
Magnets and Lattices 

-  Accelerator building blocks  
-  Transverse beam dynamics 
-  coordinate system 



 

  Both electric field and magnetic field can be used to guide 
the particles path. 

  Magnetic field is more effective for high energy particles, 
i.e. particles with higher velocity. 
-  For a relativistic particle, what kind of the electric field one 

needs to match the Lorentz force from a 1 Telsla magnetic 
field? 
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  Dipoles: uniform magnetic field in the gap 
-  Bending dipoles 
- Orbit steering 

  Quadrupoles 
-  Providing focusing field to keep beam from being diverged 

  Sextupoles:  
-  Provide corrections of chromatic effect of beam dynamics 

  Higher order multipoles 



  Two magnetic poles 
separated by a gap  

  homogeneous magnetic 
field between the gap 

  Bending, steering, injection, 
extraction 
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  For synchrotron, bending field is proportional to the 
beam energy 

                         ;   where p is the momentum of the particle and q              

                                 is the charge of the particle 
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Quadrupole 

  Magnetic field is proportional to the distance 
from the center of the magnet 

  Produced by 4 poles which are shaped as 

  Providing focusing/defoucsing to the particle 
  Particle going through the center: F=0 
  Particle going off center 
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Quadrupole magnet 

  Theorem 

  Pick the loop for integral 

For the gap is filled with air,  
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Focusing from quadrupole 

  Required by Maxwell equation, a single quadrupole can 
has to provide focusing in one plane and defocusing in 
the other plane  € 
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Transfer matrix of a qudruploe 

  Thin lens: length of quadrupole is negligible to the 
displacement relative to the center of the magnet  
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Transfer matrix of a drift space 

  Transfer matrix of a drift space 
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Lattice 

  Arrangement of magnets: structure of beam line 

  Bending dipoles, Quadrupoles, Steering dipoles, Drift space and 
Other insertion elements 

  Example: 
  FODO cell: alternating arrangement between focusing and 

defocusing quadrupoles 
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FODO lattice 
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  Net effect is focusing  
  Provide focusing in both planes! 



Curverlinear coordinate system 

  Coordinate system to describe particle motion in an 
accelerator.  

  Moves with the particle 

Set of unit vectors: 
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Equation of motion 

  Equation of motion in transverse plane 
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Equation of motion 
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Equation of motion 
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Solution of equation of motion  

  Comparison with harmonic oscillator: A system with a 
restoring force which is proportional to the distance from 
its equilibrium position, i.e. Hooker’s Law: 
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x(t) = Acos( kt + χ)

Where k is the spring constant 
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transverse motion: betatron oscillation 

  The general case of equation of motion in an accelerator  
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  For k > 0 

Where k can also be negative 

  For k < 0 



Hill's equation 

  In an accelerator which consists individual magnets, the 
equation of motion can be expressed as,   

  Here, k(s) is an periodic function of Lp, which is the length of 
the periodicity of the lattice, i.e. the magnet arrangement. It 
can be the circumference of machine or part of it. 

  Similar to harmonic oscillator, expect solution as 

  or: 
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Hill’s equation: cont’d 
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  Hill’s equation                               is satisfied 
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Betatron oscillation 

  Beta function           : 
  Describes the envelope of the betatron oscillation in an accelerator 

  Phase advance: 

  Betatron tune: number of betatron oscillations in one orbital turn  
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Phase space 

€ 

βx x '
2 +γ x x

2 + 2αx xx'= ε

€ 

βxγ x =1+αx
2

  In a space of x-x’, the betatron oscillation projects an ellipse 
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Courant-Snyder parameters 
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ε = βx x '
2 +γ x x

2 + 2αx xx'

  The set of parameter (βx, αx and γx) which describe the 
phase space ellipse 

  Courant-Snyder invariant: the area of the ellipse 



Phase space transformation 

  In a drift space from point 1 to point 2 
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  Effect of a focusing quadrupole 

Focusing quad 
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Transfer Matrix of beam transport 

  Proof the transport matrix from point 1 to point 2 is 

€ 

x(s2)
x '(s2)
 

 
 

 

 
 =

β2
β1
(cosψs2s1

+α1 sinψs2s1
) β1β2 sinψs2s1

−
1+α1α2

β1β2
sinψs2s1

+
α1 −α2

β1β2
cosψs2s1

β1
β2
(cosψs2s1

−α2 sinψs2s1
)

 

 

 
 
 
 

 

 

 
 
 
 

x(s1)
x '(s1)
 

 
 

 

 
 

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

x'(s) = −A 1/βx s( ) sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)

  Hint: 



One Turn Map 

  Transfer matrix of one orbital turn 
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Tr(Ms,s+C ) = 2cos2πQx
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  Closed orbit: 
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Stable condition 



Stability of transverse motion 

  Matrix from point 1 to point 2 
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  Stable motion requires each transfer matrix to be stable, i.e. its 
eigen values are in form of oscillation 
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How to measure betatron oscillation 

  How to measure betatron tune? 

