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Abstract. The objectives of this lecture are to define the basic electron emis-
sion statistics, describe the electrical potentials at the cathode surface, define

the thermal emittance and derive the cathode emittance for thermal, photo-

electric and field emission.

1. Introduction

The electron density inside a cathode is many orders of magnitude higher than
that of the emitted electron beam. This is seen by considering that the density
of conduction band electrons for metals is 1022 to 1023 electrons/cm3, roughly one
electron per atom. Whereas the density of electrons in a 6 ps long, 200 micron
diameter cylindrical bunch with 1 nC of charge is 1.1×1014 electrons/cm3. Thus
the transition from bound to free reduces the electron density by eight to nine orders
of magnitude. In addition, the energy spread, or thermal energy of the electrons
inside the cathode material is low. For example, in copper the energy spread near
the Fermi energy is kBT or 0.02 eV at room temperature (300 degK). However,
in order to release these cold, bound electrons, one needs to heat the cathode to
approximately 2500 degK, resulting in a beam with a thermal energy of 0.20 eV.

In general, the electron temperature of the emission process determines the fun-
damental lower limit of the beam emittance. This ultimate emittance is often
called the thermal emittance, due to the Maxwell-Boltzmann (MB) distribution of
thermionic emitters. Strictly speaking, the term ’thermal emittance’ applies only to
thermionic emission, but the concept of thermal emittance or the intrinsic cathode
emittance can be applied to all three fundamental emission processes:

1. thermionic emission,
2. photo-electric emission and
3. field emission.
This lecture begins with definitions of Maxwell-Boltzmann and Fermi-Dirac sta-

tistics, and discusses the electric fields at the cathode surface which the electron
needs to overcome to escape. Then the physics of each of the three emission pro-
cesses is described and their cathode emittances are derived.

2. Electron Statistics and the Emission Processes

Elementary particles in general can be classified as either bosons or fermions de-
pending upon whether they have integer or half integer spin, respectively. Bosons
obey classical Maxwell-Boltzmann statistics, while fermions follow Dirac-Fermi sta-
tistics. These statistics define the probability a particle occupies an given energy
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state based on the the distribution of N-particles on k-energy intervals for the two
particle types:

1. particles any number of which can share the same energy state, follow the
Maxwell-Boltzmann distribution.

2. particles which cannot share the same energy state having only one particle
per energy state, follow Fermi-Dirac distribution.

The first particle type obeys classical Maxwell-Boltzmann (M-B) statistics with
the energy distribution of occupied states given by,

(1) fMB = e−E/kBT

For the second particle type, of which electrons are are a member being fermions,
the energy distribution of occupied states (DOS) is given by the Fermi-Dirac (F-D)
function,

(2) fFD =
1

1 + e(E−EF )/kBT

The distributions are compared in Figure 1, showing they have very nearly the
same high energy tails. During thermionic emission the cathode is heated to high
temperature to increase the high energy tail of the distribution and promote emis-
sion. In this case, M-B statistics is completely valid and the classical concept of
temperature applies. However, as will be shown, photo-electric and field emission
involves the excitation of electrons from below the Fermi energy and not only the
tail of the distribution. In these cases, F-D statistics should be used.

Figure 1. Comparison of the particle energy distributions in the
high-energy tails of the classical Maxwell-Boltzmann and the quan-
tum mechanical Fermi-Dirac functions.

In some applications electrons are produced using two of more of these three
processes. A good example is field emission, which is usually considered to occur
at low temperature, but in practice is often combined with thermionic emission in
the high field of thermionic RF guns. And there are proposals for using all three
processes as in photo-assisted thermionic cathodes for high-field RF guns.

3. Fields Near the Cathode Surface

An important aspect of electron emission concerns the fields and potentials at
and extremely near the cathode surface, and how these fields affect the electron
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states. The electric potential energy as a function of distance from the cathode is
given by

(3) eΦ = eφwork −
e2

16πε0x
− eE0x

which is the sum of the work function, φwork, the image charge potential and the
applied electric field, E0.

Comparison of the electric fields and the energy density of occupied states near
a metal-vacuum boundary is shown in Figure 2. The total external potential, Φ, is
the sum of applied and image fields for a single electron, and peaks approximately
2 nm from the surface. Electrons can escape with energies greater than the work
function or those with lower energy can tunnel through the barrier. In the cases of
thermionic and photo-emission, the escaping electrons must have energies greater
than the barrier. In field emission, electrons tunnel through the barrier. This is an
important distinction: In the first two the electrons are excited above the barrier
to escape, while in field emission the barrier height is lowered by an external field
to encourage tunneling.

