TM-CLASS CAVITY DESIGN

Jean Delayen

Thomas Jefferson National Accelerator Facility Old Dominion University

500 MHz, Single-cell

350 MHz, 4-cell, Nb on Cu

1500 MHz, 5-cell

1300 MHz 9-cell

Pill Box Cavity

Thomas Jefferson National Accelerator Facility

Modes in Pill Box Cavity

- TM₀₁₀
 - Electric field is purely longitudinal
 - Electric and magnetic fields have no angular dependence
 - Frequency depends only on radius, independent on length
- TM_{0mn}
 - Monopoles modes that can couple to the beam and exchange energy
- **TM**_{1mn}
 - Dipole modes that can deflect the beam
- TE modes
 - No longitudinal E field
 - Cannot couple to the beam

TM Modes in a Pill Box Cavity

$$\frac{E_r}{E_0} = -\frac{n\pi}{x_{lm}} \frac{R}{L} J_l' \left(x_{lm} \frac{r}{R} \right) \sin\left(n\pi \frac{z}{L}\right) \cos l\varphi$$

$$\frac{E_{\varphi}}{E_0} = \frac{ln\pi}{x_{lm}^2} \frac{R^2}{rL} J_l \left(x_{lm} \frac{r}{R} \right) \sin\left(n\pi \frac{z}{L}\right) \sin l\varphi$$

$$\frac{E_z}{E_0} = J_l \left(x_{lm} \frac{r}{R} \right) \sin\left(n\pi \frac{z}{L}\right) \cos l\varphi$$

$$\omega_{lmn} = c_{\sqrt{\left(\frac{x_{lm}}{R}\right)^2 + \left(\frac{\pi n}{L}\right)^2}}$$

$$\frac{H_r}{E_0} = -i\omega\varepsilon \frac{l}{x_{lm}^2} \frac{R^2}{r} J_l \left(x_{lm} \frac{r}{R} \right) \cos\left(n\pi \frac{z}{L} \right) \sin l\varphi$$
$$\frac{H_{\varphi}}{E_0} = -i\omega\varepsilon \frac{R}{x_{lm}} J_l' \left(x_{lm} \frac{r}{R} \right) \cos\left(n\pi \frac{z}{L} \right) \cos l\varphi$$
$$\frac{H_z}{E_0} = 0$$

$$x_{lm}$$
 is the mth root of $J_l(x)$

TM₀₁₀ Mode in a Pill Box Cavity

$$E_r = E_{\varphi} = 0 \qquad \qquad E_z = E_0 J_0 \left(x_{01} \frac{r}{R} \right)$$
$$H_r = H_z = 0 \qquad \qquad H_{\varphi} = -i\omega \varepsilon E_0 \frac{R}{x_{01}} J_1 \left(x_{01} \frac{r}{R} \right)$$

$$\omega = x_{01} \frac{c}{R}$$
 $x_{01} = 2.405$

$$R = \frac{x_{01}}{2\pi}\lambda = 0.383\lambda$$

TM₀₁₀ Mode in a Pill Box Cavity

Energy content

$$U = \varepsilon_0 E_0^2 \frac{\pi}{2} J_1^2(x_{01}) LR^2$$

Power dissipation x $P = E_0^2 \frac{R_s}{\eta^2} \pi J_1^2(x_{01})(R+L)R \qquad J$

$$x_{01} = 2.40483$$
$$J_1(x_{01}) = 0.51915$$

Geometrical factor

$$G = \eta \frac{x_{01}}{2} \frac{L}{(R+L)}$$

TM010 Mode in a Pill Box Cavity

Energy Gain

$$\Delta W = E_0 \frac{\lambda}{\pi} \sin \frac{\pi L}{\lambda}$$

Gradient

$$E_{acc} = \frac{\Delta W}{\lambda/2} = E_0 \frac{2}{\pi} \sin \frac{\pi L}{\lambda}$$

Shunt impedance

$$R_{sh} = \frac{\eta^2}{R_s} \frac{1}{\pi^3 J_1^2(x_{01})} \frac{\lambda^2}{R(R+L)} \sin^2\left(\frac{\pi L}{\lambda}\right)$$

Real Cavities

Beam tubes reduce the electric field on axis

Real Cavities

Single Cell Cavities

Single Cell Cavities

Multi-Cell Cavities

Multi-Cell Cavities

: Sketch of the electric field lines of the π -mode of a 5-cell :

Cell-to-cell Coupling

0 mode

 \mathcal{W}_0

 $\pi \mod \omega_{\pi}$

 $k = \frac{2(\omega_{\pi} - \omega_0)}{\omega_{\pi} + \omega_0}$

Multi-Cell Cavities

Mode frequencies:

$$\frac{\omega_m^2}{\omega_0^2} = 1 + 2k \left(1 - \cos \frac{\pi m}{n} \right)$$
$$\frac{\omega_n - \omega_{n-1}}{\omega_0} \approx k \left(1 - \cos \frac{\pi}{n} \right) \approx \frac{k}{2} \left(\frac{\pi}{n} \right)^2$$

