Electro optic effect as e- beam diagnostics

What is electro-optic effect?

Field

For a nonlinear material, the electric polarization

$$
P_{i}=\varepsilon_{0} \sum_{j=1}^{3} \chi_{i j}^{(1)} E_{j}+\varepsilon_{0} \sum_{j=1}^{3} \sum_{k=1}^{3} \chi_{i j k}^{(2)} E_{j} E_{k}+\varepsilon_{0} \sum_{j=1}^{3} \sum_{k=1}^{3} \sum_{l=1}^{3} \chi_{i j k l}^{(3)} E_{j} E_{k} E_{l}+\ldots
$$

E_{0} is vacuum permittivity, $\chi^{(n)}$ is nth order component of electric susceptibility and is a tensor, $\mathrm{I}, \mathrm{j}, \mathrm{k}$ are cartesian indicesthat run from 1-3, $E_{j, k .}$ can have different frequencies
For a linear material, the electric polarization higher orders of χ vanish and $P=\varepsilon_{0} \chi \cdot E$

The first term $P=\varepsilon_{0} \chi^{(1)}: \vec{E}$
applies to all linear optics and yields the common index of refraction and optical dielectric constant

The second term $\varepsilon_{0} \sum^{3} \sum^{3} \chi_{i j k}^{2} \vec{E}_{j} \vec{E}_{k} \quad$ gives rise to optical mixing $\left(\omega_{1}+\omega_{2}\right.$ and $\left.\omega_{1}-\omega_{2}\right) j$-and $\omega=1$ second harmonic generation $\left(\omega_{1}=\omega_{2}\right)$. When one of the fields varies very slowly compared to the other $\left(\omega_{1} \gg \omega_{2}\right)$, then it is Pockel's effect where the input and output frequencies are the same and the index of refraction varies linearly with the applied slowly varying field.

$$
\vec{P}_{i}\left(\omega_{1}\right)=\left(\chi_{i j k}^{2} \vec{E}_{k}\left(\omega_{2}\right)\right) \vec{E}_{j}\left(\omega_{1}\right)
$$

Triveni Rao, USPAS 2008,
Annapolis
$\chi_{i j k}^{2}$ is a $3 \times 3 \times 3$ third rank tensor. Since the input and out put frequencies are the same ($\omega_{2} \sim 0$), it can be contracted notation for (ij) ie. $1=(11), 2=(22), 3=(33), 4=(23), 5=(13), 6=12)$. This reduces the number of independent tensor elements from 27 to 18 . The crystal symmetry may further reduce it since some of the tensors may be zero. In the contracted form, the 18 elendents of and the components of the polarization vector can be written as

$$
\left|\begin{array}{l}
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right|=\left|\begin{array}{l}
\left.\varepsilon_{0}\left|\begin{array}{l}
\chi_{11} \chi_{12} \chi_{13} \chi_{14} \chi_{15} \chi_{16} \\
\chi_{21} \chi_{22} \chi_{23} \chi_{24} \chi_{25} \chi_{26} \\
\chi_{31} \chi_{32} \chi_{33} \chi_{34} \chi_{35} \chi_{36}
\end{array}\right| \begin{array}{l}
E_{x}^{2} \\
E_{y}^{2} \\
E_{z}^{2} \\
2 E_{y}^{2} E_{z} \\
2 E_{x} E_{z} \\
\text { Triveni Rao, uspas 2008, } \\
\text { Anmapois }
\end{array} \right\rvert\, \\
2 E_{x} E_{y}
\end{array}\right|
$$

How to relate to measurable quantity?