Figure 2. The potential energy barrier near the cathode surface
(right) and the density of occupied states (left) are plotted within
10 nm of a metallic surface. The work function barrier is produced
by an excess of electrons spilling out from inside the cathode to
a distance of less than an angstrom. The image potential is for a
single electron and the applied field corresponds to 100 V/micron.

The temperature of the electron gas in the bulk material affects the probability
of emission and the emitted electron energy distributions for all three phenomena.
The reduction of the barrier by the applied field is called the Schottky effect and
plays a central role in all emission processes, especially field emission. Photo-electric
emission promotes electrons directly from the energy region near the Fermi energy.
In the following sections, the underlying physics for these three processes will be
described.
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4. Thermionic Emission

In order for an electron to escape a metal it needs to have sufficient kinetic in
the direction of the barrier to overcome the work function,

(4)
mv2

x

2
> eφwork ⇒ vx >

√
2eφwork
m

Assume that the cathode has an applied electric field large enough to remove all
electrons from the surface, so there is no space charge limit for emission, but still
low enough as to not affect the barrier height. Then the thermionic current density
for a cathode at temperature T is given by,

(5) jthermionic = n0e〈vx〉 = n0e

∫
vx>

√
2eφwork

m

vxfFDd~v

The region of integration over the F-D distribution is shown in Figure 3.
As discussed above, the interactions involving the high energy electrons in the tail

of the Fermi-Dirac density of states (The F-D distribution is essentially identical to
the classical M-B for energies greater than 1.005EF , as shown in Figure 1.), allows
it’s replacement with the classical, Maxwell-Boltzmann distribution,

(6) fMB = e−E/kBT

The equation for the current density is then,
(7)

jthermionic = n0e

∫
vx>

√
2eφwork

m

vxfMBd~v = n0e

∫
vx>
√

2eφwork/m

vxe
−
m(v2x+v2y+v2z)

2kBT d~v

Performing these simple integrals gives the thermionic current density,

(8) jthermionic = 2n0e

(
2kBT
m

)2

e−φwork/kBT

Or regrouping the leading constants, gives the Richardson-Dushman (R-D) equation
for thermionic emission [Reiser, p 8],

(9) jthermionic = A(1− r)T 2e−φwork/kBT

Here A is 120 amp/cm2/degK2, and (1-r) accounts for the reflection of electrons
at the metal surface. The reflection and refraction of electrons as they transit the
surface is discussed in a later section. In terms of fundamental quantities, the
universal constant A is [”Solid State Physics”, by Ashcroft and Mermin, p. 363]

(10) A = − em

2π2~3

The exponential dependence upon temperature of the R-D equation illustrates
how thermionic current rises rapidly with temperature, and with decreasing work
function. This same work function also applies to photo-electric and field emission.

The velocity distribution for thermally emitted electrons is obtained from the
derivative of Maxwell-Boltzmann particle distribution,

(11)
1
ne

dn(vx)
dvx

=
m

kBT
vxe

−mv2x
2kBT

Figure 4 shows the energy distribution assuming the emitted electrons obey Maxwell-
Boltzmann statistics. At room temperature, the mean transverse velocity is 9×104
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Figure 3. Fermi-Dirac energy distributions for thermionic emis-
sion. Electrons in the high energy tail of the distribution (energies
greater than the work function) are thermally emitted for cathode
temperatures of 2500 (red-pink) and 3000 (blue-aqua) degK.

m/s, or 0.025 eV. The initial spread in transverse velocity due to the electron tem-
perature gives the beam angular divergence and hence its thermionic emittance.

Following Lawson[Lawson,p. 209], we assume the normalized emittance is evalu-
ated close to the cathode surface where the electron flow is still laminar (no crossing
of trajectories) and any correlation between position and angle can be ignored. In
this case, normalized cathode emittance is given by,

(12) εN = βγσxσx′

The root-mean-square (rms) beam size, σx, is given by the transverse beam
distribution which for a uniform radial distribution with radius Rc is Rc/2. The
rms divergence is given by

(13) σx′ =
〈px〉
ptotal

=
1
βγ

√
〈v2
x〉

c

The normalized, rms thermal emittance is then

(14) εN = σx

√
〈v2
x〉

c
The mean squared transverse velocity for a Maxwell velocity distribution is,

(15) 〈v2
x〉 =

∫∞
0
v2
xe
− mv2x

2kBT dvx∫∞
0
e
− mv2x

2kBT dvx

=
kBT

m

Therefore the thermionic emittance of a Maxwell-Boltzmann distribution at tem-
perature, T , is

(16) εthermionic = σx

√
kBT

mc2
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Figure 4. Maxwell-Boltzmann electron energy distributions at
300 degK where the rms electron energy spread is 0.049 eV, and
at 2500 degK corresponding to an rms energy spread of 0.41 eV.