Voltages in cells:

$$V_j^m = \sin\left(\pi m \frac{2j-1}{2n}\right)$$

Pass-Band Modes Frequencies

Cell Excitations in Pass-Band Modes

Jefferson Lab

Field Flatness

Geometrical differences between cells causes a mixing of the eigenmodes

Sensitivity to mechanical deformation depends on mode spacing

Mechanical Design

The mechanical design of a cavity follows its RF design:

- **Lorentz Force Detuning** •
- **Mechanical Resonances** •

E and *H* at $E_{acc} = 25 \text{ MV/m}$ in TESLA inner-cup

Mechanical Design

 $k_L = -1 \ Hz/(MV/m)^2$

Essential for the operation of a pulsed accelerator $\Delta f = k_L (E_{acc})^2$

Mechanical Design

Mechanical Resonances of a multi-cell cavity

TESLA structure

The mechanical resonances modulate frequency of the accelerating mode. Sources of their excitation: vacuum pumps, ground vibrations...

Cell Shape Parametrization

Tools used for the parametrization

Using of the parametric tool developed at *INFN Milano* for the analysis of the cavity shape on the electromagnetic parameters:

- All RF computations are handled by SUPERFISH
- Inner cell tuning is performed through the cell diameter, all the characteristic cell parameters stay constant: R, r, , d, L, Riris
- End cell tuning is performed through the wall angle inclination, , or distance, d.
 - R, L and Riris are independently settable.
- Multicell cavity is then built to minimize the field unflatness, compute the effective and the final cavity performances.
- A proper file to transfer the cavity geometry to ANSYS is then generated

6 cell cavity [Internal Cell: 671 Left Cell: 106 Right Cell: 8 From database: C:\BCavWF\Cav2504.mdb]

beta

Thomas Jefferson National Accelerator Facility

Quit 4/27/00 5:31 PM

R: "mechanical" parameter

- The equator aspect ratio (R) is a free parameter for what concerns the -mode e.m. design but the cavity mechanical parameters are greatly affected by the equator shape: R>1 allows better stress distribution in the unstiffened cavity but a bigger Lorentz force coefficient
- The cell tuning strategy doesn't affect the cell's performances (e.m. and mechanical)

Reference data						
L = 56.8 mm r = 1.7 $\alpha = 7^{\circ}$						
$d = 11 \text{ mm}$ $R_{iris} = 43 \text{ mm}$						

Optimal value for r

Optimal value for r

Influence of d @ constant R_{iris}

 Better mechanical performances are reached with decreasing d

Thomas Jefferson National Accelerator Facility

0.8

2.5

2

1.5

-82

1 71

0.9

1.61

d [cm] @ r = b/a optimal

1.53

1.1

1.46

1.2

 $\alpha = 7^{\circ}$

30

25

20

10

5

0

139

1.3

15 **g**

Influence of d @ constant k

• If we want to keep a constant cell to cell coupling we have to adjust Riris

Dependence on $\boldsymbol{\alpha}$

The wall angle α slightly affects all the e.m. parameters, but has a strong effect on the

mechanical performances:

- Lower values are preferred for Lorentz force detuning
- Too small α could be critical for chemistry and cleaning

Chosen $\alpha = 7 \text{ deg}$

End cell tune

- d set 1 mm lower than the in-cell
- optimization of $\mathbf{r} = \mathbf{b}/\mathbf{a}$ at iris
- Slater compensation (decrease of the magnetic volume) of the cut-off tube and d reduction (↓f), increasing the wall angle α. This gives also the necessary stiffening to the end cell
- the frequency of end cell + tube is about 50 kHz lower than the in-cell's due to the asimmetry

End cell @ FPC side tune

Optimal stiffening ring position

Jefferson Lab

KL for different boundary conditions

- The estimate for KL strongly depends on the cell boundaries. We compute it for 3 different cases:
 - Fixed cell length
 - Free cell length
 - Helium Vessel/Tuning System (= 3 tubes with diameter 30 mm and thickness 2 mm)

β_g = 0.61 Cavity for SNS

Effective β that matches the TTF curve = 0.630

E _p /E _{acc} B _p /E _{acc} [mT/(MV/m)]	2.72 (2.63 inner cell) 5.73 (5.44 inner cell)	
R/Q [Ω]	279	
G [Ω]	214 $\bigcirc \bigcirc \bigcirc$	
k [%]	1.53	
Q _{BCS} @ 2 K [10 ⁹]	27.8	
Frequency [MHz]	805.000	
Field Flatness [%]	2	

