The Fringe Pattern of a Synchrotron-Light Interferometer

Alan Fisher
Stanford Linear Accelerator Center

Beam Diagnostics Using Synchrotron Radiation:
Theory and Practice
US Particle Accelerator School
University of California, Santa Cruz
2008 January 14-18

Derivation of the Interference Pattern

- Assumptions:
- One dimensional (y)
- Two narrow, parallel slits of width a
- Small slit separation (center to center) $d>a$
- Slits are far from the source: $z_{0 s} \gg d$
- Small source size σ_{0}, but comparable to slit width
- Nearly monochromatic light, due to a bandpass filter

Case 1: Monochromatic Point Source

- Consider a point source at Y on the (X, Y) plane.
- The light is monochromatic, with $\lambda=2 \pi / k$
- We calculate the intensity at a point y on the image plane (x, y).
- The two slits are on the (u, v) plane.
- The electric field at y is found using a Fraunhofer diffraction integral over the slit plane.
- We will need the difference in the length of the optical path for all the rays leaving Y and arriving at y.

Layout of the Two-Slit Interferometer

Reference Path

- Compare all paths to a reference path that:
- Leaves the source plane at $-y / m$
- Here m is the magnification of the lens: $m=z_{l i} / z_{0 l}$
- Is imaged geometrically to y on the image plane.
- All paths from $-y / m$ to y are equal in length.
- A fundamental property of geometric imaging.
- Applies to the imaged ray passing through the slit at v.
- Consider a ray leaving $Y \neq-y / m$ that diffracts in the slit at v with an angle that brings it to y.
- Its path matches the imaging path from $-y / m$ to v to Yafter the slit...but not before.
- This lets us compute the path difference Δs from the reference.

Difference in the Optical Path Length

$$
\begin{aligned}
& \Delta s=\sqrt{(v-Y)^{2}+z_{0 s}{ }^{2}}-\sqrt{\left(v+\frac{z_{0 l}}{z_{l i}} y\right)^{2}+z_{0 s}^{2}} \\
& \approx \frac{1}{2 z_{0 s}}\left[-2 v\left(Y+\frac{z_{0 l}}{z_{l i}} y\right)+Y^{2}-\left(\frac{z_{0 l}}{z_{l i}} y\right)^{2}\right] \\
&=\frac{1}{2 z_{0 s}}\left[-2 v\left(Y+\frac{f y}{z_{f i}}\right)+Y^{2}-\left(\frac{f y}{z_{f i}}\right)^{2}\right] \\
&=-(g v+h) \\
& \text { where } \frac{1}{f}=\frac{1}{z_{0 l}}+\frac{1}{z_{l i}}=\frac{1}{z_{0 l}}+\frac{1}{f+z_{f i}}
\end{aligned}
$$

Fraunhofer Diffraction Integral

$$
\begin{aligned}
E(y, Y, k) & =\int_{\text {slits }} \mathrm{e}(v) \frac{1}{s_{Y, v}} \exp \left[i k s_{Y, v}+i k s_{v, y}\right] d v \\
& =\int_{\text {slits }} \sqrt{A(v)} \exp [i k \Delta s+i \phi(v)] d v \\
& =a e^{-i k h} \operatorname{sinc}\left(\frac{k g a}{2}\right)\left(\sqrt{A_{1}} e^{-i k g d / 2}+\sqrt{A_{2}} e^{i k g d / 2+i \phi_{0}}\right) \\
I(y, Y, k) & =a^{2} \operatorname{sinc}^{2}\left(\frac{k g a}{2}\right)
\end{aligned}
$$

Fringes of a Monochromatic Point Source

Fringe pattern of a monochromatic point source at 450 nm , using parameters for the PEP-II HER interferometer at SLAC. $A_{1}=A_{2}=1, d=5 \mathrm{~mm}, a=0.5 \mathrm{~mm}$.

