Imaging a Beam with Synchrotron Light

Alan Fisher
Stanford Linear Accelerator Center

Beam Diagnostics Using Synchrotron Radiation:
Theory and Practice
US Particle Accelerator School
University of California, Santa Cruz
2008 January 14-18

Power Radiated by the Beam

- A later lecture derives the spectrum of synchrotron radiation from a highly relativistic electron. For now, a few results:
- Power radiated while traveling along an orbit with radius of curvature ρ

$$
P_{s}=\frac{2}{3} \frac{\gamma^{4} r_{e} m_{e} c^{3}}{\rho^{2}}
$$

where the "classical electron radius" is $r_{e}=\frac{e^{2}}{4 \pi \varepsilon_{0} m_{e} c^{2}}=2.818 \times 10^{-15} \mathrm{~m}$

- The factor of γ^{4} makes this power substantial. For example, 2 A of 9GeV electrons in the PEP-II high-energy ring (HER) radiate

$$
P_{s} I_{\mathrm{HER}} / e c=6.8 \mathrm{~kW} / \mathrm{m}
$$

in the dipole magnets. The total power lost around the whole ring is

$$
2 \pi \rho_{\mathrm{HER}} P_{s} I_{\mathrm{HER}} / e c=7.0 \mathrm{MW}
$$

where $\rho_{\text {HER }}=165 \mathrm{~m}$ in the 192 arc dipoles.

The Electron's Power Spectral Density

- Power per unit frequency ω and solid angle Ω

$$
\frac{d^{2} P}{d \Omega d \omega}=\frac{\gamma P_{s}}{\omega_{c}} F_{s}(\omega, \psi)=\frac{\gamma P_{s}}{\omega_{c}}\left[F_{s \sigma}(\omega, \psi)+F_{s \pi}(\omega, \psi)\right]
$$

- where the terms give the power in the two polarization components:
- $F_{s \sigma}$: In the plane of the bend (typically the horizontal plane)
- $F_{s \pi}$: Perpendicular to the bend plane (and so typically vertical)

$$
\begin{aligned}
& F_{s \sigma}=\left(\frac{3}{2 \pi}\right)^{3}\left(\frac{\omega}{2 \omega_{c}}\right)^{2}\left(1+\gamma^{2} \psi^{2}\right)^{2} K_{\frac{2}{3}}^{2}\left[\frac{\omega}{2 \omega_{c}}\left(1+\gamma^{2} \psi^{2}\right)^{\frac{3}{2}}\right] \\
& F_{s \pi}=\left(\frac{3}{2 \pi}\right)^{3}\left(\frac{\omega}{2 \omega_{c}}\right)^{2} \gamma^{2} \psi^{2}\left(1+\gamma^{2} \psi^{2}\right) K_{\frac{1}{3}}^{2}\left[\frac{\omega}{2 \omega_{c}}\left(1+\gamma^{2} \psi^{2}\right)^{\frac{3}{2}}\right]
\end{aligned}
$$

- ψ is the vertical angle, and $K_{1 / 3}$ and $K_{2 / 3}$ are modified Bessel functions.

Critical Energy E_{c}

- The "critical energy" is $E_{c}=\hbar \omega_{c}=\frac{3}{2} \gamma^{3} \hbar \frac{c}{\rho}$
- ω_{c} is the revolution frequency c / ρ, but scaled by γ^{3}.
- This large factor moves the frequency from MHz to x-rays.
- For PEP's HER dipoles, $E_{c}=9.8 \mathrm{keV}$.
- Half of the total energy is below E_{c}, half above.
- Almost all power is emitted as hard photons.
- Visible light is far into the tail.

Polarization

- The peak of the horizontal is 6 times higher than the vertical.
- This peak is a little below the critical energy.
- The vertical component is zero on the midplane $(\psi=0)$.
- Symmetry: No preference for upward versus downward field.
- The range of angles spanned is much wider at low energies.

Visible Light versus Vertical Angle

Horizontally Polarized Power:

Horizontally and Vertically Polarized Power at 450 nm and Best-Fit Gaussian

- Power in visible is much weaker and broader than for x rays (above left, for HER).
- For x rays ($E \sim E_{\mathrm{c}}$), the angular width (the "opening angle") is roughly $1 / \gamma$.
- For visible ($E \ll E_{\mathrm{c}}$), a Gaussian approximation (above right) to the horizontal polarization has an RMS width of: $\quad \sigma_{\psi} \approx \frac{0.75}{\gamma}\left(\frac{E_{c}}{E}\right)^{\frac{1}{3}}$
- Horizontally polarized power is roughly Gaussian, but with flatter top, smaller tails.
- Area of horizontal is 3 times area of vertical.

