Units

We will use MKS units in this course.

```
meter
second
kilogram
volt
ampere
ohm
electron-volt
```

Electrical units can be confusing. We will break down some of the units (farad, henry, tesla) and see what's inside them.

Maxwell's Equations in MKS units.

$$
\begin{aligned}
& \nabla \cdot D=\rho \\
& \nabla \cdot B=0 \quad \text { Why this asymmetry to the first equation? } \\
& \nabla \times E=-\dot{B} \\
& \nabla \times H=J+\dot{D} \\
& D=\epsilon_{0} E+P \\
& B=\mu_{0} H+M \\
& \mu_{0}=4 \pi \cdot 10^{-7} \text { Henries } / \text { meter } \\
& \epsilon_{0}=8.85 \cdot 10^{-12} \text { Farads/meter } \\
& \text { Force }=q(E+v \times B) \\
& Z_{0}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=377 \Omega \\
& \text { Impedance of free space. (What does this mean?) } \\
& c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}
\end{aligned}
$$

Let's Look at electrical units, with some memory aids

Start with a simple equation that uses that quantity.

$$
\begin{array}{ll}
Q=\boldsymbol{C} V & {[\text { farad }]=\frac{\text { coulomb }}{\mathrm{volt}}=\frac{\mathrm{amp} \cdot \mathrm{sec}}{\mathrm{volt}}=\frac{\mathrm{sec}}{\mathrm{ohm}}} \\
V=\boldsymbol{L} \dot{I} & {[\text { henry }]=\frac{\mathrm{volt} \cdot \mathrm{sec}}{\mathrm{amp}}=\mathrm{ohm} \cdot \mathrm{sec}} \\
\dot{\boldsymbol{B}} A=V & {[\text { tesla }]=\frac{\mathrm{volt} \cdot \mathrm{sec}}{\mathrm{~m}^{2}}} \\
V=I \boldsymbol{R} & {[\mathrm{ohm}]=\frac{\mathrm{volt}}{\mathrm{amp}}} \\
\nabla \times \boldsymbol{H}=J & {[\mathrm{H}]=\frac{\mathrm{amp}}{\mathrm{~m}}} \\
B=\boldsymbol{\mu}_{\mathbf{0}} H & {\left[\mu_{0}\right]=\frac{\mathrm{henries}}{\mathrm{~meter}}=\frac{B}{\mathrm{H}}=\frac{\mathrm{volt} \cdot \mathrm{sec}}{\mathrm{amp} \cdot \mathrm{~m}}=\frac{\mathrm{ohm} \cdot \mathrm{sec}}{\mathrm{~m}}} \\
\mu_{0} \cdot \boldsymbol{\epsilon}_{0}=\frac{1}{\mathrm{c}^{2}} & {\left[\epsilon_{0}\right]=\frac{\mathrm{farads}}{\mathrm{~meter}}=\frac{\mathrm{amp} \cdot \mathrm{sec}}{\mathrm{volt} \cdot \mathrm{~m}}} \\
\boldsymbol{Z}_{\mathbf{0}}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}} & {\left[Z_{0}\right]=\frac{\mathrm{volt} \cdot \mathrm{sec}}{\mathrm{amp} \cdot \mathrm{~m}} \cdot \frac{\mathrm{volt} \cdot \mathrm{~m}}{\mathrm{amp} \cdot \mathrm{sec}}=\sqrt{\frac{\mathrm{volt}}{\mathrm{amp}^{2}}}=\mathrm{ohm}}
\end{array}
$$

Ohm's Law: $E=I R$, Easy, I Remember. But E is reserved for electrical field strength, so we use $V=I R$ (Verily, I Remember).
Carry units along in your calculations. It can help catch errors.