The divergence part of the cathode emittance contains all the physics of both
the emission process and the cathode material properties and as such summarizes
much of the interesting physics of the emission process. The beam size in coordinate
space simply traces out the angular distribution to form the transverse phase space
distribution as illustrated in Figure 5. Given that σx depends upon the particular
transverse distribution being used, there is often a serious ambiguity which arises
when expressing the thermal emittance in terms of ”microns/mm”. The confusion
results in not knowing whether rms or flat top radii are used for the transverse
radius. Therefore we suggest quoting a quantity called the normalized divergence,
which for thermionic emission is

(17) ∆thermionic ≡
√
kBT

mc2

The thermal normalized divergence and the rms energy spread for the M-B distri-
bution as a function of temperature is given in Figure 6.

Class exercise: Compute the thermionic emittance for a distribution of hot
spots.

5. Photo-electric emission

Photoelectric emission from a metal can be described by the three steps of the
Spicer model [Spicer]:

1. Photon absorption by the electron
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Figure 5. Each point on the cathode surface emits electrons ac-
cording to the M-B velocity distribution, mapping into a ’line’ of
phase space points along the divergence axis. The emittance is
then linear in the beam size with a divergence given by the M-B
distribution at temperature T.

Figure 6. The normalized divergence and rms energy spread of
the M-B gas as a function of temperature.

2. Electron transport to the surface
3. Escape through the barrier
The kinematics of the first step is illustrated in Figure 7 showing the location of

the vacuum state at the work function minus the Schottky energy. This Schottky
energy accounts for the lower barrier when a large external field is applied to the
cathode, and is typically a few ten’s of an eV for fields of 100 MV/m. This schottky
effect can significantly increase the quantum efficiency since the work function for
a metal cathode like copper is 4.6 eV.

Some insight into the photo-emission process can be gained by assuming that
all the electrons absorbing photons in step 1 escape. Then the quantum efficiency
is simply proportional to the number of electrons the photon can excite above the
barrier as indicated by the shaded region in the Figure 8. In addition the energy
spread and hence the photo-electric emittance is also proportional to the photon
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Figure 7. Spicer’s three-step model of photoemission.

energy. Therefore it appears that the higher the QE, the larger the photo-electric
emittances. This is indeed true, as will be demonstrated below.

Figure 8. Kinematics of photo-emission.

During step 2, transport to the surface, the electron-electron scattering redis-
tributes the energy distribution on a fast time scale, while the slower electron-
phonon interaction acts on the electron through the lattice atoms. In general,
the electron-phonon interaction is important for semi-conductor cathodes while
electron-electron scattering is dominant for metals. These scattering interactions
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make step 2 a complex process with a time-dependence Fermi-Dirac temperature
and a direct high-energy component. In one experiment, the time for the electrons
to thermalize among themselves was measured in a laser pump-probe measurement
[Fann et al., ”Observation of the thermalization of electrons in a metal excited by
femtosecond optical pulses,” in Ultrafast Phenomenona, ed. J.-L. Martin, A. Mei-
gus, G.A. Mourou and A.H. Zewail, Springer Verlag 1993, p331-334.]. Here the
photoemission energy spectra were measured as a function of time delay between
an IR pump laser and a UV probe. The electrons absorbed energy from the IR
pulse, and having too low an energy to escape could only scatter and thermalize
with other electrons and phonons. The UV probe sampled the electron energy
distribution as a function of time by photo-emitting the electrons excited by the
IR pulse. Fann’s results are reproduced in Figure 9 and illustrate how the Step
1, high-energy electrons thermalize their energy on a time scale of approximately
400 fs, achieving a maximum Fermi-Dirac temperature of 700 degK. This experi-
ment not only determined the electron-electron relaxation time, but also gives the
thermodynamic parameters for the electronic equation-of-state.

Figure 9. Electron photo-emission spectra on the sub-ps time
scale for Au.