Nb thickness = 3.8 mm-

 $KL70 = -2.9 [Hz/(MV/m)^2]$ $KL80 = -3.4 [Hz/(MV/m)^2]$

	Geo	ometrical Parameters		
	Inner cell	End Cell Left	End Grou	ıp (coupler)
			Left	Right
L [cm]	5.68	5.68	5.	68
R _{iris} [cm]	4.3	4.3	4.3	6.5
D [cm]	16.376	16.376	16.	698
d [cm]	1.1	1.0	1.1	1.0
r	1.7	1.5	1.7	1.5
R	1.0	1.0	1	.0
α [deg]	7.0	8.36	7.0	10.0

β_g = 0.81 Cavity for SNS

Effective β that matches the TTF curve = 0.832

E_p/E_{acc}	2.19 (2.14 inner	cell)		
B _p /E _{acc} [mT/(MV/m)]	4.72 (4.58 inner	cell)		
R/Q [Ω]	484.8		\bigtriangleup	
G [Ω]	233			
k [%]	1.52			
Q _{BCS} @ 2 K [10 ⁹]	36.2			
Frequency [MHz]	805.004 KI	.70 = -0.7 [Hz/(MV/m) ²] KL80 = ·	-0.8 [Hz/(MV/m) ²]
Field Flatness [%]	1.1	Nb thick	kness = 3.8 mm-	
	Geometrie	al Parameters		
Inn	er cell E	End Cell Left	End Group	(coupler)
			Left	Right
L [cm]	7.55	7.55	7.55	
R _{iris} [cm]	4.88	4.88	4.88	7.0
D [cm]	16.415	16.415	16.61 1	
d [cm]	1.5	1.3	1.5	1.3
r	1.8	1.6	1.8	1.6
R	10	10	10	
	1.0		1.0	

Stress and Modal Analysis

• Nominal Medium Beta Cavity

SNS Cavity Modal Analysis

Medium Beta Cavity

End Condition	Load (atm)	127 mm Rings (Hz)	70 mm Rings (Hz)	No Rings (Hz)
Fixed-Guided	-	85	48	38
Fixed-Fixed	_	126 (*204)	57 (*59)	48 (*42)
Fixed-Fixed Mid Supt	_	149 (*220)	95 (~*108)	88
Compressed 0.4mm	1.65	125	-	46
Compressed 1.25 mm	1.65	124	-	46

Jefferson Lab

2000-0xxxx/vlb

SNS Cavity Modal Analysis

High Beta Cavity

End Condition	Load	127 mm	70 mm Rings	No Rings
	(atm)	Rings (Hz)	(Hz)	(Hz)
Fixed-Fixed	-	120	-	46
Fixed-Guided	_	107	-	34
Compressed 0.4mm	1.65	120	-	44
Compressed 1.25 mm	1.65	119	-	44

Mode Analysis, Beta = 0.81

Mode 1 – 14 Hz

Mode 3 – 40 Hz

Mode 2 – 26 Hz

Mode 5 – 72 Hz

	Natural Frequency (Hz)		
Mode	Test Data	FE Analysis	
1	13	14	
2	31	26	
3	38	40	
4	53	48	
5	70	72	
6	82	83	
7	125	124	

SNS Cavity Mechanical Design Requirements

- Minimize/prevent microphonics
- Withstand loss of vacuum accident up to 5 atm
- Withstand cool down at 1.65 atm
- Adhere to intent of ASME B&P Code
 - Allowable Stress (Sm) = 2/3 Yield Stress
 - Primary Membrane Stress (Pm) <= (Sm)</p>
 - Pm + Bending <= 1.5*Sm</p>
 - Pm + Bending + Secondary Stress <= 3*Sm</p>
 - Allowable Stresses

»Warm Niobium = 4,667 psi »Cold Niobium = 53,333 psi

Medium Beta Stress Analysis

SNS Medium Beta Cavity Wall Stresses					
Compression (mm/end)	Loads (atm)	127 mm Stiffening Ring Max Stress (psi)	70 mm Stiffening Ring Max Stress (psi)	No Stiffening Ring Max Stress (psi)	
0.2	1.65	_	-	-	
0.4	1.65	3,960	-	4,310	
0.5	1.65	4,610	-	4,550	
0.75	1.65	7,500	-	4,670	
1.25	1.65	17,500	5,730 (1.8 atm)	5,000	
0.75	5	11,200	-	12,900	
1.25	5	14,300	10,100	47,100	

High Beta Stress Analysis

SNS High Beta Cavity Wall Stresses					
Compression	Loads	127 mm	70 mm Stiffening	No Stiffening	
(mm/end)	(atm)	Stiffening Ring	Ring	Ring	
		Max Stress	Max Stress	Max Stress	
		(psi)	(psi)	(psi)	
0.2	1.65	3,040	-	-	
0.4	1.65	6,350	-	3,140	
0.5	1.65	8,070	-	3,350	
0.75	1.65	12,500	-	3,940	
1.25	1.65	21,400	-	5,830	
0.75	5	11,500	-	9,130	
1.25	5	14,300	-	9,590	