A Practical Example

I came across the following equation the other day (frequency dependence of single-point multipactoring), where f is frequency, B is magnetic field and m is the mass of the electron.

$$
\frac{f}{N}=\frac{e B_{0}}{2 \pi m}
$$

Instead of having to look up the physical constants, and knowing that the units of magnetic field B are volt-seconds/meter ${ }^{2}$, I recast the equation as:

$$
\frac{f}{N}=\left(\frac{e}{m c^{2}}\right) \frac{c^{2} B_{0}}{2 \pi} \quad\left[\frac{e}{e-v o l t} \frac{m^{2}}{\sec ^{2}} \frac{\text { volt }-\sec }{m^{2}}\right]
$$

The units of the $\left(e / m c^{2}\right)$ are $1 /$ volt, and of $c^{2} B_{0}$ are volt/second, and I know that the value of $\left(e / m c^{2}\right)$ is $1 /\left(511000\right.$ volts), so the units come out okay (sec^{-1}) and I don't have to look up the mass of the electron or its charge.
$f / N=2.8 \times 10^{10}$. for $\mathrm{B}_{0}=1$ Tesla. If you use e and $m, \mathrm{e}=1.6 \times 10^{-19}$ coul, and $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$, and you get the same answer, but I had to look it up.

Wave Equation in Free Space

Let's determine the relationship between the electric and magnetic field vector in free space.

$$
\begin{aligned}
& \nabla \times E=-\dot{B} \\
& \nabla \times(\nabla \times E)=-\frac{\partial}{\partial t}(\nabla \times B)=\frac{1}{c^{2}} \frac{\partial E}{\partial t}
\end{aligned}
$$

For a plane wave in $\mathrm{x} \quad$ Remember: $\quad \nabla \times H=\dot{D} \quad \rightarrow \quad \nabla \times B=\frac{1}{c^{2}} \dot{E}$

$$
\frac{d^{2} E_{x}}{d z^{2}}=\frac{1}{c^{2}} \frac{d^{2} E_{x}}{d t^{2}}
$$

And a similar equation for B. These equations can be solved by

$$
\begin{array}{lll}
E_{x}=E_{0} e^{i(k z-\omega t)} & \dot{E}_{x}=-i \omega E_{x} & \ddot{E}_{x}=-\omega^{2} E_{x} \\
B_{y}=B_{0} e^{i(k z-\omega t)} & \dot{B}_{y}=-i \omega B_{y} & \ddot{B}_{y}=-\omega^{2} B_{y}
\end{array}
$$

Plane Wave

Define a wavenumber k, increases by 2π for each wave of length λ.
$k=\frac{2 \pi}{\lambda}, \quad f \lambda=c, \quad \frac{1}{\lambda}=\frac{f}{c}=\frac{\omega}{2 \pi c}$

We can rewrite the plane wave as

$$
E_{x}=E_{0} e^{i(k z-\omega t)}=E_{0} e^{i\left(\frac{\omega}{c} z-\omega t\right)}=E_{0} e^{2 \pi i\left(\frac{z}{\lambda}-\frac{t}{\tau}\right)} \quad \tau=\frac{1}{f}
$$

For a constant time t, moving along z gives one oscillation period per wavelength λ.
Sitting at a particular location z, one oscillation occurs for every period $t=\tau$.
One can ride along a particular phase at velocity c (in the lab) as time progresses.

Ratio of E to H in a plane wave

Back to Maxwell's equations $\quad \dot{B}_{y}=-\nabla \times E=\frac{d E}{d z}$

$$
\begin{gathered}
E_{x}=E_{0} e^{i\left(\frac{\omega}{c} z-\omega t\right)} \quad \frac{d E_{x}}{d z}=i \frac{\omega}{c} E_{x} \\
B_{y}=B_{0} e^{i\left(\frac{\omega}{c} z-\omega t\right)} \quad \dot{B}_{y}=-i \omega B_{y} \\
-i \omega B_{y}=i \frac{\omega}{c} E_{x} \\
B=\mu_{0} H \\
\frac{E}{H}=\mu_{0} c=Z_{0}
\end{gathered}
$$

The ratio of E to H fields in free space is Z_{o}, the free-space impedance. The units are an indication:
volts/meter / amps/meter = volts/amps = ohms

