

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Laser applications for accelerators

Laser Basics

Yuelin Li Accelerator Systems Division Argonne National Laboratory ylli@aps.anl.gov

USPAS 2008 Summer Session, Annapolis, June 23-27, 2008

Content

- Laser and accelerator history
- Map of laser application in accelerators
- Laser basics
 - Rate equations
 - Laser configurations
 - Gaussian beam optics and ABCD law
 - Laser cavity and laser modes
- Laser configurations
 - Mode-lokcing and q-switch
 - MOPA
 - CPA and dispersion
- Laser materials
- Other lasers
 - Semiconductor lasers
 - Fiber lasers
- Frequency conversion and short wavelength lasers

Content

- Laser and accelerator history
- Map of laser application in accelerators
- Laser basics
 - Rate equations
 - Laser configurations
 - Gaussian beam optics and ABCD law
 - Laser cavity and laser modes
- Laser configurations
 - Mode-lokcing and q-switch
 - MOPA
 - CPA and dispersion
- Laser materials
- Other lasers
 - Semiconductor lasers
 - Fiber lasers
- Frequency conversion and short wavelength lasers

Lasers and accelerators at birth

Ancient: a cave man's bow

1929, Cyclotron, Lawrence 1939, Nobel Prize, Lawrence

Ancient: Let there be light

1917, theory of stimulated radiation by Einstein
1960, flash-lamp pumped ruby, Dr. Mainman
1964, Nobel Prize, Towne, Basov, and Prokhorov

Today's lasers and accelerators Aiming for higher energy/intensity and better control

(Panofsky, http://www.slac.stanford.edu/pubs/beamline)

Newest developments

Laser as an accelerator: a compact accelerator

S.P.D. Mangles et al. Nature 431, 535 (2004); C.G.R. Geddes et al. Nature 431, 538 (2004); J. Faure et al. Nature 431, 541 (2004)

Content

- Laser and accelerator history
- Map of laser application in accelerators
- Laser basics
 - Rate equations
 - Laser configurations
 - Gaussian beam optics and ABCD law
 - Laser cavity and laser modes
- Laser configurations
 - Mode-lokcing and q-switch
 - MOPA
 - CPA and dispersion
- Laser materials
- Other lasers
 - Semiconductor lasers
 - Fiber lasers
- Frequency conversion and short wavelength lasers

A map for laser applications in accelerators

Content

- Laser and accelerator history
- Map of laser application in accelerators
- Laser basics
 - Rate equations
 - Laser configurations
 - Gaussian beam optics and ABCD law
 - Laser cavity and laser modes
- Laser configurations
 - Mode-locking and Q-switch
 - MOPA
 - CPA and dispersion
- Laser materials
- Other lasers
 - Semiconductor lasers
 - Fiber lasers
- Frequency conversion and short wavelength lasers

Light Amplification by Stimulated Emission of Radiation

If a medium has many excited molecules, one photon can become many.

This is the essence of the laser. The factor by which an input beam is amplified by a medium is called the gain and is represented by G.

Credit: R. Trebino

Rate equations for the densities of the two states:

USPAS, 2008

 N_2

Laser

Pump

Why inversion is impossible in a two-level system

$$\frac{d\Delta N}{dt} = -2BI\Delta N + AN - A\Delta N$$

In steady-state: $0 = -2BI\Delta N + AN - A\Delta N$

 $\Rightarrow (A + 2BI)\Delta N = AN$

 $\Rightarrow \Delta N = AN/(A+2BI)$

$$\Rightarrow \Delta N = N / (1 + 2BI / A)$$

$$\Rightarrow \Delta N = \frac{N}{1 + I / I_{sat}}$$

where: $I_{sat} = A/2B$ I_{sat} is the saturation intensity.

 ΔN is always positive, no matter how high *I* is!

It's impossible to achieve an inversion in a two-level system!

Credit: R. Trebino

A 3-level system

Rate equations for a four-level system

Now assume the lower laser level 1 also rapidly decays to a ground level 0.

As before: $\frac{dN_2}{dN_2} = BIN_0 - AN_2$

$$\frac{dN_2}{dt} = BI(N - N_2) - AN_2$$

Because $N_1 \approx 0$, $\Delta N \approx -N_2$

The total number of molecules is *N* :

$$N \equiv N_0 + N_2$$
$$- N_0 = N - N_2$$

$$-\frac{d\Delta N}{dt} = BIN + BI\Delta N + A\Delta N$$

At steady state: $0 = BIN + BI\Delta N + A\Delta N$

Credit: R. Trebino

USPAS, 2008

Population inversion in a four-
level system (cont'd)3
2
Fast decay
$$0 = BIN + BI\Delta N + A\Delta N$$
 2
Pump
Transition $\Rightarrow (A + BI)\Delta N = -BIN$ 1
 0 $\Rightarrow \Delta N = -BIN/(A + BI)$ 1
 0 $\Rightarrow \Delta N = -(BIN/A)/(1 + BI/A)$ $\Rightarrow \Delta N = -(BIN/A)/(1 + BI/A)$ $\Rightarrow \Delta N = -N \frac{I/I_{sat}}{1 + I/I_{sat}}$ where: $I_{sat} = A/B$
 I_{sat} is the saturation intensity.