Not only does the electron need to have enough energy to escape, but is must
also be traveling toward the cathode surface. Therefore, the electron’s momentum
perpendicular to the surface, pz, needs to satisfy,

(18)
p2
z

2m
> EFermi + φwork − φSchottky

The longitudinal momentum is pz = ptotcosθ =
√

2m(E + ~ω)cosθ, therefore the
maximum angle of emission, max, satisfying the above condition is

(19) cosθmax =

√
EF + φwork − φSchottky

E + ~ω
where EF is the cathode Fermi energy, φwork is the work function for electron
emission, φSchottky is the reduction in the barrier potential due to the external
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field, E is the electron’s initial energy inside the cathode and is the photon energy.
The relations between energy, momenta and angles at the surface are given in
Figure 10. It’s relevant to note that these momenta are for electrons just inside the
cathode. The momenta outside the metal are discussed in a later section.

Figure 10. Definition of the maximum angle of emission for elec-
trons at the cathode-vacuum boundary.

While the electron moves toward the surface, it can scatter with other electrons
or with the lattice and excite phonons, lose energy and not escape the cathode. In a
metal cathode, electron-electron scattering has a larger cross section than electron-
phonon scattering. The mean free path for fermi gas of electrons can be computed
by realizing that the Pauli principle leads to blocking of final states the electron
scatter to and an relatively slow energy dependence of (E−EF )−3/2 near the Fermi
energy [W. F. Krolikowski and W. E. Spicer, Phys. Rev. 185, 1969, 882-900]. The
mean free path for electrons excited 4 to 5 eV above the Fermi energy is 45 to 70
angstroms. Since the absorption depth for a UV photon in copper is approximately
120 angstroms, the electrons absorbing photons at the greatest depth can on average
scatter two to three times before reaching the surface. After one scattering, the
electron loses too much energy to escape.

Putting all these elements together, the following expression for the QE is found
[D. H. Dowell, K.K. King, R.E Kirby and J.F. Schmerge, ”In situ cleaning of
metal cathodes using a hydrogen beam,” PRST-AB 9, 063502 (2006)] where φeff =
φwork − φSchottky,

(20) QE(ω) = (1−R(ω))

∫ EF
EF+φeff−~ω F (E)dE

∫ 1√
EF+φeff
E+~ω

d(cosθ)
∫ 2π

0
dϕ∫

dE
∫
d(cosθ)

∫
dϕ

After some mathematics one finds,

(21) QE(ω) =
(1−R(ω))

1 + λopt
λe−e

EF + ~ω
2~ω

(
1−

√
EF + φeff
EF + ~ω

)2

Where R(ω) is the reflectivity, λopt is the photon’s optical depth and λe−e is the
electron mean free path.



LECTURE 2: ELECTRON EMISSION AND CATHODE EMITTANCE 11

The normalized divergence can be written in terms of the mean square of the
transverse momentum which in turn is related to the electron distribution function,
g(E, θ, ϕ), just inside the cathode surface,

(22) 〈p2
x〉 =

∫ ∫ ∫
g(E, θ, ϕ)p2

xdEd(cosθ)dϕ∫ ∫ ∫
g(E, θ, ϕ)dEd(cosθ)dϕ

The g-function and the integration limits depend upon the emission processes. For
the three-step photo-emission model, g depends only on energy,

(23) gphoto = (1− fFD(E + ~ω))fFD(E)

Which is the mathematical expression for the electron distribution just below the
Fermi energy shown as shaded in Figure 8. Since the Fermi-Dirac function, fFD, at
temperatures near ambient is well-represented by a Heaviside-step function which
determines the limits on the energy integration. The θ-integration ranges from
zero to θmax, as given by Equation 25. Thus the mean square of the x-momentum
defined in Figure 10, px =

√
2m(E + ~ω)sinθcosϕ, becomes

(24) 〈p2
x〉 =

2m
∫ EF
EF+φeff−~ω dE

∫ 1√
EF+φeff
E+~ω

d(cosθ)
∫ 2π

0
dϕ(E + ~ω)sin2θcos2ϕ∫

dE
∫
d(cosθ)

∫
dϕ

Performing these integrals results a relatively simple relation for the photo-
electric normalized divergence,

(25) ∆photo = βγσphotox′ =

√
~ω − φeff

3mc2

The normalized divergence vs. photon energy for photo-electric emission is plotted
in Figure 11 with 0, 50 and 100 MV/m applied fields. And the normalized cathode
emittance for photo-emission is simply,

(26) εphoto = σx

√
~ω − φeff

3mc2

Plotting these expressions for the emittance and the quantum efficiency in Figure
12 illustrates the strong correspondence between them as described above. A typical
laser wavelength for copper cathodes is 255 nm, where the QE given by Equation 25
is 1.9× 10−4 and 0.30 microns/mm for the emittance. The QE in an operating RF
photocathode gun is nearly ten times lower( 3×10−5) and the measured emittance
is 0.6 microns/mm.

