USPAS Summer 2008:

Beam Dynamics Experiments on the University of Maryland Electron Ring (UMER)

Instructors:

Rami A. Kishek Santiago Bernal Ralph Fiorito Patrick G. O'Shea

My contact info: ramiak@umd.edu 301-405-5012

Staff:

Brian Beaudoin Max Cornacchia Don Feldman Irving Haber Diktys Stratakis David Sutter J. Charles T. Thangaraj Chao Wu

1

Outline

1. People Introductions

- 2. Course Outline
- 3. Administrative Issues
- 4. Review of Accelerator Physics / Introduction to Space Charge
- 5. Overview of UMER

Your backgrounds

- What accelerator courses have you taken?
- Any experimental experience?
- MATLAB?

Course Outline

	9:30 AM - 10:40 AM		10:50 AM - NOON			1 PM - 4 PM			
	Lecture 1		Lecture 2			Station 1	Station 2	Station 3	Offline
						UMER	LSE	Hughes	
							_		
Week 1									
Mon 16	Course Organization + Intro to UMER Beam Dynamics	Kishek	Diagnostics + Source Physics	Bernal, Haber		Safety; D Soເ	liagnostcs; Jrces		Alternate: Breadboard
Tue 17	Non-intercepting diagnostics	Sutter	Imaging and Image Processing	Kishek		Imaging; Tomography	Imaging; Imaging		Rotating Coil; Rotating Coil
Wed 18	Phase-Space Mapping / Tomography	Stratakis	Tomography Morning Lab / on UMER			Longitudinal Monitors (IM / Laser)			Solenoid
Thu 19	Magnets and measurements	Bernal	Tomography Morning Lab / on UMER			Longitudinal (IM / Laser)	Monitors		Solenoid
Fri 20	Optical Transition Radiation	Fiorito	OTR demo (RC1)			Quad-scan (IC2)	End early	, by 2 PM	Analysis/Writing
Week 2									
Mon 23	Longitudinal 1: Perturbation generation and Waves	O'Shea	Longitudinal 2: Beam End Erosion and Induction Cell	Beaudoin		Longitudinal (IM / Laser)	Monitors		Solenoid
Tue 24	Tune Measurement	Sutter	Morning Lab	_		Ring Dynamics	Energy Analyzer	Sources	BPM Calibration / Report Writing
Wed 25	Energy Analyzer Measurements	Kishek	Morning Lab			Ring Dynamics	Energy Analyzer		BPM Calibration / Report Writing
Thu 26	Emittance Measurement (Quad- scan/Pepper-pot/Slit)	Bernal	Morning Lab			Ring Dynamics	Energy Analyzer		BPM Calibration / Report Writing
Fri 27	Annapolis: Student Presentations								