Now, ΔN is negative—always!

Credit: R. Trebino

How to build a laser

- Laser medium
 - Depends on wavelength, pulse duration, power
- Pump it: ASE
 - Multimode in time and space
- Add resonator: laser oscillation
 - Mode selection

Credit: R. Trebino

The historic ruby laser

Invented in 1960 by Ted Maiman at Hughes Research Labs, it was the first laser.

Ruby is a three-level system, so you have to hit it hard.

Helmholtz Equation: Gaussian beam optics

Wave equation

$$\left(\nabla^{2} - \frac{n^{2}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) E(x, y, z, t) = 0$$

$$E(x, y, z, t) = A(x, y, z)e^{i(k_{z}z - \omega t)}$$

$$2 \qquad 2^{2} \qquad 2^{2}$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}\right) A - k_z^2 A + i2k_z \frac{\partial}{\partial z} A + \frac{h^2 \omega^2}{c^2} A = 0$$

Paraxial condition

$$\frac{\partial^2}{\partial z^2} A \ll \frac{\partial}{\partial z} A, \quad k_z^2 = \frac{n^2 \omega^2}{c^2} = n \frac{2\pi}{\lambda}$$

Paraxial Helmholtz equation

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)A + i2k_z\frac{\partial}{\partial z}A = 0$$

Gaussian beam optics

Paraxial Helmholtz equation

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)A + i2k_z\frac{\partial}{\partial z}A = 0$$

Fourier transform

$$a(k_x, k_y, z) = \iint A(x, y, z) e^{-i(k_x x + k_y y)} dx dy$$

$$\rightarrow A(x, y, z) = \frac{1}{4\pi^2} \iint a(k_x, k_y, z) e^{i(k_x x + k_y y)} dk_x dk_y$$

Thus
$$\frac{1}{4\pi^2} \iint \left[\left(-k_x^2 - k_y^2 \right) a + i2k_z \frac{\partial}{\partial z} a \right] e^{i(k_x + k_y y)} dk_x dk_y = 0$$
$$\rightarrow \frac{\partial}{\partial z} a = -i \frac{k_x^2 + k_y^2}{2k_z} a$$
$$\rightarrow a(k_x, k_y, z) = a_0(k_x, k_y, 0) e^{-i \frac{k_x^2 + k_y^2}{2k_z} z}$$

Gaussian beam optics

Let

 $A(x, y, 0) = A_0 e^{-\frac{x^2 + y^2}{w_0^2}} = A_0 e^{-\frac{r^2}{w_0^2}}.$ Fourier transform $a(k_x, k_y, 0) = \iint A_0 e^{-\frac{x^2 + y^2}{w_0^2}} e^{-i(k_x x + k_y y)} dk_x dk_y$ $=\pi w_0^2 A_0 e^{-\frac{k_x^2 + k_y^2}{4} w_0^2}$ $a(k_{x},k_{y},z) = a_{0}(k_{x},k_{y},0)e^{-i\frac{k_{x}^{2}+k_{y}^{2}}{2k_{z}}z}$ Thus $=\pi w_0^2 A_0 e^{-\frac{k_x^2 + k_y^2}{4}w_0^2} e^{-i\frac{k_x^2 + k_y^2}{2k_z}z}$ $= \pi W_0^2 A_0 e^{-\frac{w_0^2}{4} \left(k_x^2 + k_y^2\right) \left(1 + i\frac{z}{z_0}\right)}$ Rayleigh length (diffraction length)

$$z_0 = \frac{k_z w_0^2}{2} = \pi \frac{w_0^2}{\lambda}$$

Gaussian beam optics

Inverse Fourier transform

 $A(x, y, z) = \frac{1}{\Lambda \pi^2} \iint a(k_x, k_y, z) e^{i(k_x x + k_y y)} dk_x dk_y$

 $= \frac{1}{4\pi^2} \iint \pi w_0^2 A_0 e^{-\frac{w_0^2}{4} \left(k_x^2 + k_y^2\right) \left(1 + i\frac{z}{z_0}\right)} e^{i(k_x x + k_y y)} dk_x dk_y$ $= \frac{1}{4\pi} w_0^2 A_0 \iint e^{-\frac{\left(w_0 \sqrt{1 + iz/z_0}\right)^2}{4} \left(k_x^2 + k_y^2\right)} e^{i(k_x x + k_y y)} dk_x dk_y$

$$= \frac{A_0}{1+iz/z_0} e^{-\frac{x^2+y^2}{w_0^2(1+iz/z_0)}} = \frac{A_0}{\sqrt{1+z^2/z_0^2}} e^{-i\tan^{-1}\frac{z}{z_0}} e^{-\frac{x^2+y^2}{w(z)^2}\left(1-i\frac{z}{z_0}\right)}$$

$$=\frac{A_0W_0}{w(z)}e^{-\frac{x^2+y^2}{w(z)^2}\left(1-i\frac{z}{z_0}\right)-i\eta}=\frac{A_0W_0}{w(z)}e^{-\frac{x^2+y^2}{w(z)^2}}e^{ik\frac{x^2+y^2}{2R(z)}-i\eta}$$

$$w(z) = w_0 \left(1 + \frac{z^2}{z_0^2}\right)^{1/2} \quad R(z) = z \left(1 + \frac{z_0^2}{z^2}\right) \quad \eta = \tan^{-1} \frac{z}{z_0}$$