  How to measure beta function? 

  How to measure beam emittance? 



Dispersion function 

  Transverse trajectory is function of particle momentum.   
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Dispersion function 

  Transverse trajectory is function of particle momentum.   
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Dispersion function: cont’d 

  In drift space 

   dispersion function has a constant slope   
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Dispersion function: cont’d 

  For a focusing quad,  

   dispersion function oscillates sinusoidally   
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Compaction factor 

  The difference of the length of closed orbit between off-
momentum particle and on momentum particle, i.e.  
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Path length and velocity 

  For a particle with velocity v,   

  Transition energy    :  when particles with different energies 
spend the same time for each orbital turn 
-  Below transition energy:  higher energy particle travels faster 
- Above transition energy: higher energy particle travels slower  € 
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Chromatic effect 

  Comes from the fact the the focusing effect of an 
quadrupole is momentum dependent 

- Higher energy particle has less focusing 
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  Chromaticity: tune spread due to momentum spread 
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Particles with different momentum have 
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Tune spread 



Chromaticity 

  Transfer matrix 
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  Transfer matrix of a thin quadrupole 



Chromaticity 
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Chromaticity 
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Chromaticity of a FODO cell 
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Chromaticity correction 

  Nature chromaticity can be large and can result to large 
tune spread and get close to resonance condition 

  Solution: 
-  A special magnet which provides stronger focusing for particles 

with higher energy: sextupole   
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Sextupole 

  Focusing strength in horizontal 
plane: 
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  Place sextupole after a bending dipole 
where dispersion function is non zero 



Effects of Errors 

-  dipole errors  
-  quadrupole errors 
-  resonance 



Closed orbit distortion 

  Dipole kicks can cause particle’s trajectory deviate away from 
the designed orbit 
-  Dipole error 
-  Quadrupole misalignment 
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  Assuming a circular ring with a single 
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Closed orbit: single dipole error 
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  Let’s first solve the closed orbit at the location where the 
dipole error is 
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x(s) = βx (s0)βx (s)
θ

2sinπQx

cos ψ(s,s0) −πQx[ ]
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x(s0) = βx (s0)
θ

2sinπQx

cosπQx

  The closed orbit distortion reaches its maximum at the 
opposite side of the dipole error location  



Closed orbit distortion 

  In the case of multiple dipole errors distributed around the 
ring. The closed orbit is 
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x(s) = βx (s) βx (si)
i
∑ θi

2sinπQx

cos ψ(si,s0) −πQx[ ]

  Amplitude of the closed orbit distortion is inversely 
proportion to sinπQx,y 
- No stable orbit if tune is integer! 



Measure closed orbit 

  Distribute beam position monitors around ring. 



Control closed orbit 

  minimized the closed orbit distortion. 
  Large closed orbit distortions cause limitation on the 

physical aperture  
  Need dipole correctors and beam position monitors 

distributed around the ring 
  Assuming we have m beam position monitors and n 

dipole correctors, the response at each beam 
position monitor from the n correctors is:  
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Control closed orbit 

  Or, 

  To cancel the closed orbit measured at all the bpms, the 
correctors are then 
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Quadrupole errors 

  Misalignment of quadrupoles 
-  dipole-like error: kx 
-  results in closed orbit distortion 

  Gradient error: 
- Cause betatron tune shift 
-  induce beta function deviation: beta beat 



Tune change due to a single gradient error 

  Suppose a quadrupole has an error in its gradient, i.e. 
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Tune shift due to multiple gradient errors 

  In a circular ring with a multipole gradient errors, the tune 
shift is 
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Beta beat 

  In a circular ring with a gradient error at s0, the tune shift is 
s0 
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Unstable betatron motion if tune is half integer! 



Resonance condition 

  Tune change due to a single quadrupole error 
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  If                            , the above equation becomes 

    and Qx can become a complex number which means the 
betatron motion can become unstable 
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resonance  
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FFT and Nyquist Theorem 



Fourier transform 

  Computes the response in frequency domain of a time domain 
function x(t) 

  For a simple harmonic oscillator, its frequency response is a 
delta function at its oscillating frequency. 
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x( f ) =
1
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Fast Fourier transform 

  Discrete Fourier transform 
  For a signal which is sampled at a frequency of fs  

€ 

Xk = xme
−i2πk m

N

m=1

N

∑

  Calculates the response at frequency km/N 
  For large data sets, a lot of computations, O(N2) 

  FFT: Optimized DFT algorithm, , O(N/logN) 
   sample algorithms can be found in Numerical Recipes. 