Thus far the discussion of photoelectric emission has assumed the free electron
gas model which is appropriate for metals. However emission from semi-conductor
cathodes is distinctly different, and their treatment is beyond the scope of this
lecture. An in depth discussion of this and other emission phenomena can be found
in the recent book: Advances in Imaging and Electron Physics, Electron Emission
Physics, Vol. 149, by K.L. Jensen.

6. Field Emission

Field emission occurs under the influence of very high fields of 109 V/m or more.
Since the electrons quantum mechanically tunnel through the barrier, the high
electric fields are necessary to lower the barrier enough the achieve useful emission
currents.
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Figure 11. The normalized divergence plotted as a function of
the photon energy for applied fields of 0, 50 and 100 MV/m. The
4.86 eV laser energy used for LCLS is shown by the vertical dash-
line.

Field emission at electron temperatures above 1000 degK is referred to as thermal-
field emission . This type of emission is used in thermionic rf guns which are com-
monly used as injectors for 3rd generation storage ring light sources. The effect
of temperature is greatest at low fields and high temperatures (+1000 degK and
higher) with the current density increasing by more than an order of magnitude
over that at ambient (∼300 degK) temperature.

The field emission current density is given by

(27) jfield =
∫
n(Ex, T )D(Ex, E0)dEx

where the supply function, n(Ex, T ), is the flux of electrons incident upon the
barrier with energies between Ex and Ex + dEx. The barrier as shown in Figure 2
is determined by the work function, the image charge and the applied electric field,
E0. The transmission of electrons through this barrier is given by the transparency
function, D(Ex, E0). This function can be solved using the WKB approximation
for a barrier produced by the image charge and the applied field,

(28) φSchottky(x) = − e2

16πε0x
− eE0x
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Figure 12. The photo-electric normalized divergence (top, red)
and the quantum efficiency (bottom, red) vs. photon wavelength
for copper. The green ellipses show the range of QE and cathode
emittance measured during commissioning of the LCLS injector.

The resulting transparency function is

(29) D(Ex, E0) = exp

[
−8π
√

2m
3he

E
3/2
x

E0
θ

(√
e3E0

φwork

)]
where θ(y) is the Nordheim function (not to be confused with the angle, θ). Al-
though the θ -function is strongly dependent upon y and is mathematically compli-
cated, it monotonically varies from 1 to 0 on the interval 0 < y < 1 and to a very
good approximation can be represented by

(30) θ(y) = 1− 0.142y − 0.855y2

The supply function for a Fermi-Dirac electron gas was also derived by Nordheim,

(31) n(Ex, T ) =
4πmkBT

h3
ln
(

1 + e
Ex−EF
kBT

)
Combining the supply and transparency functions the electron energy spectrum

is simply,

(32) Nfield(Ex, E0, T ) = n(Ex, T )D(Ex, E0)
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The combination of these three functions is plotted in Figure 13 vs. the electron
energy.

Figure 13. The spectrum of the emitted electrons results from
the overlap of the barrier transparency (blue) with the supply func-
tion (red). In this case, the supply function is for a Fermi-Dirac
distribution at a temperature of 300 degK .

In field emission the electron yield is exponentially sensitive to the external field
and any significant current requires fields in excess of 109 V/m as seen in Figure 14.
Such high fields are achieved by using pulsed high voltages and/or field-enhancing,
sharp emitters. Knowledge of the energy spectra allows numerical computation of
the rms energy spread and the field emission emittance which are plotted in Figure
15 for external fields between 109 and 1010 Volts/m.

7. Discussion of the Three Emission Processes

The last three sections derived the cathode emittances for the three emission pro-
cesses: thermionic, photo-electric and field emission. Rather than using the term,
thermal emittance, we prefer to using cathode emittance for the emission processes.
And to specifically derive the cathode emittance for each of the three emission pro-
cesses. The cathode emittance for thermionic emission is approximately 0.3 mi-
crons/mm for a cathode temperature of 2500 degK. The photo-electric emittance
ranges between 0.5 to 1 micron/mm depending upon the photon wavelength and
was shown to be proportional to the quantum efficiency. The field-emission emit-
tance varies from 0.5 to 2 microns/mm for fields corresponding to fields of 109 to
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Figure 14. Electron spectra for field emission electrons for vari-
ous applied fields. Left: Electron emission spectra plotted with a
linear vertical scale and with arbitrarily normalization to illustrate
the spectral shapes. Right: The spectral yields plotted logarithmi-
cally to illustrate the strong dependence of yield and shape upon
applied field.