Beam radius

Wave front radius of curvature

Gaussian optics: summary

- Gaussian distribution is the solution of paraxial Helmholtz equation
- TM00 mode

$$E(r,z) = E_0 \frac{w_0}{w(z)} \exp\left(-\frac{r^2}{w^2(z)}\right),$$

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_0}\right)^2},$$

$$z_0 = \frac{\pi w_0^2}{\lambda},$$

$$w_0 = \frac{2\lambda}{\pi \Theta},$$

$$b = 2z_0.$$

- w_0 : beam waist
- z_0 : Rayleigh range
- b: confocal parameter

Beam propagation: ABCD matrices

$$\begin{pmatrix} r' \\ \theta' \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} r \\ \theta \end{pmatrix}$$

For a thin lens

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix}$$

For free space (drift space)

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix}$$

Credit: W. Koechner: Solid State Laser engineering, Credit: Wekipedia

Stability of laser resonators

Credit: W. Koechner: Solid State Laser engineering, Credit: Wekipedia

High order modes

$$E(x, y, z) = E_0 \frac{w_0^2}{w^2(z)} H_n \left(\frac{\sqrt{2}x}{w(z)}\right) H_m \left(\frac{\sqrt{2}y}{w(z)}\right) e^{-\frac{x^2 + y^2}{w^2(z)}} e^{-i\left[k\frac{x^2 + y^2}{2R(z)} - (1 + n + m)\eta(z)\right]}$$

Hermite polynomials

$$H_{0}(x) = 1$$

$$H_{1}(x) = 2x$$

$$H_{2}(x) = 4x^{2} - 2$$

$$H_{3}(x) = 8x^{3} - 12x$$

The M² factor

Argonne

. . .

$$\theta = \frac{\Theta}{2} = M^2 \frac{\lambda}{\pi w_0}$$

 M^2 =1=diffraction limited; M^2 >1, M2 times diffractions limited

High order modes

Hermite-Gaussian modes Intensity profile

Guided modes in fibers Field

Encyclopedia of Laser Physics and Technology http://www.rp-photonics.com/higher_order_modes.html

A cavity and laser oscillator

Content

- Laser and accelerator history
- Map of laser application in accelerators
- Laser basics
 - Rate equations
 - Laser configurations
 - Gaussian beam optics and ABCD law
 - Laser cavity and laser modes
- Laser configurations
 - Mode-locking and Q-switch
 - MOPA
 - CPA and dispersion
- Laser materials
- Other lasers
 - Semiconductor lasers
 - Fiber lasers
- Frequency conversion and short wavelength lasers

Mode locking: what

Mode locking: how

Introduce amplitude or phase modulation/control

Active mode locking

• Acousto-optic modulator, drive with RF

Passive mode locking

- Saturable absorption
- Nonlinear lensing + aperture
- Nonlinear polarization rotation + polarizer

Mode locking: result

- Shorter pulse, high intensity, larger bandwidth
- Single mode
- Accurate timing at round trip time

Ti: Sapphire oscillator: an example

M.T. Asaki, et al, Opt. Lett. 18, 977 (1993)

Femtolasers: Fusion (28"x12"x3")

Pulse duration	< 10 fs
Bandwidth (FWHM) @ 800 nm	> 100 nm
Mode locked output power (av.)	150 - 500 mW
Output energy @ 75 MHz	2 - 6.5 nJ
Peak power @ 75 MHz	200 - 650 kW

Q-switch

Q factor of a resonator

$$Q = vT \frac{2\pi}{L}$$

T: round trip time; *v*. optical frequency; I: fraction power loss per round trip

A MOPA system Master Oscillator – Power Amplifier

- An oscillator usually does not have enough energy, thus needs amplification
- A MOPA is expected to carry over the characteristics of an OSC
- Pulse duration is limited at 10 ps due to damage

A MOPA example: Flash drive laser

Chirped pulse amplification

To be able to amplify a short pulse.

A CPA example

FIG. 7. Schematic diagram of a kHz repetition rate, 0.2 TW Ti:sapphire CPA system.

S. Backus et al, Rev. Sci. Instrum. 69, 1207 (1998).

How to stretch/compress a pulse: adding second order phase

A transform-limited Gaussian pulse in the time and frequency domain

$$E(t) = E_0 \exp\left[-\frac{1}{2}\left(\frac{t}{\tau}\right)^2\right] \quad \Leftrightarrow \quad E(\omega) = E_0 \exp\left[-\frac{1}{2}\left(\frac{\omega}{\Delta\omega}\right)^2\right]$$

Add a second order phase, which is to 'chirp' a pulse

$$E'(\omega) = E_0 \exp\left[-\frac{1}{2}\left(\frac{\omega}{\Delta\omega}\right)^2 + ia\omega^2\right]$$

What is the new pulse form in the time domain? How does the frequency change as function of time? (Home work)

S. Backus et al, Rev. Sci. Instrum. 69, 1207 (1998).

Stretcher and compressor

FIG. 3. Schematic diagrams of (a) a pulse stretcher and (b) a pulse compressor.

