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Overview
• Plasma oscillations
• Slice versus projected emittance
• Envelope equation

– Slice properties
– Coasting beam
– Accelerated beam

• Emittance compensation
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Plasma oscillations
• 1D theory

– Standard 2-component plasma: Background ions give restoring 
force

– Single component plasma: Restoring force provided by 
background fields 

• also counterstreaming ions, ionized residual gas, etc.
• ‘lumped’ focusing elements result in modulation of restoring force

• Phase space picture
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Plasma oscillations, II

Ions (blue) and electrons (yellow) fill x<0.

The charge density is each species is 
equal (Ne=Ni=N), so the region is charge 
neutral.

A small displacement (Δx) of the electron 
cloud produces a surface charge density     
σ =-N e Δx

This surface charge generates an electric 
field Ex = N e Δx / ε0

x
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Plasma oscillations, III
The electric field acts back upon the 
individual electrons via the Lorentz force:
dp/dt = qE (no magnetic field in this picture)

d(mvx)/dt = -eEx = -e2 N x / ε0

Simplifying a bit,

d2x/dt2 = - e2 N x / m ε0 = - ωp
2 x 

The (nonrelativistic) plasma frequency is 
ωp

2 = e2 N / m ε0

Relativistically: ωp
2 = e2 N / γ3 m ε0

x
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Plasma oscillations, IV
That’s all very nice, but what does this have to do with 
electron beams ?!?

An electron beam is a non-neutral, single component 
plasma (with a nonzero average velocity)

Instead of a uniform background field of ions, we find 
ourselves with (largely linear) restoring forces, in the form 
of focusing and accelerating elements.

The self-fields of the electrons in the beam fight contain-
ment. These forces are proportional to charge density. A 
plasma picture is very useful.
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Beam Charge Model
• Following Reiser (Ch. 4.2.1) we consider an 

axisymmetric model of our beam, 
– Carries charge Q and current I
– Uniformly distributed over a radius ‘a’
– Bunch length L >> R
– Travels with constant velocity v along the longitudinal direction.

• The continuity equation (conservation of charge) relates 
the beam charge densities to the current and velocity

  
∂ρ

∂t + ∇ •
r 
J = 0 J=ρv J = I / π a2

ρ = ρ0 = I / π a2 v
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Beam Electric and Magnetic Fields
Applying Gauss’ and Ampere’s Laws to the model we 
obtain the transverse field components:

  
ε0

r 
E ∫ ⋅ d

r 
S = ρdV∫

  

r 
B ∫ ⋅ d

r 
l = μ0

r 
J ⋅ d

r 
S ∫

Er  =  ρ0r
2ε0

 =  Ir
2πε0a

2v
 ,  r ≤ a

Er  =                I
2πε0rv

 ,  r > a

Bθ  =  μ0
Ir

2πa2  ,  r ≤ a

Bθ  =  μ0
I

2πr
 ,  r > a
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Beam self-field forces
• We can calculate the forces on a beam particle from the 

Lorentz force components.

  

r 
F = q  

r 
E +

r 
v ×

r 
B ( ) ⇒  

Fr  =  q  Er − cβzBθ( )
Fθ  =  Fz  =  0

⎧ 
⎨ 
⎩ 

Er  =  Ir
2πε0a

2v
Bθ  =  μ0

Ir
2πa2

Fr  =  e  Er − cβzBθ( ) =  eIr
2πε0γ

2βca2

With
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Single Particle Equations of Motion
Single particle dynamics follows from the Newton-Lorentz 
force law:

  

d
r 
P 

dt
=  

r 
F =  q  

r 
E  +  

r 
v ×

r 
B ( )

The mechanical momentum is related to the particle mass 
and velocity via

 
r 
P =  γm

r 
v 

The change in energy of a particle follows from the usual 
expression

  

dET

dt
=  d

r 
P 

dt
⋅
r 
v  =  q

r 
E ⋅

r 
v 

Where the total, kinetic, and rest energy are related by

ET  =  mc 2 + T  =  γmc 2
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Cylindrical Coordinates
• In systems with azimuthal symmetry, we often use 

cylindrical coordinates where the position and velocity 
vectors have definitions

• This leads to the Newton-Lorentz equations of motion:
 

r 
x  =  r,θ,z( )
r 
v  =  Ý r ,r Ý θ , Ý z ( )

d
dt

γmÝ r ( )− γmr Ý θ 2 =  q Er + r Ý θ Bz − Ý z Bθ( )
1
r

d
dt

γmr2 Ý θ ( ) =  q Eθ + Ý z Br − Ý r Bz( )
d
dt

γmÝ z ( ) =  q Ez + Ý r Bθ − r Ý θ Br( )
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Simplifications
• The front end of injectors are designed with axisymmetry

• The external fields from rf structures and solenoid 
magnets are (to lowest order) described by a small 
number of components