The index of refraction $n(\omega)$ and the dielectric constant $\varepsilon(\omega)$ are related to the real part of the susceptibility by

$$
n_{j, k}^{2}(\omega)=\frac{\varepsilon_{j, k}(\omega)}{\varepsilon_{0}}=1+\chi_{j, k}^{1}(\omega)
$$

The susceptibility is related to the electro-optic coefficients r_{jk} through the optical impermeability B_{jk}

$$
\begin{aligned}
B_{j k} & =(1 / \varepsilon)_{\mathrm{jk}}=\left(1 / \mathrm{n}^{2}\right)_{\mathrm{jk}} \\
\Delta B_{j} & =r_{j k} E_{k}=-\frac{2 \Delta n_{j}}{n_{j}^{3}} \\
\Delta n_{j} & =-\frac{1}{2} n_{j}^{3} r_{j k} E_{k}
\end{aligned}
$$

Phase difference and intensity modulation are

$$
\delta=\frac{2 \pi \mathrm{l} \Delta n}{\lambda} \quad I=I_{0} \sin ^{2}\left(\frac{\delta}{2}\right) \quad \begin{gathered}
\text { Triveni Rao, USPAS 2008 } \\
\text { Annapolis }
\end{gathered}
$$

Index of ellipsoid: general

$\frac{x^{2}}{N_{1}^{2}}+\frac{y^{2}}{N_{2}^{2}}+\frac{z^{2}}{N_{3}^{2}}+\frac{2 y z}{N_{4}^{2}}+\frac{2 x z}{N_{5}^{2}}+\frac{2 x y}{N_{6}^{2}}=1$

Choose coordinate system appropriately

$$
\frac{x^{2}}{n_{1}^{2}}+\frac{y^{2}}{n_{2}^{2}}+\frac{z^{2}}{n_{3}^{2}}=1
$$

Index Ellipsoid: Uniaxial crystal

The electric field dE in the crystal with dielectric constant ε at a distance r from the relativistic electron beam due to a charge $\sigma d v$

$$
d \vec{E}=\left(\gamma / 4 \pi \varepsilon_{0}\right) \sigma d v / \varepsilon r^{2} \vec{r}
$$

The field falls off rapidly in the y direction. The dominant field components are

$$
\begin{aligned}
& d E(x, t)=\left(\gamma / 4 \pi \varepsilon_{0}\right) \sigma d v / \varepsilon r^{2}(\bar{x} \cdot \bar{r}) \\
& d E(z, t)=\left(\gamma / 4 \pi \varepsilon_{0}\right) \sigma d v / \varepsilon r^{2}(\bar{z} \cdot \bar{r})
\end{aligned}
$$

Time dependent field leads to time dependent change in index of refraction and index of ellipsoid
$\Delta n_{j}=-\frac{1}{2} n_{j}^{3} r_{j k} E_{k} \quad \frac{x^{2}}{n_{1}^{2}}+\frac{y^{2}}{n_{2}^{2}}+\frac{z^{2}}{n_{3}^{2}}=1$

$$
\begin{array}{r}
x^{2}\left(\frac{1}{n_{1}^{2}}+r_{1 j} E_{j}\right)+y^{2}\left(\frac{1}{n_{2}^{2}}+r_{2 j} E_{j}\right)+ \\
z^{2}\left(\frac{1}{n_{3}^{2}}+r_{3 j} E_{j}\right)+2 y z\left(r_{4 j} E_{j}\right)+
\end{array}
$$

Triveni Rao, USPAS 2008,

$$
2 x z\left(r_{5 j} E_{j}\right)-2 x y\left(r_{6 j} E_{j}\right)=1
$$

Annapolis

Redefine the principal axes X_{i}, calculate the refractive indices N_{i} and the phase difference δ between the orthogonal components

$$
\delta=\frac{2 \pi}{\lambda} \int_{0}^{L} N_{j}-N_{i} d x_{k}
$$

where x_{k} is the laser propagation direction, L is length of the crystal in that direction and $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ are refractive indices in directions orthogonal to propagation

$$
I=I_{o} \sin ^{2}(2 \theta+2 \phi) \sin ^{2} \frac{\delta}{2}
$$

where θ is the angle made by the E vector of the laser beam with the y-z plane, Φ is the field dependent orientation of the new principal axis with the old one