S. Backus et al, Rev. Sci. Instrum. 69, 1207 (1998).

Stretcher and compressor

TABLE I. Expressions for the linear, quadratic, and cubic phase introduced by grating stretchers; compressors, prism pairs, and materials found in a typical amplifier.

Order	Material	Grating pair compressor/stretcher	Prism pair
GVD	$\frac{d^2\phi_m(\omega)}{d\omega^2} = \frac{\lambda^3 L_m}{2\pi c^2} \frac{d^2 n(\lambda)}{d\lambda^2}$	$\frac{d^2\phi_c(\omega)}{d\omega^2} = \frac{\lambda^3 L_g}{\pi c^2 d^2} \left[1 - \left(\frac{\lambda}{d} - \sin\gamma\right)^2 \right]^{-3/2}$	$\frac{d^2\phi_p(\omega)}{d\omega^2} = \frac{\lambda^3}{2\pi c^2} \frac{d^2P}{d\lambda^2}$
TOD	$\frac{d^{3}\phi_{m}(\omega)}{d\omega^{3}} = -\frac{\lambda^{4}L_{m}}{4\pi^{2}c^{3}} \left(3\frac{d^{2}n(\lambda)}{d\lambda^{2}} + \frac{\lambda d^{3}n(\lambda)}{d\lambda^{3}}\right)$	$\frac{d^{3}\phi_{c}(\omega)}{d\omega^{3}} = -\frac{6\pi\lambda}{c}\frac{d^{2}\phi_{c}(\omega)}{d\omega^{2}}\left(\frac{1+\frac{\lambda}{d}\sin\gamma-\sin^{2}\gamma}{\left[1-\left(\frac{\lambda}{d}-\sin\gamma\right)^{2}\right]}\right)$	$\frac{d^3\phi_p(\omega)}{d\omega^3} = \frac{-\lambda^4}{4\pi^2 c^3} \left(3\frac{d^2P}{d\lambda^2} + \dot{\lambda}\frac{d^3P}{d\lambda^3}\right)$
FOD	$\frac{d^4 \phi_m(\omega)}{d\omega^4} = \frac{\lambda^5 L_m}{8 \pi^3 c^4} \left(12 \frac{d^2 n(\lambda)}{d\lambda^2} + 8\lambda \frac{d^3 n(\lambda)}{d\lambda^3} + \lambda^2 \frac{d^4 n(\lambda)}{d\lambda^4} \right)$	$\frac{d^4\phi_c(\omega)}{d\omega^4} = \frac{6d^2}{c^2} \frac{d^2\phi_c(\omega)}{d\omega^2}$ $\left(\frac{80\frac{\lambda^2}{d^2} + 20 - 48\frac{\lambda^2}{d^2}\cos\gamma + 16\cos2\gamma - 4\cos4\gamma + \frac{32\lambda}{d}\sin\gamma + \frac{32\lambda}{d}\sin3\gamma}{\left(-8\frac{\lambda}{d} + \frac{4d}{\lambda} + \frac{4d}{\lambda}\cos2\gamma + 32\sin\gamma\right)^2}\right)$ $-\frac{d^3\phi_c(\omega)}{d\omega^3}\frac{6\pi\lambda}{c}\left(\frac{1 + \lambda/d\sin\gamma - \sin^2\gamma}{(1 - (\lambda/d - \sin\gamma)^2)}\right)$	$\frac{d^4 \phi_p(\omega)}{d\omega^4} = \frac{\lambda^5}{8\pi^3 c^4} \left(12 \frac{d^2 P}{d\lambda^2} + 8\lambda \frac{d^3 P}{d\lambda^3} + \lambda^2 \frac{d^4 P}{d\lambda^4} \right)$
			$\begin{split} P(\lambda) = & L_p \cos \beta(\lambda) \\ \beta(\lambda) = - \arcsin(n_p(\lambda) \sin \alpha(\lambda)) \\ &+ \arcsin[n_p(\lambda_r) \sin \alpha(\lambda_r)] \\ \alpha(\lambda) = & \xi \\ &- \arcsin[\sin \theta_b(\lambda)]/n_p(\lambda) \\ \theta_b(\lambda) = \arctan[n_p(\lambda)] \end{split}$

S. Backus et al, Rev. Sci. Instrum. 69, 1207 (1998).

Dispersions

TABLE II.	Sample	values	of disp	ersion	for	material	l (1	cm),	grating	pairs,	and	prism	pairs at	800	nm	wave-
length.																