Figure 15. The energy spread and field emission emittance from
a planar emitter as functions of the external field.

1010 V/m, and hence has larger emittance for the same source size than the other
two processes.

In many cases electron guns combine field emission with the other two processes
to produce electrons. A good example is photo-electric emission in a high field gun,
where field-emission lowers the barrier height via the Schottky effect and increases
the quantum efficiency.

Class Exercises:

1) Derive the relation for the Schottky potential ; 2) Compute the Schottky
potential for 100 MV/m. Compare this with the work function for copper.
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Figure 16

8. The Refraction of Electrons at the Cathode Surface

Similar to photons, electrons change their angle or refract as they transit the
cathode surface. This is a result of the boundary condition requiring conservation of
the transverse momentum across the cathode-vacuum interface. Using the momenta
and angles defined in Figure 17, the boundary condition is expressed as

(33) pinx = poutx

(34) pinx = pintotalsinθin = pouttotalsinθout = poutx

The total energy of the electron inside the cathode after absorbing the photon is
E + ~ω. Thus the total momentum inside is,

(35) pintotal =
√

2m(E + ~ω)

and outside the total momentum is

(36) pintotal =
√

2m(E + ~ω − EF − φeff )

Inserting these expressions into Equation 34 and solving for the ratio of sines gives
a formula similar to Snell’s law,

(37)
sinθout
sinθin

=

√
E + ~ω

E + ~ω − EF − φeff
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Figure 17. Definitions of the electron momenta and angles at the
boundary between the cathode and vacuum.

An electron approaching the boundary needs to have sufficient momentum to
overcome the barrier,

(38) pz =
√

2m(E + ~ω)cosθin ≥
√

2m(EF + φeff )

This leads to the maximum escape angle, θmaxin ,

(39) cosθmaxin =

√
EF + φeff
E + ~ω

and

(40) sinθmaxin =

√
E + ~ω − EF − φeff

E + ~ω
these relations are shown graphically in Figure 18.

Figure 18. Graphical relation between electron, Fermi and work
function energies.

On the vacuum side of the boundary the maximum electron angle is,

(41) sinθmaxout = sinθmaxin

√
E + ~ω

E + ~ω − EF − φeff
−→ θmaxout = π/2
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and the electron behaves just like a photon and undergoes total internal reflection
for angles greater than the the critical angle, θmaxin .

Thus it is reasonable to associate the square root of these energies with the
following indices of refraction for the electron inside and outside the cathode, re-
spectively,

(42) nin =
√
E + ~ω

(43) nout =
√
E + ~ω − EF − φeff

This analogy suggests focusing effects for the escaping electrons, as discussed in
the next section.

9. Focusing of Electrons by the Cathode-Vacuum Boundary

The bending of light by a curved boundary between media with different indices
of refraction is illustrated in Figure 19 and expressed as (see for example, ”Optics,”
by Miles V. Klein, John Wiley & Sons, Inc, 1970, pp. 67-69),

(44) x1 =
[

(n0 − n1)D1

n1R
+ 1
]
x0 +

[
D0 +

n0D1

n1
+

(n0 − n1)D0D1

n1R

]
θ0

(45) θ1 =
n0 − n1

n0R
x0 +

[
n0

−n1
+

(n0 − n1)D0

n1R

]
θ0

In comparison with the paraxial equations for ray-optics, the focal strength of
the refracting boundary is,

(46)
1
f

=
n1 − n0

n1R

Figure 19. Quantities used in the relations for refraction at and
indexed boundary
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Inserting the previously derived relations for the electron indices of refraction
gives,

(47)
1
f

=
1
R

[
1−

√
E + ~ω

E + ~ω − (EF + φeff )

]
Clearly the square root term is always greater than unity, making the quantity in the
brackets negative. Therefore surfaces with positive curvature will give the electrons
a diverging angle, while negative curvature surfaces give them a converging angle.