Calculations for Lithium Niobate

Direction of
propagation of charge bunch

Direction of propagation of haser light
$x \quad y$ z

$$
\begin{aligned}
& \phi \sim 0 \quad \phi \sim 0 \\
& \phi \sim \frac{1}{2} \tan ^{-1}\left(\frac{36.10 \times 10^{-12} E_{E_{B}}}{-0.0 .06-21.1 \times 10^{-1 E_{E_{A}}}}\right) \quad \phi \sim \pm \pi / 4 \\
& \phi \sim \frac{1}{2} \tan ^{-1}\left(\frac{36.4 \times 10^{-12} E_{B_{x}}}{-0.016-3.3 \times 10^{-12} E_{y_{y}}}\right) \quad \phi \sim \frac{1}{2} \tan ^{-1}\left(\frac{E_{x_{x}}}{E_{y}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi \sim \frac{1}{2} \tan ^{-1}\left(\frac{364 \times 10^{-12} E_{E_{9}}}{-0.016+3.3 \times 10^{-12} E_{y_{7}}-21.11 \times 10^{-12} E_{B_{3}}}\right) \\
& \phi \sim 0 \\
& \phi \sim \frac{1}{2} \tan ^{-1}\left(\frac{3.6 \times 11^{-12} E_{p_{y}}}{-0.0 .06+3 \times 10^{-12} E_{p}}\right)
\end{aligned}
$$

Four configurations have field independent Φ : electrons along x with laser along y and z, electrons along y, laser along x and z

Triveni Rao, USPAS 2008,
Annapolis

TABLE III. Total retardation δ experienced by the laser beam for three possible propagation directions of the optical and electron beams. It is assumed that the optic axis is along the z direction, and the electric field along the direction of propagation is zero for charge bunches with $\gamma \gg 1$.
Direction of
propagation \quad Direction of propagation of laser light
of charge bunch