Nyquist theorem 

  FFT(DFT) can only extract frequency less than half of the 
sampling frequency 

  For tune measurement using FFT of turn by turn beam 
position data 
  FFT spectrum is: 0 – 0.5 
  Can’t determine the integer part of the tune 



Transverse Resonances 

-  Linear coupling 
-  resonances mechanisms 
-  Resonance conditions 
-  3rd order resonances 



Source of linear coupling 

  Skew quadrupole 

€ 

x' '+Kx (s)
2 x = −

Byl
Bρ

= −qy

€ 

y' '+Ky (s)
2 y =

Bxl
Bρ

= −qx
€ 

Bx = −qx; By = qy



Coupled harmonic oscillator 

  Equation of motion 
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Coupled harmonic oscillator 

  The two frequencies of the 
harmonic oscillator are 
functions of the two 
unperturbed frequencies 

  When the unperturbed 
frequencies are the same, a 
minimum frequency 
difference 

€ 

ω 2 =
ωx
2 +ωy

2 ± (ωx
2 −ωy

2)2 + 4q4

2

€ 

ωx

€ 

ωy

€ 

ω1

€ 

ω2

€ 

Δω ≈
q2

ω



Resonance mechanism 

  Errors in the accelerators perturbs beam motions 
  Coherent buildup of perturbations 



Driven harmonic oscillator 

  Equation of motion 

€ 

d2x(t)
dt 2

+ω 2x(t) = f (t)

€ 

f (t) = Cme
iωmt

€ 

x(t) = Aeiωt + Ame
iωmt

€ 

d2x(t)
dt 2

+ω 2x(t) = Cme
iωmt

€ 

= Cme
iωmt

m= 0
∑

  for 

  Assume solution is like 

€ 

Am =
Cm

ω 2 −ωm
2



Resonance response 

€ 

x(t) = Aeiωt +
Cm

ω 2 −ωm
2

  Response of the harmonic oscillator to a periodic force is 

€ 

ωm

€ 

ωm

€ 

ω



Betatron oscillation 

  Equation of motion 

  In the presence of field errors including mis-aglinments, the 
equation of motion then becomes 

€ 

x = A βx cos(ψ + χ)

€ 

x' '+K(s)x = 0

€ 

K(s+ Lp ) = K(s)

€ 

x' '+K(s)x = −
ΔBy

Bρ

€ 

ΔBy = B0(b0 + b1x + b2x
2 + ....)

Dipole error!  quadrupole error! sextupole error!

where 



Floquet Transformation 

  Re-define () as:  

  In the presence of field errors including mis-aglinments, the 
equation of motion then becomes 

€ 

ζ (s) = x(s) / βx (s)

€ 

x' '+K(s)x = 0

€ 

K(s+ Lp ) = K(s)

€ 

d2ζ
dφ 2

+Qx
2ζ = −Qx

2βx
3 / 2 ΔBy

Bρwhere 

€ 

φ(s) =ψ(s) /Qx or φ'=1/(Qxβx )

  

€ 

d2ζ
dφ 2

+Qx
2ζ = −

Qx
2B0
Bρ

[b0 + βxb1ζ + βx
2b2ζ

2 +]



Resonance contd 

  For each n: 

  When the term on the right side of the equation contain same 
frequency as Qx, a resonance occurs.  And the solution has a form of   

€ 

βx
(n+3)/ 2bn = ck

k
∑ eikφ

€ 

k − nQx =Qx

€ 

d2ζ
dφ 2

+Qx
2ζ = −

Qx
2βx

3 / 2

Bρ
βx
nbnζ

n

  Express the perturbation term as:  

€ 

ζ = Ake
−iQxφ

€ 

k = (n +1)Qx



Resonance condition 

error n 
dipole 0 Qx,y=integer 

quadrupole 1 2Qx,y=integer 

Sextupole 2 3Qx,y=integer 

Octupole 3 4Qx,y=integer 

  In the absence of coupling between horizontal and vertical 

€ 

k = (n +1)Qx,y

  In the presence of coupling between horizontal and vertical 

€ 

MQx + NQy = k



Tune diagram 

•  the resonance strength  
  decreases as the order  
  goes higher 

•  the working point should 
  be located in an area  
  between resonances 
  there are enough tune  
  space to accommodate  
  tune spread of the beam 



Phase space: 3rd order resonance 

X’ 

Px 

€ 

Px = βx x '+αx x = −A βx sinψ

€ 

x = A βx cosψ

In the phase space of x, Px 

•  separatrix: boundery between 
                    stable region and 
                    unstable region 
•  Fixed points: where  

€ 

dx
dn

=
dPx
dn

= 0



Phase space: 4th order resonane 