Since the electrons are all emitted from a thin layer an optical depth thick, then
D0 ≈ 0 and Equations 44 and 45 become,

(48) x1 =
[

(n0 − n1)D1

n1R
+ 1
]
x0 +

n0D1

n1
θ0

(49) θ1 =
n0 − n1

n0R
x0 −

n0

n1
θ0

Class Exercise: 1) Compute the surface curvature necessary to produce a
collimated beam. 2) Derive the emittance growth due to the sinusoidal surface
given as: z(x) = Ax sin(2πfracxλx). Show that, similar to the thermal emittance,
it scales linearly with beam size.

10. The Debye Length and Laminar Flow

Once free of the cathode, the electrons experience both external and internal
mutual forces. The external forces are those imposed by RF, magnetic and electric
fields. These are forces which the designer of the injectors can use to create and
control the beam. The internal forces results from the mutual interactions between
the electrons, which can be classified into collisions and smoothly varying forces.
The collisional forces occur between nearest neighbors and are random, statistical
fluctuations related to the beam temperature. On a larger scale lengths the elec-
trons will collectively move to screen any non-uniform of the electron distribution,
resulting in a slowly, varying spatial field. This screening of the single-particle
forces is called Debye shielding [Reiser, p 184; Jackson, 1st Edition, pp 339] and is
effective for distances greater than the Debye length, λD, which is defined as the
ratio of the beam’s random, thermal velocity to the plasma frequency, ωp =

√
e2n
ε0m

, where n is the electron density and m is the electron mass,

(50) λD =
〈v2
x〉
ωp

Assuming M-B statistics, the Debye length in the beam rest frame is

(51) λD =

√
ε0kBTb
e2n

The procedure for the relativistic transformation of this relation to the lab frame
is ambiguous as described by Reiser who simply uses T = Tb/γ to obtain the
laboratory frame Debye length in terms of laboratory quantities, n, γ and the
beam rest frame temperature, Tb,

(52) λD =

√
ε0γkBTb
e2n
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In some cases, and especially when the electrons have just escaped from the cathode,
the electron statistics are not necessarily given by the M-B thermal distribution.

On length scales where the Debye length is large compared to the distance be-
tween the electrons and comparable to the beam size, the collective space charge
interactions are diminished and independent particle dynamics dominate. As an
example consider the 135 MeV, 1 nC beam in the LCLS injector with a radius of
100 microns and a bunch length of 6 ps and a thermal temperature kBTb of 0.2 eV,
for which λD is 5.1 microns. The inter-particle distance is 0.2 microns. Since the
Debye length determines the shortest plasma wavelength, in this case, beam plasma
waves shorter than 5 microns are not possible. The shorter wavelength oscillations
are washed out by the thermal motion of the electrons. When the space charge
wave velocity is close to the thermal velocity and the waves are Landau damped.
(Jackson, 1st Edition, pp340.)

Class Exercise: Beginning with Equation 50, write a relation for the Debye
length of a photo-emitted beam.

11. The Space Charge Limit and Cathode Emittance

In this section it is shown that space charge limited emission for a cathode
emitting a short electron bunch evolves toward the Child-Langmuir law as the
bunch length increases and the region between the bunch and cathode becomes
filled with electrons. A general expression for the space charge limit is derived
first for a short bunch near the cathode surface and then for a continuous current
of electrons streaming from the cathode, yielding the Child-Langmuir law without
having to solve Poisson’s second-order differential equation. This result is used to
compute the emittance for photo-electric emission at the space charge limit.

Consider the electron bunch of length δ when it is a short distance d from
the cathode surface as shown in Figure 1. If d is small compared to the beam’s
transverse dimension, then Gauss’s law is trivially integrated over the cylinder’s
surface to solve for the space charge electric field between the cathode and a thin
sheet of electrons.

(53)
∮
S

~E · ~ndS =
1
ε0

∫
V

ρ(~r)d 3r

And obtain the space charge field of a sheet beam,

(54) Ez =
σ

ε0

We reach the space charge limit (SCL) when the space charge field, Ez equals
the applied, external field, Ea. That is,

(55) σSCL ≡ ε0Ea

The space charge potential energy of the short bunch is obtained by a simple inte-
gration along z,

(56)
dφ
dz

= Ez =
σ

ε0
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Figure 20. The cathode and electron bunch shortly after emis-
sion. The electron bunch is typically 10’s of microns long when the
laser pulse ends and the last electron is emitted. d is the distance
from the cathode to the tail of a bunch which is δ long.