Optical element	$\begin{array}{c} \text{GVD} \\ d^2 \varphi / d \omega^2 \ (\text{fs}^2) \end{array}$	$\frac{\text{TOD}}{d^3\varphi/d\omega^3} \text{ (fs}^3)$	FOD $d^4 \varphi / d\omega^4$ (fs ⁴)
Fused silica	361.626	274.979	-114.35
BK7	445.484	323.554	-98.718
SF18	1543.45	984.277	210.133
KD*P	290.22	443.342	-376.178
Calcite	780.96	541.697	-118.24
Sapphire	581.179	421.756	-155.594
Sapphire at the Brewster angle	455.383	331.579	-114.912
Air	0.0217	0.0092	2.3×10^{-11}
Compressor:	- 3567.68	5101.21	-10226
$600 \ \ell/\text{mm}, L = 1 \text{ cm}, 13.89^{\circ}$			
Prism pair: SF18	-45.567	-181.516	-331.184

S. Backus et al, Rev. Sci. Instrum. 69, 1207 (1998).

Content

- Laser and accelerator history
- Map of laser application in accelerators
- Laser basics
 - Rate equations
 - Laser configurations
 - Gaussian beam optics and ABCD law
 - Laser cavity and laser modes
- Laser configurations
 - Mode-lokcing and q-switch
 - MOPA
 - CPA and dispersion
- Laser materials
- Other lasers
 - Semiconductor lasers
 - Fiber lasers
- Frequency conversion and short wavelength lasers

Laser materials

- What we care
 - Lasing mechanism: four-level systems is always preferred
 - Lasing wavelength: tunable is better
 - Lasing bandwidth: bigger is better but not always
 - Pump requirement: visible preferred
 - Gain lifetime: longer is better
 - Damage threshold: higher is better
 - Saturation flux: higher is better
 - Heat conductivity: as high as possible
 - Thermal stability: as small as possible
 - Form: solid is always preferred

Laser materials

- Host + active ions
- Host
 - Crystalline solids (Sapphire, Garnets, Fluoride, Aluminate, etc.)
 - Difficult to grow to large size
 - Narrow line width thus lower lasing threshold, and narrow absorption band
 - Good thermal conductivity
 - Glass (property varies by make, and processing)
 - Easy to make in large size and large quantities
 - No well defined bonding field thus larger line width and higher lasing threshold, large absorption band
 - Lower thermal conductivity thus severe thermal birefringence and thermal lensing, lower duty cycle
- Active ions
 - Rare earth ions: No. 58-71, most importantly, Nd³⁺, Er³⁺...
 - Transition metals: Ti³⁺, Cr³⁺,

Laser material: Ti: Saaphire (Al₂O₃:Ti³⁺)

MATERIAL PHYSICAL AND LASER PROPERTIES

Chemical formula	Ti ³⁺ :Al ₂ O ₃
Crystal structure	Hexagonal
Lattice constants	a=4.748, c=12.957
Density	3.98 g/cm ³
Mohs hardness	9
Thermal conductivity	0.11 cal/(°C×sec×cm)
Specific heat	0.10 cal/g
Melting point	2050 °C
Laser action	4-Level Vibronic
Fluorescence lifetime	3.2 µsec (T=300K)
Tuning range	660–1050 nm
Absorbtion range	400–600 nm
Emission peak	795 nm
Absorption peak	488 nm
Refractive index	1.76 @ 800 nm

- Giving shortest pulse so far
- Wonderful tunability
- Good thermal properties
- Short gain lifetime (has to be pumped by a ns-pulsed green laser)

Laser material (Nd:YAG)

Argonne

PROPERTIES OF 1.0% Nd:YAG AT 25°C

Formula	$Y_{2.97}Nd_{0.03}Al_5O_{12}$
Crystal structure	Cubic
Density	4.55 g/cm ³
Melting point	1970 °C
Mohs hardness	8.5
Transition	⁴ F _{3/2} → ⁴ I _{11/2} @ 1064 nm
Fluorescence lifetime	230 µs for 1064 nm
Thermal conductivity	0.14 Wcm ⁻¹ K ⁻¹
Specific heat	0.59 Jg⁻¹K⁻¹
Thermal expansion	6.9 × 10 ⁻⁶ °C ⁻¹
∂n/∂t	7.3 × 10 ⁻⁶ °C ⁻¹
Young's modulus	3.17 × 104 Kg/mm ⁻²
Poisson ratio	0.25
Thermal shock resistance	790 Wm ⁻¹
Refractive index	1.818 @ 1064 nm

- High saturation flux
- Narrow bandwidth (0.15 nm), thus long pulse (>10 ps), high gain
- Good thermal properties
- Long gain lifetime (diode pump)

Laser material: (Nd:Glass)

Fig. 2.9. Absorption versus wavelength of Nd: glass. (Material: ED-2; thickness: 6.3 mm)