Peculiarities of Synchrotron-Light Imaging

- Typical imaging situation:
- Object reflects unpolarized incident light in all directions.
- Lens catches some light from almost any angle.
- Most objects have more transverse extent than depth.
- Synchrotron Light:
- The source of the light is the object's own emission.
- Light is radiated only in the forward direction, tangent to the beam's instantaneous circular path through a bend.
- Vertically: The beam lights up narrow forward-directed cone.
- Horizontally: The beam paints a stripe of light along the midplane of the vacuum chamber as bends.
- Like a car rounding a bend in the dark with its bright headlights on.
- Longitudinal profile is Gaussian at any instant.
- But over the exposure time, the source goes around the ring many times.
- We want to measure a glowing, curved string by imaging it from a tangent.

Choosing a Wavelength: Visible

- Visible light has advantages (in addition to being easy to see):
- You can use common parts like windows, lenses, mirrors, video cameras, and specialized instruments like streak cameras.
- The wide opening angle is wider than at the critical wavelength.
- Remove the narrow fan with most of the heat, without much loss to the visible image, in order to avoid thermal distortion of the first mirror (M1).
- "Cold finger": a narrow cooled mask on the midplane, upstream of M1, that blocks the x-ray fan while casting a thin shadow across the mirror.
- Slot along the middle of M1, so that the x-rays pass through and can't heat it.
- A thin, low-Z substrate (beryllium) for M1, to transmit most of the x-rays.
- But diffraction limits the resolution at longer wavelengths.
- An important consideration when the beam is small.
- Image a point near a defocusing quad, where the beam is large vertically.
- A cold finger or slot also adds diffraction.
- Drives the design toward shorter wavelengths.
- At least blue rather than red, but sometimes ultraviolet or x rays.

Slotted First Mirror in PEP-II

- Midplane slot allows x-ray fan to bypass M1 and strike the thermal dump.
- But slot is a mechanical weak point.
- PEP's x-ray fan is very narrow and hot, making a cold finger difficult.

"Cold Finger" Mask in SPEAR-3

Photo of Cold Finger in SPEAR-3

Choosing a Wavelength: Ultraviolet

 problems.- Can't go far into the UV without
- Window and lens materials become opaque:
- Glasses (like BK7 at right) are useful above $\sim 330 \mathrm{~nm}$.
- Fused silica works above $\sim 170 \mathrm{~nm}$.
- Special materials like MgF_{2} work above $\sim 120 \mathrm{~nm}$.
- Absorption in air below $\sim 100 \mathrm{~nm}$

- Must use reflective optics in vacuum.

Choosing a Wavelength: X Rays

- The good news: Most of the beam's emission is in the x-ray range.
- The bad news: How do you form an image?
- You can use a simple pinhole camera.
- But this throws out most of the light.
- Must absorb this power before the pinhole, or it will get too hot.
- Other imaging optics are difficult:
- Grazing-incidence optics
- Zone plates

X-Ray Pinhole Camera in the PEP-II LER

Design of the Pinhole Assembly

Photos of the Pinhole Assembly

Zone-Plate Imaging

- A diffractive lens, made by lithography
- High-Z metal (gold) on thin membrane of low $Z(\mathrm{SiN})$
- Requires low power and a narrow bandwidth ($\approx 1 \%$)
- Precede with a pair of multilayer x-ray mirrors, for narrow-band reflection and for absorption of out-of-band power.

Diffraction by an Aperture

Diffraction by an Aperture

- All points in an aperture are considered point sources, reradiating light incident from a point source
- Wavelength is $\lambda=2 \pi / k$.
- The field at (x, y) is given by a Fresnel-Kirchhoff integral over the (small) aperture:

$$
\begin{aligned}
E(x, y) & =-\frac{A i}{2 \lambda} \iint_{\text {aperuee }} \frac{e^{i k(r+s)}}{r S}(\cos \alpha+\cos \beta) d S \\
& \approx-\frac{A i}{2 \lambda r_{0} s_{0}}(\cos \alpha+\cos \beta) \iint_{\text {eperuue }} e^{i k(r+s)} d S
\end{aligned}
$$

- Everything is essentially constant except the phase from each point in the aperture.