• We are more interested in derivatives with respect to 
beamline position (z) rather than time

Ez z,r = 0( )= E z( )

Er ≅ −
r
2

∂E
∂z

Bz z,r = 0( )= B z( )

Br ≅ −
1
2

r dB
dz

∂
∂θ → 0

Ý γ = ′ γ Ý z = ′ γ βc
Ý r = ′ r Ý z = ′ r βc

Ý Ý r = βc d
dz

′ r βc( )= ′ ′ r β 2c 2 + ′ r ′ β βc 2 = ′ ′ r β 2c 2 + ′ r ′ γ 
γ 3 c 2

Ý θ = ′ θ βc = −
qB

2γmβc
+

pθ

mcγβr2
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Particle motion from self-fields
In our model the beam self-field forces are entirely radial.

Fr  =  e  Er − cβzBθ( ) =  eIr
2πε0γ

2βca2  =  d
dt

γmÝ r ( )≅ γmÝÝr 

From                     we haveÝ Ý r = β 2c 2 ′ ′ r 

′ ′ r = Ý Ý r 
β 2c 2 =  eIr

2πε0γ
3β 3mc 3a2  

Define a characteristic electron current I0 =
4πε0mc 3

e
≈17kA

′ ′ r =  eIr
2πε0γ

3β 3mc 3a2  =  
2 I

I0

γ 3β 3
r
a2
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Equivalent self-field descriptions
This is still not as simple as we might like. 

Recall the plasma frequency ωp
2 = e2 N / γ3 m ε0, which can 

be expressed (in terms of beam parameters) as 

ω p
2 =

eI
πε0mcβγ 3a2 (which gives                )Ý Ý r =

ω p
2

2
r

Another parameter, the generalized perveance (K), is also a
useful descriptor

K =
I
I0

2
γ 3β 3 =

ω p
2a2

2β 2c 2

The particle motion then follows ′ ′ r =
K
a2 r
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Paraxial Ray Approximation
The paraxial approximation describes the 1st-order beam dynamics by 
assuming that particle orbits are largely parallel to the optical axis, and 
that transverse excursions have small (forward) angles.

With this approximation, we may neglect terms of 2nd-order and higher 
(r2, rr’,r’2, etc.) in the description of the transverse field expansions and 
particle motion. Additional linear forces are included by additional force 
terms in the Newton-Lorentz equations.

(Radial  velocity) ′ r <<1 or  Ý r << Ýz 

(Azimuthal  velocity)  r Ý θ << Ý z 

This approximation can faithfully reproduce the vast majority 
or observable beam dynamics in injectors. Regimes where 

the paraxial approximation breakdown are rare.
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Paraxial Ray Equation
We are generally interested in obtaining a dynamical 
equation for the particle’s radial motion. Using the previous 
approximations and symmetry we can derive the Paraxial 
Ray Equation:

′ ′ r +
′ γ 

γβ 2 ′ r +
′ ′ γ 

2γβ 2 r +
qB

2γβmc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

r −
pθ

γβmc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
1
r3 −

K
a2 r = 0

Focusing from axial
electric field component

Change in particle 
trajectory slope

Magnetic focusing

Focusing from radial
electric field component

Defocusing from 
self-fields

Defocusing from 
centrifugal forces
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Modification from beam emittance
The paraxial ray equation is a single particle equation of 
motion. BUT, it requires knowledge of the beam envelope 
(‘a’) behavior and evolution.

In previous studies of beam dynamics the effect of emittance 
on the beam envelope was also important and could be 
described by 

The envelope also follows an equation of motion, obtained 
by replacing ‘r’ with ‘a’ in the paraxial equation and adding a 
term to reflect the beam emittance:

′ ′ a =
ε2

a3 =
εn

2

γ 2β 2a3

′ ′ a +
′ γ 

γβ 2 ′ a +
′ ′ γ 

2γβ 2 a +
qB

2γβmc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

a −
pθ

γβmc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2
1
a3 −

εn
2

γ 2β 2
1
a3 −

K
a

= 0
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Envelope description

• Useful for studying beam transport
• 2nd order, nonlinear ODE (or set of ODEs)
• Based on KV distribution and edge values, but 

extendable to other distributions when using RMS 
measures

• Assumes constant normalized emittance and current
– Useful description if slice (thermal) emittance is invariant
– Evolving phase space distribution requires full Vlasov treatment
– Evolving local emittance (local scattering) may require Fokker-

Planck description

• Basis of many tracking codes (e.g. HOMDYN for 
photoinjectors)
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RMS Moments and Dynamics
Beam distributions are generally NOT uniform in charge 
density with simple geometric cross-sections. An RMS 
description is valuable to connect theory to measurements.

The K-V beam distribution (if applicable) produces the 
envelope equation that describes the beam edge 
dynamics.