Chemical formula	Nd: Y ₃ Al ₅ O ₁₂
Weight % Nd	0.725
Atomic % Nd	1.0
Nd atoms/cm ³	1.38×10^{20}
Melting point	1970 C
Knoop hardness	1215
Density	4.56 g/cm ³
Rupture stress	$1.3-2.6 \times 10^3 \text{ kg/cm}^3$
Modulus of elasticity	$3 \times 10^3 \text{ kg/cm}^2$
Thermal expansion coefficient	-,
[100] orientation	$8.2 \times 10^{-6} \mathrm{C}^{-1}, 0-250 \mathrm{C}$
[110] orientation	$7.7 \times 10^{-6} \text{ C}^{-1}$, 10–250 C
[111] orientation	$7.8 \times 10^{-6} \mathrm{C}^{-1}, 0-250 \mathrm{C}$
Linewidth	4.5 Å
Stimulated emission cross section	
$R_2 - Y_3$	$\sigma_{21} = 6.5 \times 10^{-19} \mathrm{cm}^2$
$4F_{3/2} - {}^4I_{11/2}$	$\sigma_{21} = 2.8 \times 10^{-19} \mathrm{cm}^2$
Spontaneous fluorescence lifetime	230 µs
Photon energy at $1.06 \mu m$	$h\nu = 1.86 \times 10^{-19} \mathrm{J}$
Index of refraction	1.82 (at 1.0 μ m)
Scatter losses	$\alpha_{\rm sc} \approx 0.002 {\rm cm}^{-1}$

- High saturation flux
- large bandwidth (20 nm), thus short pulse (<1 ps),
- Poor thermal
- Long gain lifetime (diode pump)
- Only for big lasers now (PW or MJ)

Laser Material: Nd:YLF

- High saturation flux
- Narrow bandwidth (0.15 nm), thus long pulse (>10 ps), high gain
- Good thermal properties
- Long gain lifetime (diode pump)
- Difficult to handle

Physical Properties							
Chemical Formula	LIY 1.0-xNdxF4						
Lattice Parameters	a=5.16Å						
	D=10.85A						
Crystal Structure	Tetragonal						
Space Group	14 ₁ /a						
Nd atoms/cm3	1.40x10 ²⁰ atoms/cm ³ for 1% Nd doping,						
Mohs Hardness	4 ~ 5						
Melting Point	819℃						
Density	3.99 g/cm ³						
Modulus of Elasticity	85 GPa						
Thermal Expansion Coefficient	8.3x10 ⁻⁶ /k ⊥c, ac=13.3x10 ⁻⁶ /k c						
Thermal Conductivity Coefficient	0.063 W/cm K						
Specific Heat	0.79 J/g K						
Optical Properties							
Transparency Region	180nm to 6.7µm						
Peak Simulation Emission	1.8x10 ⁻¹⁹ cm ² (Ε c) at 1.047μm						
Cross Section	1.2x10 ⁻¹⁹ cm² (E ⊥ c) at 1.053μm						
Spontaneous Fluorescence Lifetime	485µs for 1% Nd doping						
Scatter Losses	<0.2% / cm						
Deak Absorption Coefficient	α=10.8cm ⁻¹ (792.0 nm E c)						
Peak Absorption Coefficient	α =3.59cm ⁻¹ (797.0 nm E \perp c)						
Refractive Indices	Wavelength	n					
	(1111)	1 511					
	350 1 473	1 491					
	525 1.456	1.479					
	1050 1.448	1.470					
	2065 1.442	1.464					
Sellmeier Equations	$n_i^2(\lambda) = A + B\lambda^2/(\lambda^2-C) - D\lambda^2/(\lambda^2-E)$)					
	ABCD	E					
	n _o 3.38757 0.70757 0.00931 0.18849 50.99741						
	n ₂ 1.31021 0.84903 0.00876 0.53	607 134.9566					

Laser materials: summary

	Ti:Sa Al ₂ O ₃ :Ti	Nd:YAG Y _{3.0-x} Nd _x AL ₅ O ₁₂	Nd:Glass (Kigre Q- 88) $Y_3Al_5O_{12}$:Nd	Nd:YLF LiY _{1.0-x} Nd _x F ₄
Fluorescence life time (µs)	3.2	230	330	485
Peak wavelength (nm)	780	1064	1054	1047,1053
Line width (nm)	220	0.15	22	1
Emission cross section (10 ⁻¹⁹ cm ²)	3	6.5	0.4	1.8
Saturation flux (J/cm ²)	0.9	0.6	4.5	.43
Thermal conductivity (w cm ⁻¹ K ⁻¹)	0.5	0.14	0.0084	0.06
Thermal expansion coef (10 ⁻⁶ /°C)		7.5	10	10
n	1.76	1.8	1.55	1.5
$dn/dT (10^{-6/\circ}C)$		7.3	-0.5	

Content

- Laser and accelerator history
- Map of laser application in accelerators
- Laser basics
 - Rate equations
 - Laser configurations
 - Gaussian beam optics and ABCD law
 - Laser cavity and laser modes
- Laser configurations
 - Mode-lokcing and q-switch
 - MOPA
 - CPA and dispersion
- Laser materials
- Other lasers
 - Semiconductor lasers
 - Fiber lasers
- Frequency conversion and short wavelength lasers

Semiconductor laser: laser diode

- Convert current into light, can be tuned by junction temperature
- Used mostly for pumping other lasers, also CD and DVD players
- VCSELs and VECSELs (virtical cavity surface emission lasers and virtical exteranl cavity surface emission lasers)
- Also for seeding pulse fiber lasers (next page)

Credit: http://www.olympusmicro.com/

Mode-locked semiconductor lasers: (using V)