Expanding the Phase

$$
\begin{gathered}
r=\sqrt{(X-u)^{2}+(Y-v)^{2}+r_{0}^{2}} \approx r_{0}+\frac{(X-u)^{2}+(Y-v)^{2}}{2 r_{0}} \\
s=\sqrt{(x-u)^{2}+(y-v)^{2}+r_{0}^{2}} \approx s_{0}+\frac{(x-u)^{2}+(y-v)^{2}}{2 s_{0}} \\
e^{i k(r+s)} \approx \exp \left[i k\left(r_{0}+s_{0}+\frac{X^{2}+Y^{2}}{2 r_{0}}+\frac{x^{2}+y^{2}}{2 s_{0}}\right)\right] \exp \left[i k\left(\frac{u^{2}+v^{2}}{2 r_{0}}+\frac{u^{2}+v^{2}}{2 s_{0}}\right)\right] \exp \left[-i k\left(\frac{X u+Y v}{r_{0}}+\frac{x u+y v}{s_{0}}\right)\right]
\end{gathered}
$$

- First term: Independent of the aperture coordinates u, v.
- Contributes only an overall phase to the $u v$ integral over the aperture.
- Second: Small (since aperture is small) quadratic terms in u, v.
- Third: Products of u, v with cosines $\left(X / r_{0}\right.$, etc.) of ray angles from the source or measurement points to the x and y axes.
- The only term that matters in the integral over the aperture is:

$$
\begin{aligned}
& e^{i k(r+s)} \approx \exp [-i k(p u+q v)] \\
\text { where } & p=X / r_{0}+x / s_{0} \text { and } q=Y / r_{0}+y / s_{0}
\end{aligned}
$$

Spatial Fourier Transform

- The diffraction pattern on the $x y$ plane becomes a Fourier transform in the spatial coordinates $u v$ of the aperture:

$$
E(x, y)=-\frac{A i}{2 \lambda r_{0} s_{0}}(\cos \alpha+\cos \beta) \iint_{\text {weranc }} e^{-i k(p u+q v)} d u d v
$$

- Laser light is sometimes focused through a pinhole to remove noisy, non-Gaussian parts of the transverse profile.
- The hole forms a spatial filter: since the noise is found at high spatial frequencies, which appear at larger values of u and v, it can be clipped by a properly sized hole.

Diffraction by a Lens

Diffraction by a Lens: Path Length

- All paths from source (X, Y) to image $\left(x_{i} y_{i}\right)$ have equal length.
- A fundamental property of geometric imaging.
- The phase difference in the $u v$ integral arises from the different paths from (X, Y) to (x, y), compared to the equal paths from (X, Y) to $\left(x_{i}, y_{i}\right)$.
- It is helpful to subtract this reference path, so that the phase difference becomes the difference between (u, v) to (x, y) and (u, v) to $\left(x_{i}, y_{i}\right)$.

$$
\begin{aligned}
& \sqrt{(x-u)^{2}+(y-v)^{2}+s_{0}^{2}}-\sqrt{\left(x_{i}-u\right)^{2}+\left(y_{i}-v\right)^{2}+s_{0}^{2}} \\
& \approx-\frac{\left(x-x_{i}\right) u+\left(y-y_{i}\right) v}{s_{0}}=-\frac{\rho w}{s_{0}} \cos (\phi-\psi)
\end{aligned}
$$

- Here we used polar coordinates: $(u, v) \rightarrow(w, \psi)$ and $\left(x-x_{i}, y-y_{i}\right) \rightarrow(\rho, \phi)$

Diffraction by a Lens: Result

- The diffraction integral (neglecting constants) becomes:

$$
\begin{aligned}
E(x, y) & =\int_{0}^{2 \pi} \int_{0}^{D / 2} \exp \left[-i k \frac{\rho w}{s_{0}} \cos (\phi-\psi)\right] w d w d \psi \\
& =2 \pi \int_{0}^{D / 2} J_{0}\left(\frac{k \rho w}{s_{0}}\right) w d w=\left(\frac{\pi D^{2}}{4}\right) \frac{2 J_{1}\left(\frac{k \rho D}{2 s_{0}}\right)}{\frac{k \rho D}{2 s_{0}}}
\end{aligned}
$$

where we have used two Bessel-function identities.