x	$\begin{aligned} \delta= & -\left(1.19 \times 10^{6}\right) L \\ & -(0.0014) \int_{0}^{L} E_{z} d x \\ & +(0.0003) \int_{0}^{L} E_{y} d x \\ & -\left(2.97 \times 10^{-12}\right) \int_{0}^{L} E_{y}^{2} d x \\ & +\left(1.95 \times 10^{-13}\right) \int_{0}^{L} E_{z}^{2} d x \\ & -\left(1.67 \times 10^{-14}\right) \int_{0}^{L} E_{y} E_{z} d x+\cdots \end{aligned}$	$\begin{aligned} \delta= & -\left(1.19 \times 10^{6}\right) L \\ & -(0.0014) \int_{0}^{L} E_{z} d y \\ & +(0.0003) \int_{0}^{L} E_{y} d y \\ & +\left(1.95 \times 10^{-13}\right) \int_{0}^{L} E_{z}^{2} d y \\ & -\left(1.67 \times 10^{-14}\right) \int_{0}^{L} E_{y} E_{z} d y \\ & -\left(3.69 \times 10^{-15}\right) \int_{0}^{L} E_{y}^{2} d y+\cdots \end{aligned}$	$\begin{aligned} \delta= & -(0.0011) \int_{0}^{L} E_{y} d z \\ & +\left(6.69 \times 10^{-14}\right) \int_{0}^{L} E_{y} E_{z} d z \\ & -\left(3.51 \times 10^{-24}\right) \int_{0}^{L} E_{y} E_{z}^{2} d z \\ & -\left(9.13 \times 10^{-25}\right) \int_{0}^{L} E_{y}^{3} d z+\cdots \end{aligned}$
y	$\begin{aligned} \delta= & -\left(1.19 \times 10^{6}\right) L \\ & -(0.0014) \int_{0}^{L} E_{z} d x \\ & +\left(1.95 \times 10^{-13}\right) \int_{0}^{L} E_{z}^{2} d x \\ & -\left(2.51 \times 10^{-23}\right) \int_{0}^{L} E_{z}^{3} d x+\cdots \end{aligned}$	$\begin{aligned} \delta= & -\left(1.19 \times 10^{6}\right) L \\ & -(0.0014) \int_{0}^{L} E_{z} d y \\ & +\left(2.96 \times 10^{-12}\right) \int_{0}^{L} E_{x}^{2} d y \\ & +\left(1.95 \times 10^{-13}\right) \int_{0}^{L} E_{z}^{2} d y+\cdots \end{aligned}$	$\begin{aligned} \delta= & -(0.0005) \int_{0}^{L} E_{x} d z \\ & +\left(3.34 \times 10^{-14}\right) \int_{0}^{L} E_{x} E_{z} d z \\ & -\left(1.76 \times 10^{-24}\right) \int_{0}^{L} E_{x} E_{z}^{2} d z \\ & -\left(1.14 \times 10^{-25}\right) \int_{0}^{L} E_{x}^{3} d z+\cdots \end{aligned}$
z	$\begin{aligned} \delta= & -\left(1.19 \times 10^{6}\right) L \\ & +(0.0003) \int_{0}^{L} E_{y} d x \\ & -\left(2.97 \times 10^{-12}\right) \int_{0}^{L} E_{y}^{2} d x \\ & -\left(5.71 \times 10^{-22}\right) \int_{0}^{L} E_{y}^{3} d x+\cdots \end{aligned}$	$\begin{aligned} \delta= & -\left(1.19 \times 10^{6}\right) L \\ & -(0.0014) \int_{0}^{L} E_{z} d y \\ & +(0.0003) \int_{0}^{L} E_{y} d y \\ & -\left(2.96 \times 10^{-12}\right) \int_{0}^{L} E_{x}^{2} d y \\ & -\left(5.92 \times 10^{-12}\right) \int_{0}^{L} E_{y} E_{x} d y \\ & -\left(3.69 \times 10^{-15}\right) \int_{0}^{L} E_{y}^{2} d y+\cdots \end{aligned}$	$\begin{aligned} \delta= & -(0.0005) \int_{0}^{L} E_{x} d z \\ & -(0.0007) \int_{0}^{L} \frac{E_{z}^{2}}{E_{x}} d z \\ & -\left(1.14 \times 10^{-25}\right) \int_{0}^{L} E_{x}^{3} d z+\cdots \end{aligned}$

Courtesy: physical review special topics - Accelerators and beams, volume 5, 042801 (2002) Triveni Rao, USPAS 2008,

Direction of
 propagation
 of charge bunch

$$
x \quad \begin{aligned}
\delta= & -\left(1.19 \times 10^{6}\right) L \\
& -(0.0014) \int_{0}^{L} E_{z} d x \\
& +(0.0003) \int_{0}^{L} E_{y} d x \\
& -\left(2.97 \times 10^{-12}\right) \int_{0}^{L} E_{y}^{2} d x \\
& +\left(1.95 \times 10^{-13}\right) \int_{0}^{L} E_{z}^{2} d x \\
& -\left(1.67 \times 10^{-14}\right) \int_{0}^{L} E_{y} E_{z} d x+\cdots \\
\delta= & -\left(1.19 \times 10^{6}\right) L \\
& -(0.0014) \int_{0}^{L} E_{z} d x \\
& +\left(1.95 \times 10^{-13}\right) \int_{0}^{L} E_{z}^{2} d x \\
& -\left(2.51 \times 10^{-23}\right) \int_{0}^{L} E_{z}^{3} d x+\cdots \\
\delta= & -\left(1.19 \times 10^{6}\right) L \\
& +(0.0003) \int_{0}^{L} E_{y} d x \\
& -\left(2.97 \times 10^{-12}\right) \int_{0}^{L} E_{y}^{2} d x \\
& -\left(5.71 \times 10^{-22}\right) \int_{0}^{L} E_{y}^{3} d x+\cdots
\end{aligned}
$$