Experiments

	Time	10:30-11	11-11:30	11:30-N	N-12:30	12:30-1	1-1:30	1:30-2	2-2:30	2:30-3	3-3:30	3:30-4	
WEEK 1													
Mon 16	1						0.4.4	S1 Sources/LIMER Santiago/Dave					
	2				Lunch		Sarety Training S2. Sources/LSE. Brian/Eric						
	3							- ,					
Tue 17	1							D2 Imaging/UMER Rami/Diktys D3 Tomography/UMER Diktys/Rami					
	2				Lunch		D7 Imaging	7 Imaging/LSE, Ralph/Brian M2, Rotating Coil, Santiago/Jc				o/Jonny	
	3						;	afety Training D7 Imaging/LSE, Ralph/			.SE, Ralph/Br	ian	
Wed 18	1		Free				M1, Solenoi	Solenoid Profile, Santiago/Jonny					
	2	D3 Tomography/UMER Diktys/Rami		Lu	nch	D6, Monitor	S/LSE, Dave Free						
	3	M2, Rotating	Coil, Santiag	o/Jonny			L1, Logitudi	nal Dynamics	/UMER, Cha	rles/Brian			
Thu 19	1	M2, Rotating Coil, Santiago/Jonny			L1, Logitudi	1, Logitudinal Dynamics/UMER, Charles/Brian							
	2		Free		Lui	nch	M1, Solenoi	id Profile, Santiago/Jonny					
- ·	3	D3 Tomography/UMER Diktys/Rami				D6, Monitors/LSE, Dave Free							
Fri 20	ALL	D5 OTR/UMER, Ralph/Don Pizza		Pizza	D4, Quad-So	Scan/UMER Bernal							
WEEK 2													
Mon 23	1						DC Maritan						
WOII 23	2			nch	D6, Monitors/LSE, Dave Free								
	3				Lui		M1 Solonoid Profile Sontiago/Jonny						
Tue 24	1	R1 Resonan	Ces/LIMER S	antiago/Dave	/Chao			P2 Tune Measurement/LIMER_Dave/Santiage/Chao					
	2	12 Energy Au	nalvzer/LSE	Brian/Rami/C	harles	Lunch							
	3	S3 Sources/	HUGHES Pe	ter/Don	maneo				Free				
Wed 25	1		<u> </u>	ee					Free				
	2	R1 Resonand	ces/UMER. S	antiago/Dave	e/Chao	Lu	nch	R2. Tune Measurement/UMER, Dave/Santiago/Chao					
	3	L2 Energy Ar	nalyzer/LSE.	Brian/Rami/C	harles				Free				
Thu 26	1	L2 Energy Ar	nalyzer/LSE, I	Brian/Rami/C	harles					Free			
	2	Free			Lu	nch	Free						

R2, Tune Measurement/UMER, Dave/Santiago/Chao

R1 Resonances/UMER, Santiago/Dave/Chao Fri 27 ALL Presentations

3

Annapolis – Instructor on duty 7 PM - midnight

- Mon 5/16 Santiago
- Tue 5/17 Rami
- Wed 5/18 Diktys
- Thu 5/19 Brian and/or Charles

- Mon 5/23 Santiago
- Tue 5/24 Chao
- Wed 5/25 Brian
- Thu 5/26 Rami

Assignments and Grading

- 20% Participation (assessment of all instructors)
- 30% 2 Lab reports wk 1 (both due 9:30 AM Fri. 6/20)
- 30% 2 Lab reports wk 2 (both due 9:30 AM Fri. 6/27)
- 20% 10 min. Presentation (Fri. 6/27): 1 exp. per student

Lab Report Content

- Background: describe experiment and explain objectives
- Data: summarize results
- Analysis of data and discussion
- Conclusions what have you learned?

Presentation covers 1 experiment different from any in reports

Lab Report Topics

- Choose 1 from each category (15% of grade each)
- Sources and Diagnostics:
 - Sources + Beam Monitors
 - Imaging + Tomography
- Magnets:
 - Solenoid
 - Rotating Coil
- Longitudinal
 - Longitudinal Dynamics
 - Energy Analyzer
- **Ring Dynamics**
 - Tune Measurements
 - Resonances

Readings (Review)

- Space Charge:
 - Reiser, Sec. 4.2.1, 4.3.2
- Emittance and Phase Space
 - Reiser, Sec. 3.1, 3.2, Fig. 3.26
- Quadrupole and Solenoid Magnets
 - Reiser, Sec. 3.5, 3.4.4
- Child-Langmuir Law
 - Reiser, Sec. 2.5.1, 2.5.2

Quote of the Day ...