Diffraction from an Extended Source \#1

- Replace point source at Y with a Gaussian:

$$
\frac{1}{\sqrt{2 \pi} \sigma_{0}} \exp \left[-\frac{1}{2}\left(\frac{Y-Y_{0}}{\sigma_{0}}\right)^{2}\right]
$$

- Source consists of independent electrons: Incoherent.
- Integrate the intensity, not the electric field.
- Compare arguments: $\quad \operatorname{sinc}^{2}(\mathrm{kga} / 2)$ versus $\cos \left(\mathrm{kgd}+\phi_{0}\right)$
- Recall that:

$$
g=\frac{1}{z_{0 s}}\left(Y+\frac{f y}{z_{f i}}\right) \sim \frac{1}{z_{0 s}}\left(\sigma_{0}+\frac{f y}{z_{f i}}\right)
$$

- For $d=5 \mathrm{~mm}, a=0.5 \mathrm{~mm}, \lambda=450 \mathrm{~nm}, \sigma_{0}=0.3 \mathrm{~mm}, z_{0 \mathrm{~s}}=10 \mathrm{~m}$:
- $k \sigma_{0} a /\left(2 z_{0 s}\right)=0.105$ Small compared to zero of sinc at π
- $k \sigma_{0} d / z_{0 s}=2.09 \quad$ Significant change in cosine phase

Diffraction from an Extended Source \#2

- We remove the sinc from the integral over the source, getting:

$$
\begin{aligned}
I(y, k)= & a^{2} \operatorname{sinc}^{2}\left[\frac{k a}{2 z_{0 s}}\left(Y_{0}+\frac{f y}{z_{f i}}\right)\right] \\
& \cdot\left\{A_{1}+A_{2}+\frac{2 \sqrt{A_{1} A_{2}}}{\sqrt{2 \pi} \sigma_{0}} \int \exp \left[-\frac{1}{2}\left(\frac{Y-Y_{0}}{\sigma_{0}}\right)^{2}\right] \cos \left[\frac{k d}{z_{0 s}}\left(Y+\frac{f y}{z_{f i}}\right)+\phi_{0}\right] d Y\right\} \\
= & a^{2} \operatorname{sinc}^{2}\left[\frac{k g_{0} a}{2}\right]\left\{A_{1}+A_{2}+2 \sqrt{A_{1} A_{2}} \exp \left[-\frac{1}{2}\left(\frac{k \sigma_{0} d}{z_{0 s}}\right)^{2}\right] \cos \left(k g_{0} d+\phi_{0}\right)\right\}
\end{aligned}
$$

where

$$
g_{0}=\frac{1}{z_{0 s}}\left(Y_{0}+\frac{f y}{z_{f i}}\right)=\frac{f y}{z_{0 s} z_{f i}}-\theta_{0}=\frac{y}{f+z_{f i}\left(1-z_{s l} / f\right)}-\theta_{0}
$$

Fringes of an Extended Source

Fringe pattern of an extended source, with $\sigma_{0}=0.2 \mathrm{~mm}$

Quasi-Monochromatic Light \#1

- Pass synchrotron light through $\frac{1}{\sqrt{2 \pi} \sigma_{k}} \exp \left[-\frac{1}{2}\left(\frac{k-k_{0}}{\sigma_{k}}\right)^{2}\right]$
- Compare arguments: $\operatorname{sinc}^{2}\left(k g_{0} a / 2\right)$ versus $\cos \left(k g_{0} d+\phi_{0}\right)$
- Recall that:

$$
g_{0}=\frac{y}{f+z_{f i}\left(1-z_{s l} / f\right)}-\theta_{0}
$$

- Essentially g_{0} is a scaled vertical coordinate with an offset θ_{0}.
- Compare effect of σ_{k} to an argument of π, where $\operatorname{sinc}=0$.
- For $\Delta \lambda=30 \mathrm{~nm}$ FWHM:

$$
\text { - } \pi \sigma_{k} / k_{0}=0.09 \quad \text { Small }
$$

- Again we can remove the sinc from the integration over the bandpass filter.