The magnitude of EO coefficients $r_{\mathrm{ij}} \sim 10^{-12} \mathrm{~m} / \mathrm{V}$-linear term good approximation

Triveni Rao, USPAS 2008,
Annapolis

Electron along y, laser along x, the Phase retardation δ is

$$
\begin{aligned}
\delta= & -\left(1.19 \times 10^{6}\right) L \\
& -(0.0014) \int_{0}^{L} E_{z} d x \\
& +\left(1.95 \times 10^{-13}\right) \int_{0}^{L} E_{z}^{2} d x \\
& -\left(2.51 \times 10^{-23}\right) \int_{0}^{L} E_{z}^{3} d x+
\end{aligned}
$$

Electron along z, laser along x, the Phase retardation δ is

$$
\begin{aligned}
\delta= & -\left(1.19 \times 10^{6}\right) L \\
& +(0.0003) \int_{0}^{L} E_{y} d x \\
& -\left(2.97 \times 10^{-12}\right) \int_{0}^{L} E_{y}^{2} d x \\
& -\left(5.71 \times 10^{-22}\right) \int_{0}^{L} E_{y}^{3} d x+\cdots
\end{aligned}
$$

No cross terms, large coefficient for the first one, large static term
Triveni Rao, USPAS 2008,
Annapolis

For an electron beam travelling along y axis, laser light along x axis with the polarization of the laser set at 45° to the field free optic axis,

$$
I(t)=I_{0}\left\{\eta+\sin ^{2}\left[\delta_{b}+\delta(t)\right]\right\}
$$

where η is the extinction coefficient of the optical arrangement

Preset for operation in linear regime

Triveni Rao, USPAS 2008, Annapolis
>Select type of Crystal
E-O coefficient
Radiation damage
>Select orientation
Rotation
Cross \& Static terms
>Select laser
Polarization
CW/Pulsed
Power
wavelength
>Select Detection scheme
Time
Spectrum
Spatial profile
$>$ Select operating parameters
X'tal dimensions
Location
Laser transport
Optical system
Diagnostics

Triveni Rao, USPAS 2008,
Annapolis

Triveni Rao, USPAS 2008, Annapolis

Fig. 1. The experimental setup for detecting a charged particle beam. The LiNbO_{3} crystal (M) was located in vacuum several mm from the beam position which could be varied over several cm . The beam direction was perpendicular to the plane of the page. The positions of the polarization maintaining fibers, polarizer (P), lenses, $\frac{1}{4}$ wave plate $(\lambda / 4)$, analyzer (A), shield wall (S) and photodiode detector(PD) are schematically indicated.
CourtesyNuclear Instruments and Methods in Physics Research A 452 (2000) 396-400

Time resolution limited by 7 GHz scope
Triveni Rao, USPAS 2008,
Annapolis

Free space Mach-Zehnder interferometric detection of the EO signals on a streak camera. All data are single-shot measurement results.

Time response;

Multishot
12 fs pulse laser

Courtesy: Nuclear Instruments and Methods in Physics Research A 475 (2001) 504-504

Triveni Rao, USPAS 2008,
Annapolis

Triveni Rao, USPAS 2008, Annapolis

Spatial profile

Single shot

Short laser pulse

Triveni Rao, USPAS 2008,
Fig. 1.3 Schematic of EO setup
Annapolis
Fig. 1.4 EO-flash detection module

Cross correlation technique

Single shot

Short and chirped pulses

Triveni Rao, USPAS 2008,
Annapolis

Spectral Response

Single shot

Chirped pulses

Spectral content

Single shot
Chirped laser pulse

Triveni Rao, USPAS 2008, Annapolis

Limitations

- Crystal absorption in 10 THz regime:~ 100 fs
> Short distance between crystal and e beam