James Clerk Maxwell

Maxwell's Equations

Electromagnetic fields generated by charges and currents:

$$\nabla \bullet \mathbf{E} = \frac{\rho}{\varepsilon_o} \qquad \nabla \bullet \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \nabla \times \mathbf{B} = \mu_o \mathbf{J} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

Lorentz-Newton Force Law

Motion of charged particles due to electromagnetic forces:

$$\mathbf{F} = \mathbf{q}(\mathbf{E} + \mathbf{v} \times \mathbf{B}) = \frac{d\mathbf{P}}{dt}$$

Hendrik Lorentz (1853-1928)

Notation, as in Reiser

- q Electric Charge
- v Particle Velocity
- I Beam Current
- E Electric Field
- **B** Magnetic Field
- m Particle Mass
- ϵ_o Permittivity of Free Space
- μ_o Permeability of Free Space

Everyone has an accelerator at home

Accelerator Schematic

For this course, we are interested in beam itself, as a state of matter

Growth of Accelerator Science

Modern Growth Areas:

- FEL + ERL Light Sources
- Pulsed Neutron Sources
- Medical Imaging and Therapy
- Muon / Neutrino Beams
- Rare Isotope Beams

Goal: Generation and Preservation of High-Quality Beams

A beam is a collection of charged particles with a dominant velocity component

Beam Quality Measures - Definitions

rms Emittance	$\tilde{\varepsilon}_{x} = \sqrt{\left\langle \mathbf{x}^{2} \right\rangle \left\langle \mathbf{x}^{\prime 2} \right\rangle - \left\langle \mathbf{x} \mathbf{x}^{\prime} \right\rangle^{2}}$	
Normalized rms Emittance	$\tilde{\varepsilon}_{x,n} = \beta \gamma \sqrt{\langle \mathbf{x}^2 \rangle \langle \mathbf{x}'^2 \rangle - \langle \mathbf{x}\mathbf{x}' \rangle^2}$	Phase space volume - compactness
Normalized Ave Brightness	$\overline{B}_{n} = \frac{2I}{\pi^2 \varepsilon_{x,n} \varepsilon_{y,n}}$	Phase space density
Generalized Perveance	$K \equiv \frac{2I}{I_{o} \left(\beta\gamma\right)^{3}} \qquad I_{o} = \frac{4\pi\varepsilon_{o}mc^{3}}{q}$	Space charge energy / total kinetic energy
Intensity	$\chi \equiv \frac{K}{k_0^2 a^2}$	Dimensionless, transport dynamics
	А	

Can also show:

$$\overline{\mathsf{B}}_{\mathsf{n}} = \frac{I_o}{\pi} \frac{\beta \gamma}{\pi a^2} \left(\frac{\chi}{1-\chi}\right)$$

17

Phase Space

Wikipedia: "In mathematics and physics, phase space is the space in which all possible states of a system are represented, with each possible state of the system corresponding to one unique point in the phase space."

2.1.19. A more realistic example may be obtained by including the effects of friction in the hinge, and air resistance. Here is the phase portrait which results. Notice that it is very similar to the preceding portrait, but the equilibrium point at the origin is no longer a *center*. It has become an *attractor*. This is because any nearby trajectory, representing a

courtesy Abraham & Shaw

Dynamic phase portrait: for any state, shows past history and future prediction

Phase Space for Beams

Each particle, need to specify 6 state variables (x, y, z, p_x , p_y , p_z) N particles: State of entire system needs 6N variables to specify

Beam "Distribution" representations:

- One point in 6N-dimensional phase space
- N points in 6-dimensional phase space
- Density of a "continuum" in 6-dimensional phase space (assumes an averaging process over specified "bins")
 ⇒ f(x, y, z, p_x, p_y, p_z) or f(x, y, z, x', y', z')

Beam distribution is a <u>static</u> phase portrait, just a snapshot of <u>one</u> possible state of the system.

Phase Space Projections and Slices

$$f(x,y,x',y') = \int_{-\infty}^{\infty} \int_{z_1}^{z_2} f(x, y, z, x', y', z') dzdz'$$

Beam density image is a projection onto 2-D

$$n(x, y) = \iint f(x, y, x', y') dx' dy'$$

beam centroid

$$x_{c} = \langle x \rangle = \frac{\iint xn(x, y)dxdy}{\iint n(x, y)dxdy}$$

Beam Ellipse

rms beam radius definition

$$x_{rms} = \tilde{x} = \sqrt{\langle x^2 \rangle} = \sqrt{\frac{\iint x^2 n(x, y) dx dy}{\iint n(x, y) dx dy}}$$

Similarly for y_c and y_{rms} ...