 $\lambda_{pump} = 840 \text{ nm}$

290-fs pulses from a semiconductor disk laser

Peter Klopp¹, Florian Saas¹, Martin Zorn², Markus Weyers², and Uwe Griebner^{1*} ¹Max-Born-Institute, Max-Born-Strasse 2A, D-12489 Berlin, Germany

²Ferdinand-Braun-Institute, Gustav-Kirchhoff-Straße 4, D-12489 Berlin, Germany *Corresponding author: <u>griebner@mbi-berlin.de</u> Opt. Express 16, 5770 (2008)

- Can achieve sub picosecond pulse duration
- 500 mW power
- Widely tunable
- Very high rep rate, up to 100 GHz

Pump for lasers

- Flash lamps:
 - Converts electrical power to light
 - Cheap, low pumping efficiency, and poor stability.
 - Still opted for situations when high energy capacity is the key (NIF), suitable for ruby laser, Nd:Glass, Nd:YAG, Nd:YLF, etc.

Laser diodes:

- converts electrical current into light
- High efficiency, high stability especially in CW mode.
- Opted now for most off the shelf KHz system and fiber lasers
- Pump lasers (Nd:YAG or Nd: YLF)
 - Both pumped by flash lamps and diodes
 - Normally for Ti: Sapphire system.

Fiber lasers

Power progress in fiber laser sources

Average power over 2 kW

limited by available pump

E. Snitzer, "Neodymium glass laser," Proc. of the Third International conference on Solid Lasers, Paris, page 999 (1963).

C.J. Koester and E.Snitzer, "Amplification in a fiber laser," Appl. Opt. 3, 10, 1182 (1964).

Laser configuration: Fiber lasers

J. Limpert et al., 'High-power ultrafast fiber laser systems,' IEEE Xplore 12, 233 (2006).

Fiber laser wavelength

Many RE transitions but most not good in silica
Nd, Yb, Er, Tm most attractive for high power operation
Raman gain for other wavelengths

Credit: David Richardson

Fiber laser capabilities

Operating regimes of fibre based ultrashort pulse sources

Credit: David Richardson

Yb-doped fibres for cladding pumping

- Pump bands at 915nm and 976nm
- Broad gain bandwidths around 1060nm
- Small quantum defect and high efficiency (~85%)

Credit: David Richardson

A short pulse MOPA fiber laser example 1 GHz, 20 ps, 321 W average and 13 kW peak power

321 W average power, 1 GHz, 20 ps, 1060 nm pulsed fibre MOPA source

Dupriez et al, http://www.ofcnfoec.org/materials/PDP3.pdf

A CPA fiber laser example 73 MHz, 220 fs, 131 W average and 8.2 MW peak power

Roeser et al., Opt. Lett. 30, 2754 (2005)

Fig. 9: Schematic setup of the high average power fiber CPA system.

1 μ m, 1 mJ, 1 ps, 50 kHz has been achieved, F. Roeser et al, Opt. Lett. 32, 3294 (2007)

J. Limpert et al., 'High-power ultrafast fiber laser systems,' IEEE Xplore 12, 233 (2006).

Content

- Laser and accelerator history
- Map of laser application in accelerators
- Laser basics
 - Rate equations
 - Laser configurations
 - Gaussian beam optics and ABCD law
 - Laser cavity and laser modes
- Laser configurations
 - Mode-lokcing and q-switch
 - MOPA
 - CPA and dispersion
- Laser materials
- Other lasers
 - Semiconductor lasers
 - Fiber lasers
- Frequency conversion and short wavelength lasers

Maxwell equation in a medium

The induced polarization, *P*, contains the effect of the medium:

$$\vec{\nabla} \cdot \vec{E} = 0 \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\vec{\nabla} \cdot \vec{B} = 0 \qquad \vec{\nabla} \times \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \frac{\partial \vec{P}}{\partial t}$$

The induced polarization in Maxwell's Equations yields another term in the wave equation:

$$\frac{\partial^2 E}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = \mu_0 \frac{\partial^2 P}{\partial t^2}$$

As we've learned, this is the "Inhomogeneous Wave Equation." The polarization is the driving term for a new solution to this equation.

Credit: R. Trebino

Maxwell equation in a nonlinear medium

Nonlinear optics is what happens when the polarization is the result of higher-order (nonlinear!) terms in the field:

$$\mathscr{P} = \mathcal{E}_0 \left[\chi^{(1)} \mathscr{E} + \chi^{(2)} \mathscr{E}^2 + \chi^{(3)} \mathscr{E}^3 + \dots \right]$$

What are the effects of such nonlinear terms? Consider the second-order term:

Since $\mathscr{E}(t) \propto E \exp(i\omega t) + E^* \exp(-i\omega t)$,

$$\mathscr{C}(t)^2 \propto E^2 \exp(2i\omega t) + 2|E|^2 + E^{*2} \exp(-2i\omega t)$$

$$\mathbf{2}\omega = 2nd \text{ harmonic!}$$

Harmonic generation is one of many exotic effects that can arise!