Thus the surface charge density corresponding to the SCL in terms of the potential
energy is given by,

(57) σSCL =
ε0φa
d

Next we derive the Child-Langmuir law, and begin by expressing the beam cur-
rent density in terms of the charge density and beam velocity, βc,

(58) J = ρβc =
σ

δ
βc

We assume the electrons have negligible initial velocity at the cathode surface, and

thus their kinetic energy equals the applied potential, βc =
√

2eφa
m . This gives the

SCL peak current density of the short bunch as,

(59) JbunchSCL = ε0

√
2e
m

φ
3/2
a

δd

When the electrons fill the region between the cathode and the head of the bunch,
δ = d,

(60) JCLSCL = ε0

√
2e
m

φ
3/2
a

d2

which is the well-known Child-Langmuir law for current flowing in a diode region.
The space charge limited emittance is found by combining the beam size for a the

short bunch at the SCL with the normalized divergence derived for photo-electric
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emission. If we assume the beam is transversely unform with radius a then

(61) a =
√
Qbunch
ε0πEa

Which has the root-mean-square size of

(62) σx =
a

2
=
√
Qbunch
4πε0Ea

The normalized cathode emittance is given by

(63) ε = βγσxσx′

And substituting the normalized divergence for photo-electric emission results in
the SCL photo-electric emittance,

(64) εSCLphoto =

√
Qbunch(~ω − φeff )

4πε0mc2Ea

Here φeff is the effective cathode work function which includes the Schottky effect
and ~ω is the laser photon energy. For a bunch charge of 1 nC, an applied field
of 50 MV/m, a laser energy of 4.86 eV and a copper cathode (φeff = 4.5eV ), the
space charge limited thermal emittance is

(65) εSCLphoto = 0.34 microns

12. Charge Limited Emission in RF Guns

When a transverse gaussian beam reaches the short bunch space charge limit,
emission saturates and the charge becomes constant and independent of the laser
energy. This constant charge is over an area defined by Eqn. 61,and results in the
charge vs the drive laser energy shown in Figures 21 and 22. The charge at low laser
energy depends linearly on the laser energy while at high laser energy the charge
rolls over due to the space charge limit. A larger laser size reduces the space charge
field and gives more charge for the same laser energy. The linear region QE limits
the emission, while space charge limited emission occurs at the high laser fluence
as illustrated experimentally in the figures.

Class Exercise: Derive an expression for the emitted charge as a function of the
laser energy for a transverse gaussian distribution. Write the relation for the tran-
sition between QE limited and space charge limited emission. [see:J. Rosenzweig
et al., ”Initial measurements of the UCLA rf photoinjector”, NIM A341(1994)379-
385; J.L. Adamski et al., ”Results of commissioning the injector and construction
progress of the Boeing one kilowatt free-electron laser”, SPIE Vol. 2988, p158-
169; R. Akre et al., ”Commissioning the Linac Coherent Light Source Injector,”
PRST-AB 11, 030703(2008).]

13. The Envelope Equation and Beam Perveance

The envelope equation without external focusing is,

(66) r′′m =
ε2

r3m
+
K

rm
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Figure 21. The charge vs. the drive laser energy for 433 MHz
RF photocathode gun operating with a peak cathode field of 25
MV/m. The two sets of data are shown with curves corresponding
to measured x and y laser sizes. The straight line gives the cathode
QE. (Adamski et al., SPIE Vol. 2988, p158-169.)

where K is the generalized perveance (Lawson, p117) and ε is the geometric emit-
tance,

(67) Kgeneral =
I

I0

2
β3γ3

=
ω2
pa

2

2β2c2
.

Otherwise the perveance is defined as (Reiser, p.)

(68) K =
I

4πε0V 3/2
(

2e
m

)1/2 =
I

d2JCLSCL

Where the denominator is identified as the Child-Langmiur current from Eqn. 60.
Therefore the perveance is defined as the beam current divided by the space charge
limited current, d2JCLSCL.

When the beam is in radial equilibrium, r′′e = 0, the geometric emittance can be
related to the perveance,

(69)
ε2

r3e
=
K

re

(70) ε = re
√
K
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Figure 22. Measurements of the charge vs. the laser energy for
the LCLS-gun operating at a peak cathode field of 115 MV/m.
The data were taken with the same beam size (1.2 mm diameter)
but for different QE.

(71) ε = re

√√√√ I

V 3/2

[
1

4πε0
(

2e
m

)1/2
]

= re

√
I

d2JCLSCL
= re
√
K

Thus the square root of the perveance is the space charge limited geometric diver-
gence.


