$$

• If $Q_{x0} = (2k+1)\frac{1}{2} + \varepsilon$, the above equation becomes

$$\cos[2\pi(Q_{x0} + \delta Q_x)] \approx 1 + \frac{1}{2}\beta_{x,s_0}\Delta k\varepsilon$$
and Qx can become a complex number which means the

betatron motion can become unstable

resonance

FFT and Nyquist Theorem

Fourier transform

 Computes the response in frequency domain of a time domain function x(t)

$$x(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt$$

 For a simple harmonic oscillator, its frequency response is a delta function at its oscillating frequency.

Fast Fourier transform

- Discrete Fourier transform
 - For a signal which is sampled at a frequency of fs

$$X_k = \sum_{m=1}^N x_m e^{-i2\pi k \frac{m}{N}}$$

- Calculates the response at frequency km/N
- ▶ For large data sets, a lot of computations, O(N²)
- FFT: Optimized DFT algorithm, , O(N/logN)
- sample algorithms can be found in Numerical Recipes.

Nyquist theorem

- FFT(DFT) can only extract frequency less than half of the sampling frequency
- For tune measurement using FFT of turn by turn beam position data
 - ▶ FFT spectrum is: 0 0.5
 - Can't determine the integer part of the tune

Transverse Resonances

- Linear coupling
- resonances mechanisms
- Resonance conditions
- 3rd order resonances

Source of linear coupling

Skew quadrupole

$$B_{x} = -qx; \quad B_{y} = qy$$
$$x'' + K_{x}(s)^{2}x = -\frac{B_{y}l}{B\rho} = -qy$$
$$y'' + K_{y}(s)^{2}y = \frac{B_{x}l}{B\rho} = -qx$$

Coupled harmonic oscillator

Equation of motion

$$x'' + \omega_x^2 x = q^2 y$$
 $y'' + \omega_y^2 y = q^2 x$

• Assume solutions are:

$$x = Ae^{i\omega t} \quad y = Be^{i\omega t}$$

$$-\omega^2 A + \omega_x^2 A = q^2 B \quad -\omega^2 B + \omega_y^2 B = q^2 A$$

$$(\omega_x^2 - \omega^2)(\omega_y^2 - \omega^2) = q^4$$

$$\omega^2 = \frac{\omega_x^2 + \omega_y^2 \pm \sqrt{(\omega_x^2 - \omega_y^2)^2 + 4q^4}}{2}$$

Coupled harmonic oscillator

$$\omega^{2} = \frac{\omega_{x}^{2} + \omega_{y}^{2} \pm \sqrt{(\omega_{x}^{2} - \omega_{y}^{2})^{2} + 4q^{4}}}{2}$$

- The two frequencies of the harmonic oscillator are functions of the two unperturbed frequencies
- When the unperturbed frequencies are the same, a minimum frequency difference 2

 $\Delta \omega \approx$

(1)

Resonance mechanism

- Errors in the accelerators perturbs beam motions
- Coherent buildup of perturbations

Driven harmonic oscillator

Equation of motion

$$\frac{d^2x(t)}{dt^2} + \omega^2 x(t) = f(t) = \sum_{m=0}^{\infty} C_m e^{i\omega_m t}$$

• for
$$f(t) = C_m e^{i\omega_m t}$$

$$\frac{d^2 x(t)}{dt^2} + \omega^2 x(t) = C_m e^{i\omega_m t}$$

• Assume solution is like $x(t) = Ae^{i\omega t} + A_m e^{i\omega_m t}$

$$A_m = \frac{C_m}{\omega^2 - \omega_m^2}$$

Resonance response

• Response of the harmonic oscillator to a periodic force is

Betatron oscillation

Equation of motion

$$x''+K(s)x = 0 K(s+L_p) = K(s)$$
$$x = A\sqrt{\beta_x}\cos(\psi + \chi)$$

 In the presence of field errors including mis-aglinments, the equation of motion then becomes

where

$$X''+K(s)x = -\frac{\Delta B_y}{B\rho}$$

$$\Delta B_y = B_0(b_0 + b_1x + b_2x^2 +)$$
Dipole error quadrupole error sextupole error

Floquet Transformation

• Re-define () as:

$$x''+K(s)x = 0 \quad K(s+L_p) = K(s)$$

$$\zeta(s) = x(s)/\sqrt{\beta_x(s)} \quad \phi(s) = \psi(s)/Q_x \quad \text{or } \phi' = 1/(Q_x\beta_x)$$

 In the presence of field errors including mis-aglinments, the equation of motion then becomes

where $\frac{d^2 \zeta}{d\phi^2} + Q_x^2 \zeta = -Q_x^2 \beta_x^{3/2} \frac{\Delta B_y}{B\rho}$ $\frac{d^2 \zeta}{d\phi^2} + Q_x^2 \zeta = -\frac{Q_x^2 B_0}{B\rho} [b_0 + \beta_x b_1 \zeta + \beta_x^2 b_2 \zeta^2 + \cdots]$

Resonance contd

• For each n:

$$\frac{d^2\zeta}{d\phi^2} + Q_x^2\zeta = -\frac{Q_x^2\beta_x^{3/2}}{B\rho}\beta_x^n b_n\zeta^n$$

 When the term on the right side of the equation contain same frequency as Qx, a resonance occurs. And the solution has a form of

$$\zeta = A_k e^{-iQ_x\phi}$$

• Express the perturbation term as:

Resonance condition

In the absence of coupling between horizontal and vertical

$$k = (n+1)Q_{x,y}$$

error	n	
dipole	0	Qx,y=integer
quadrupole	I	2Qx,y=integer
Sextupole	2	3Qx,y=integer
Octupole	3	4Qx,y=integer

In the presence of coupling between horizontal and vertical

$$MQ_x + NQ_y = k$$

Tune diagram

- the resonance strength decreases as the order goes higher
- the working point should be located in an area between resonances there are enough tune space to accommodate tune spread of the beam

Phase space: 3rd order resonance

Phase space: 4th order resonane