Quasi-Monochromatic Light \#2

$$
I(y)=a^{2} \operatorname{sinc}^{2}\left[\frac{k_{0} g_{0} a}{2}\right]
$$

$$
\cdot\left\{A_{1}+A_{2}+\frac{2 \sqrt{A_{1} A_{2}}}{\sqrt{2 \pi} \sigma_{k}} \int \exp \left[-\frac{1}{2}\left(\frac{k-k_{0}}{\sigma_{k}}\right)^{2}\right] \exp \left[-\frac{1}{2}\left(\frac{k \sigma_{0} d}{z_{0 s}}\right)^{2}\right] \cos \left(k g_{0} d+\phi_{0}\right) d k\right\}
$$

$$
=a^{2} \operatorname{sinc}^{2}\left[\frac{k_{0} g_{0} a}{2}\right]\left\{A_{1}+A_{2}\right.
$$

$$
\left.+\frac{2 \sqrt{A_{1} A_{2}}}{\sqrt{1+\left(\frac{\sigma_{k} \sigma_{0} d}{z_{0 s}}\right)^{2}}} \exp \left[\frac{\left(\frac{k_{0} \sigma_{0} d}{z_{0 s}}\right)^{2}+\left(\left(\sigma_{k} g_{0} d\right)^{2}\right.}{2\left[1+\left(\frac{\sigma_{k} \sigma_{0} d}{z_{0 s}}\right)^{2}\right.}\right] \cos \left[\frac{k_{0} g_{0} d}{1+\left(\frac{\sigma_{k} \sigma_{0} d}{z_{0 s}}\right)^{2}}+\phi_{0}\right]\right\}
$$

Beam size
Bandwidth

Fringes with a Bandpass Filter

Fringe pattern using a Gaussian bandpass filter with a full width at half maximum (FWHM) of $\Delta \lambda=30 \mathrm{~nm}$.

Compare to van Cittert and Zernicke

- We previously looked at the derivation of van Cittert and Zernicke (VCZ). Is this approach the same?
- VCZ:
- The "degree of coherence" $\mu\left(A_{1}, A_{2}\right)$ between two apertures due to the finite source.
- VCZ says that, for a narrow-band source, this expression resembles the diffraction pattern on the slit plane due to the source.
- The intensity pattern on the camera is then determined from the singleaperture patterns and μ.
- My approach changes the order, but reaches the same result:
- First do the full calculation through two slits to the camera for a monochromatic point source.
- Next include the finite size.
- Finally add the narrow bandwidth.

Interferometry on SPEAR-3

Distortion of PEP's First Mirror

- The first mirror in PEP-II takes a huge heat load, even with grazing incidence to spread out the heat.
- Extensive (and stiff) stainless-steel water-cooling tubes on the rear add mechanical stress.
- A slot along the midplane of the mirror is meant to allow the narrow and hot x-ray fan to bypass the mirror and hit a separate dump.
- Some folding of the mirror about the slot.
- Thermal and mechanical stresses reduce image quality and would decrease fringe contrast in an interferometer.

First Mirror (M1) in the HER of PEP-II

Compensation with a Cylindrical Lens

- Interferometer slits pass light from two thin horizontal stripes along M1.
- Little of M1's surface contributes... and we can reduce this more.
- Fringes from a vertical interferometer measurement form a series of parallel horizontal lines.
- Beam size is calculated from the vertical intensity variation.
- Beam is imaged through the slits onto the camera.
- The direction along the stripe is less interesting.
- Change the focal length horizontally to image M1, not the beam.
- Insert a cylindrical lens to shorten the focal length.
- Position along each stripe corresponds to an x coordinate of M1.
- Computer selects x with best fringe visibility from the video.
- The interferometer uses only two small rectangles, selected for fringe quality, on M1's surface.

Adding the Cylindrical Lens

IVIV)
 LER Interferometer on Tunnel Wall

Double-Slit Assembly

Sketch of Slit Assembly

- Inner jaws mounted from lower plate.
- Outer jaws mounted from upper plate.
- Each jaw is on a translation stage with no motor, moving transversely.
- A third, motorized stage on each plate moves longitudinally, spreading the jaws with a wedge.

IVIUNO
 Cylindrical Lens to Camera

Polarizer, Filter, and Camera

PEP-II Interferometer Software