Credit: R. Trebino

Sum and difference frequency generation

Suppose there are two different-color beams present:

 $E_1 \exp(i\omega_1 t) + E_1^* \exp(-i\omega_1 t)$ $E_2 \exp(i\omega_2 t) + E_2^* \exp(-i\omega_2 t)$

So:

 $E(t)^{2} \propto E_{1}^{2} \exp(2i\omega_{1}t) + E_{1}^{*2} \exp(-2i\omega_{1}t)$ $+ E_{2}^{2} \exp(2i\omega_{2}t) + E_{2}^{*2} \exp(-2i\omega_{2}t)$ $+ 2E_{1}E_{2} \exp[i(\omega_{1} + \omega_{2})t] + 2E_{1}^{*}E_{2}^{*} \exp[-i(\omega_{1} + \omega_{2})t]$ $+ 2E_{1}E_{2}^{*} \exp[i(\omega_{1} - \omega_{2})t] + 2E_{1}^{*}E_{2} \exp[-i(\omega_{1} - \omega_{2})t]$ $+ 2|E_{1}|^{2} + 2|E_{2}|^{2}$ dc rectification

Note also that, when ω_i is negative inside the exp, the *E* in front has a *.

Credit: R. Trebino

Conservation laws and phase matching

Argonne

Energy must be conserved:

$$\omega_1 + \omega_2 + \omega_3 - \omega_4 + \omega_5 = \omega_{sig}$$

Momentum must also be conserved:

$$\vec{k}_1 + \vec{k}_2 + \vec{k}_3 - \vec{k}_4 + \vec{k}_5 = \vec{k}_{sig}$$

Unfortunately, \vec{k}_{sig} may not correspond to a light wave at frequency $\omega_{sig}!$

Satisfying these two relations simultaneously is called "phase-matching."

Credit: R. Trebino

Phase matching and conversion efficiency

Small signal second harmonic conversion efficiency

$$I_{2\omega} = C^2 L^2 I_{\omega}^2 \frac{\sin^2 \frac{\Delta kL}{2}}{\left(\frac{\Delta kL}{2}\right)^2} = C^2 L^2 I_{\omega}^2 \sin c^2 \frac{\pi L}{2l_c},$$
$$C^2 = \frac{8\pi^2 d_{eff}^2}{\varepsilon_0 c \lambda_0^2 n_0^3} = 5.46 \frac{d_{eff}}{\lambda_0 n^{3/2}}$$

 $\Delta k = 4\pi/\lambda_1(n_1 - n_2)$: difference in wave umber L: crystal length

 $l_c = \pi/\Delta k$, coherence length (when phase is matched) d_{eff} : effective nonlinear coefficient, in m/V

Credit: W. Koechner: Solid State Laser engineering,

Conversion efficiency at small signal

The small signal conversion efficiency and effect of phase mismatch

Quasi phase matching

Quasi-phase matching

Achieve phase matching by modulating the spatial nonlinear property

Encyclopedia of Laser Physics and Technology http://www.rp-photonics.com

Quasi-phase matching: Periodically poling crystals

The most popular technique for generating quasi-phase-matched crystals is periodic poling of ferroelectric nonlinear crystal materials

Pump depletion and signal saturation

Phase match, with pump depletion

$$I_{2\omega} = I_{\omega} \tanh^2 \left(CLI_{\omega}^{1/2} \sin c \frac{\pi L}{2l_c} \right),$$

Consider frequency quadrupling

- At low pump power, highly nonlinear

$$I_{2\omega} \propto I_{\omega}^2$$

$$\Rightarrow I_{4\omega} \propto I_{2\omega}^2 \propto I_{\omega}^4$$

Consider frequency quadrupling

- At high pump power, linear, desired

$$I_{2\omega} \propto I_{\omega}$$
$$\Rightarrow I_{4\omega} \propto I_{2\omega} \propto I_{\omega}$$

Frequency conversion: High order harmonics generation

Atoms as the nonlinear media

Argonne

- Emission due to multiple photon absorption of electrons bounded to an atom
- Carry over the spatial coherence of the driving laser
- Of short pulse duration comparable or shorter than the drive laser up to attoseconds

H. Kaptyn et al., 'Harnessing Attosecond Science in the Quest for Coherent X-rays,' Science 317, 775 (2007).
High order harmonics generation: phase matching

H. Kaptyn et al., 'Harnessing Attosecond Science in the Quest for Coherent X-rays,' Science 317, 775 (2007).

Argonne

USPAS, 2008

Short wavelength lasers

- Plasma base soft-x-ray lasers
 - Still a traditional laser based on population inversion, but in hot dense plasma to accommodate the high energy difference between atomic levels, wavelength from 1 nm to 100 nm.
 - Can be pumped by laser, discharge, and bombs
 - Challenges: tunability and capability for shorter wavelengths, stabilities
 - J. Hecht, "The history of X-ray lasers," Optics & Photonics News 19, 26 (2008); Y. Wang et al., Nature Photonics 2, 94 (2008)

Short wavelength lasers

- X-ray Free electron lasers: 0.1 nm, high brightness, high transverse coherence, etc.
- Design with cavity going on
- Many projects going on

USPAS, 2008