- This is called the Airy diffraction pattern.

Diffraction by a Lens: Airy Pattern

- Concentric circles, with the first minimum at radius r_{A} :

$$
r_{A}=1.22 \lambda \frac{L}{D}=1.22 F \lambda=0.61 \frac{\lambda}{\theta}
$$

- F is called the "F-number" of the lens.
- θ is the half angle of the light cone illuminating the lens.
- Plot for $\lambda=450 \mathrm{~nm}, D=50 \mathrm{~mm}, s_{0}=1 \mathrm{~m}$
- The central circle at right is saturated by a factor of 30 to highlight the faint rings.
- The plot is expanded by 10 to show the rings.
- $\quad r_{A}$ is the resolution of the imaging system.
- Compare it to the size of the geometric image to see if diffraction is a problem.

Intensity of Airy pattern, x1 (red), x10 (blue)

Diffraction of Synchrotron Radiation

- Approximating the half angle θ with 1 to 2 times the Gaussian angle σ_{ψ} gives a resolution (neglecting factors of order unity) of:

$$
r_{S R} \approx 0.5 \frac{\lambda}{\sigma_{\psi}} \approx \rho^{\frac{1}{3}} \lambda^{\frac{2}{3}}
$$

- A difficult case: The HER of PEP-II has $\rho=165 \mathrm{~m}$. For blue light at 450 nm , this resolution is

$$
\rho^{\frac{1}{3}} \lambda^{\frac{2}{3}}=0.32 \mathrm{~mm}
$$

- A more thorough treatment substitutes the SR power spectral density from the point source into a Fraunhofer diffraction integral over the area of the lens illuminated through the beamline aperture, finding the field at $\left(x^{\prime}, y^{\prime}\right)$ on the image.

$$
\begin{aligned}
& E\left(x^{\prime}, y^{\prime}\right)=A \int_{-x_{a}}^{x_{a}} d x \int_{-\infty}^{\infty} d y \frac{\gamma P_{s}}{\omega_{c}} F_{s}(\omega, \psi) e^{-i k\left(u^{\prime} x+\nu^{\prime} y\right)} \\
& \text { with } \quad k=2 \pi / \lambda \quad u^{\prime}=x^{\prime} / L^{\prime} \quad v^{\prime}=y^{\prime} / L^{\prime}
\end{aligned}
$$

- The first minimum of the intensity then gives the resolution.

Depth of Field

- Our light source is a long, gradual arc, not a plane.
- What is the source distance?
- Can it all be in focus?
- How do you avoid blurring the measurement?

Depth of Field: A Quick Derivation

- Diameters of A and C images as they cross the $x y$ plane, based on typical rays at angles $\pm \theta / 2$:

$$
d=2\left|\frac{D / 4}{2 f \mp \Delta z}(\pm \Delta z)\right| \approx \frac{D \Delta z}{4 f}=\theta \Delta z
$$

- The vertical angle θ lighting the lens is roughly $2 \sigma_{\psi}$.
- If we capture a similar portion of a horizontal arc:

$$
\begin{gathered}
\Delta z=\rho \sigma_{\psi} \\
d=\theta \Delta z=2 \rho \sigma_{\psi}^{2}=0.4 \rho^{\frac{1}{3}} \lambda^{\frac{2}{3}}
\end{gathered}
$$

- This expression is similar to the diffraction resolution.
- But how much of the orbit do we actually capture?

From Horizontal Space to Phase Space

- Consider the beam's orbit both in the horizontal plane ($x z$) and in horizontal phase space ($x x^{\prime}$).
- x^{\prime} is the beam's angle to the direction of motion z.
- Which rays, at which angles, are reflected by M1?

Horizontal Phase Space

- A point on the orbit near the $x z$ origin is given by:

$$
(x, z)=(\rho-\rho \cos \theta, \rho \sin \theta) \approx\left(\frac{1}{2} \rho \theta^{2}, \rho \theta\right)=\left(\frac{1}{2} \rho x^{\prime 2}, \rho x^{\prime}\right)
$$

- For a point on the orbit, the angle x^{\prime} to the z axis is equal to θ.
- The rays striking the $+x$ and $-x$ ends of M1 are given by:

$$
\begin{gathered}
x+x^{\prime}\left(z_{m} \pm \frac{L_{m}}{2} \cos \alpha_{m}-z\right)= \pm \frac{L_{m}}{2} \sin \alpha_{m} \\
x+x^{\prime} z_{m} \approx \pm \frac{L_{m}}{2} \sin \alpha_{m}
\end{gathered}
$$

- We plot these curves in phase space, along with the beam's 1sigma ellipse at three points along its orbit.