For a uniform beam,
$$a = 2 x_{rms}$$
, $b = 2 y_{rms}$

Reference Trajectory and Coordinate System

s = distance along accelerator reference trajectoryz = distance in beam frame relative to midplane

Paraxial approximation: can change coordinates

$$t \rightarrow s = \beta ct$$

 $\frac{d}{dt} \rightarrow \beta c \frac{d}{ds}$

Transverse particle motion under a linear external force

Assume a linear external force: $F_{ex} = -\gamma m \beta^2 C^2 \kappa_{xo}(s) x$

Assume no acceleration: $d\gamma/dt = 0$

$$\frac{dP_x}{dt} = \gamma m \ddot{x} = F_{ex}$$

Single-Particle Force Law

Change coordinates

$$\beta c \frac{dP_x}{ds} = \gamma m \beta^2 c^2 x'' = -\gamma m \beta^2 c^2 \kappa_{xo}(s) x$$

Simplest type of focusing: Uniform Focusing

- $$\begin{split} \kappa_{xo}(s) &= \kappa_{xo} & \kappa_{xo}, \, \kappa_{yo} \text{ are constants (independent of z)} \\ \kappa_{yo}(s) &= \kappa_{yo} & \text{units: } \kappa_{xo}, \, \kappa_{yo} \, \text{ [m-2]} \end{split}$$
- x'' = $-\kappa_{xo}x$ Terminology: κ_{xo} , κ_{yo} = focusing strength y'' = $-\kappa_{yo}y$

Solution? Harmonic Motion

 $\begin{aligned} \mathbf{x}(\mathbf{s}) &= \mathbf{x}_{o}\cos\left(\sqrt{\kappa_{xo}}\mathbf{s}\right) + \frac{\mathbf{x}_{o}'}{\sqrt{\kappa_{xo}}}\sin\left(\sqrt{\kappa_{xo}}\mathbf{s}\right) & \text{Initial conditions:} \\ \mathbf{x}(\mathbf{0}) &= \mathbf{x}_{o} \\ \mathbf{x}'(\mathbf{s}) &= -\mathbf{x}_{o}\sqrt{\kappa_{xo}}\sin\left(\sqrt{\kappa_{xo}}\mathbf{s}\right) + \mathbf{x}_{o}'\cos\left(\sqrt{\kappa_{xo}}\mathbf{s}\right) & \mathbf{x}'(\mathbf{0}) = \mathbf{x}_{o}' \end{aligned}$

Betatron Oscillations, will be periodic if $\kappa_o(s)$ is periodic

$$k_{xo} \equiv \sqrt{\kappa_{xo}}$$
 "Wavenumber"
 $k_{yo} \equiv \sqrt{\kappa_{yo}}$

24

Effect of Space Charge on Betatron Oscillations

 κ_x (with space charge) < κ_{xo} (without sc)

Effect of Space Charge on Betatron Motion in Periodic Lattice

Betatron and Plasma Frequencies

A Beam with a Space Charge is a Plasma

Plasma = Gas of charged particles

Plasma frequency – collective oscillation frequency

$$\omega_{\rm p} \equiv \sqrt{\frac{{\rm e}^2 {\rm n}}{\gamma^3 {\rm m} \varepsilon_{\rm o}}} = \frac{\beta c \sqrt{2K}}{a}$$

Beam: External focusing force replace ion background

Debye length governs scale of density modulations

$$\lambda_{D} \equiv \left(\frac{\varepsilon_{o} k_{B} T}{e^{2} n}\right)^{1/2} = \frac{\tilde{v}_{x}}{\omega_{p}} = \frac{\varepsilon}{2\sqrt{2K}}$$

Total number of particles with Debye Cube (or Sphere)

 $L \gg \lambda_D \gg n^{-\frac{1}{3}}$

Summary of Key Frequencies and Wavelengths

	Frequency	Wavenumber	Wavelength	Tune
Unit	rad/sec	m^{-1}	m	-
Definition	ω=2 πf	k=ω/v _o	$\lambda = 2\pi/k$	$v=C/\lambda$
Betatron (no space charge)	ω _{βo}	k _{βo} also k _{xo} , k _o	$\lambda_{eta o}$	$v_{\beta o}$
Betatron (with space charge)	ω _β	k _β	λ_{eta}	ν_{β}
Plasma	ω _p	k _p	λ_{p}	

Centroid behaves as single particle, oscillates at $\omega_{\beta o}$ (ignoring image forces)

Particles oscillate at the betatron frequency, ω_{β}

Collective structures (waves) oscillate at frequencies related to plasma freq.

Matched Beam: Force Balance for Stable Transport

M. Reiser, et al., PAC '99.

Examples of Beam Distributions

χ = 0.21

Emittance-Dominated

Beam Images from Phosphor screen Color-coded to enhance halo

50

Photo credits: UMER (Kishek, Stratakis)

Space-Charge-Dominated

Moral

- No space charge: Motion depends on external forces (lattice)
- Space charge: Motion depends on the particle distribution itself, as well as on the external forces
 - Accurately measure the particle distribution imaging and phase-space mapping diagnostics.
 - Model it correctly in simulation codes.
- Beams are born space-charge-dominated at the source
- In linacs, FELs, ERLs, machine is too short for beam to equilibrate: beam retains memory of its injected distribution

UMER – a Platform for Beam Dynamics Studies

Scale model that is sufficiently complex

- β comparable to 20-100 MeV/u ions
- No radiation; inexpensive hardware; 10-15 G fields

UMER Construction funded by

~ 30 cm

UMER Research Goals

Platform to advance knowledge in accelerator and beam physics

Model space charge physics in:

- proton machines (neutron sources, drivers for muon colliders)
- heavy ion beams (nuclear physics, inertial fusion)
- electron injectors (FELs, ERLs)

Ring Physics	Linacs/FELs			
Resonances Dispersion	Halo Nonequilibrium Distributions			
Transverse	Longitudinal			
Little Space Charge	Intense Space Charge			

UMER Magnets & Lattice

UMER Diagnostics

Imagers:

- Fluorescent Screen Imagers
- Optical Transition Radiation (OTR) Imagers
- Fast Fluorescent Screens

Beam pickups:

- Rogowski Coils
- Bergoz Current Monitors
- Wall-Current Monitors
- Fast Capacitive Beam Position Monitors

Phase-Space Mappers:

- Tomographic Magnet-scan (\perp)
- Fast (Slice) Tomography
- Slit-wire (\perp)
- Pepper-pot (⊥)
- Fast Retarding Potential Energy analyzers (//)

Fast = 3-5 ns resolution

UMER Phase Space Diagnostics

Tomographic Phase-Space Mapper

Energy Analyzer

Fluorescent Screen

light

Beam

Beam Position

Monitor

Fast Phosphor Screen Fast Fluorescent Screen

Energy Analyzer

39

Mirror

Simulation codes we use to build understanding

- 1. WARP particle-in-cell accelerator code, self-consistent
- 2. WinAgile single-particle matrix code for rings
- 3. ELEGANT widely-used single-particle code, with option to add space charge
- 4. COSY Infinity single-particle matrix code
- 5. Envelope codes (TRACE, PBOLab, SPOT, MEnv)
- 6. 1-D fluid code for longitudinal dynamics

Additional Codes - You will be using these here

- 1. Image processing codes:
 - PhotoProcess.m
 - Image-J

2. Tomographic reconstruction code

3. Longitudinal code: end erosion