Horizontal Phase Space: PEP-II HER

Vertical Phase Space

- Two source of vertical angle for the light rays:
- The opening angle σ_{ψ} of each electron's emission
- The electrons' phase space, which gives each electron its individual angle to the z axis
- Compare to the horizontal axis:
- Only the phase space matters: each electron emits along the tangent to its orbit.
- The opening angle is by far the bigger contributor.

Vertical Phase Space: PEP-II HER

Photon Emittance (Brightness)

- Accelerator people know that Liouville's theorem conserves the emittance of a beam in a transport line.
- The phase-space ellipse changes shape, but not area.
- At each waist, the size-angle product $\sigma_{x} \sigma_{x^{\prime}}$ is constant.
- (But in a ring, dissipation by synchrotron radiation allows damping that "cheats" Liouville.)
- Light in an optical transport line has an emittance too.
- At each image, the product of size and opening angle (light-cone angle) is constant.
- Magnification makes the image bigger, but the angle smaller.
- The area of the light's phase-space ellipse-the brightness of the source-is conserved.

Conservation of Brightness

Lens Equations

$$
\begin{gathered}
\frac{1}{f}=\frac{1}{s_{0}}+\frac{1}{s_{1}} \\
m=s_{1} / s_{0} \\
y_{1}=y_{0} m \\
\theta_{1}=\theta_{0} / m \\
\hline
\end{gathered}
$$

Minimum Photon Emittance

- The minimum emittance for a light beam is that of the lowestorder Gaussian mode (TEM_{00}) of a laser.
- ω is the beam radius.
- In the usual definition (where ω is not the one-sigma value):
- The electric field follows $E(r)=E_{0} \exp \left(-r^{2} / \omega^{2}\right)$
- The intensity (power) is the square: $I(r)=I_{0} \exp \left(-2 r^{2} / \omega^{2}\right)$
- ω_{0} is the radius at the waist (the focus).
- This size is nonzero due to diffraction.
- $z_{R}=\pi \omega_{0}^{2 / \lambda}$ is the Rayleigh range.
- Characteristic distance for beam expansion due to diffraction.
- The expansion is given by $\omega^{2}(z)=\omega_{0}^{2}\left(1+z^{2} / z_{R}^{2}\right)$
- The angle (for $z \gg z_{R}$) is $\theta=\omega / z=\omega_{0} / z_{R}=\lambda / \pi \omega_{0}$
- The product of waist size and angle is then $\omega_{0} \theta=\lambda / \pi$
- One-sigma values for the size and angle of I give an emittance of $\lambda / 4 \pi$

Constraints on the Beamline

- Distance to the first mirror
- Flush with the beampipe wall?
- Far down a synchrotron-light beamline?
- Ports and M1 itself introduce wakefields and impedance.
- The heat load on M1 is reduced by distance.
- Distance to the imaging optics
- In a hutch: adds distance to get outside shielding
- In the tunnel: not accessible, but often necessary for large colliders.
- Size and location of the optical table.

Constraints on the Optical Design

- Choose a source point with a large y size, to lessen effect of diffraction.
- Magnification: Transform expected beam size to a reasonable size on the camera.
- $6 \sigma<$ camera size $<10 \sigma$: Uses many pixels; keeps the image and the tails on the camera; allows for orbit changes.
- Needs at least two imaging stages: Since the optics are generally far from the source, the first focusing element strongly demagnifies.
- Optics: Use standard components whenever possible.
- For example, adjust the design to use off-the-shelf focal lengths from the catalog of a high-quality vendor.
- Use a color filter to avoid dispersion (or use reflective optics).
- Correct the focal length (specified at one wavelength) for your color.

Basic Design Spreadsheet

- You can iterate a lot of the basic design in a simple spreadsheet.
- Enter the fixed distances.
- Specify the desired magnifications.
- Solve the lens equations, one stage at a time, to find lenses giving the ideal magnifications.
- Change the lenses to catalog focal lengths.
- Correct their focal lengths (using the formula for each material as found in many catalogs).
- Adjust magnifications and distances.