Lapostolle and Sacherer discovered that the 2nd order 
moments (i.e. RMS values) of any reasonable beam 
distribution evolve according to an envelope equation, 
when the envelope is interpreted in an RMS sense.
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RMS Envelope Equation
We define the RMS values for the beam spot and emittance

σ r
2 ≡  r2 = x 2 + y 2

εr
2 =

1
4

r2 ′ r 2 − r ′ r 2[ ]=  εx
2 = x 2 ′ x 2 − x ′ x 2[ ]

where the brackets indicate averages over the distribution. The RMS 
envelope equation can be written in the compact form

σ r
′′ +

′ γ 
γ

σ r
′ + keff

2σ r −
εeff

2

σ r
3 −

K
σ r

= 0

keff
2 =

′ ′ γ 
2γ

+ kRF
2 + kL

2 kL
2 =

eBz

2γmc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

kRF
2 =

1
2

eE
γmc 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

η φ( ) ≈
1
2

′ γ 
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

εeff
2 = 4εr

2 +
pθ

2

γ 2β 2m2c 2

      = 4εr
2 +

e2 Bz,cathodeσ r,cathode( )2

γ 2β 2m2c 2
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Slice Properties
• Divergence of longitudinal and transverse dynamics

– Transverse forces proportional to 1/γ
– Longitudinal forces proportional to 1/γ3

– Once electrons are moderately relativistic γ> ~2
• Longitudinal beam variations

– Charge, spot size, energy, transverse offset and momentum
– Transverse distribution, angular momentum
– Emittance, Twiss parameters
– . . .

We’ll now look at equilibrium and quasi-equilibrium states 
of the beam.
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Envelope equation parameterized by 
slice coordinate

Accept variation in slice parameters (current, spot size, emittance, etc.)

Each longitudinal slice follows an individual orbit, governed by a 
separate instance of the envelope equation (labeled by ‘s’). 

We will assume (here) that particles do not leave their respective slices -
- no mixing -- and that particle orbits do not cross the axis (laminar flow). 
This entails a space charge dominated rather than an emittance 
dominated beam. This follows if

σ r,s
′′ +

′ γ s
γ s

σ r,s
′ + keff ,s

2σ r,s −
εeff ,s

2

σ r,s
3 −

Ks

σ r,s

= 0

σ r,s
2Ks >> εeff ,s

2
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Individual slice equilibria
Equilibria are sometimes easy to find. We look for steady-state 
solutions to the slice envelope equation. These solutions represent the 
physical state where the external focusing completely balances the 
internal forces.

Setting σ r,s
′ = 0 = σ r,s

′′  ⇒

⇒  keff ,s
2σ r,s −

εeff ,s
2

σ r,s
3 −

Ks

σ r,s

= 0

This algebraic equation has (real) solution

σ eq,s =
Ks

2keff ,s
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2

1+ 1+ 2
εeff ,skeff ,s

Ks

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 2⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1/ 2

2
εeff ,skeff ,s

Ks

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≤1

Space-charge 
dominated beam
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σ eq,s =
Ks

2keff ,s
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2

1+ 1+ 2
εeff ,skeff ,s

Ks

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 2⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1/ 2

σ eq,s

Ks

2keff ,s
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2

2
εeff ,skeff ,s

Ks

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Space charge dominated regime



High Brightness Electron Injectors
for Light Sources - January 14-18 2007

Lecture 6
D.H. Dowell, S. Lidia, J.F. SchmergeEmittance Compensation

Slice equilibria scaling
In the space charge dominated regime the slice equilibrium solutions 

σ eq,s =
Ks

2keff ,s
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2

1+ 1+ 2
εeff ,skeff ,s

Ks

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 2⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1/ 2

≈  Ks

2keff ,s
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1/ 2

O(1)

keff ,s
2 =

′ ′ γ s
2γ s

+
1
2

γ s
′

γ s

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

2

+
eBz

2γ smc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

∝
1

γ s
2 Ks =

Is

I0

2
γ s

3βs
3 ∝

Is

γ s
3

σ eq,s ∝
Is

γ s
3 γ s

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

≈  Is
1/ 2

γ s
1/ 2

. . . have the scaling with parameters
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where                 is the slice variation in the

equilibrium envelope, measured from the nominal slice current and energy and         

measures the mismatch from the slice equilibrium.

Linear oscillations about equilibria
We are very interested in what happens to our beam when the slices are 
slightly ‘out of equilibrium’. We expect the equilibrium spot size to have some 
variation with parameters

σ eq,s ∝
Is

1/ 2

γ s
1/ 2  ⇒  dσ eq,s = ∂σ eq ,s + σ eq,s

1
2

∂I
Is

−
1
2

∂γ
γ s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

We look for a description of the beam evolution in the presence of very small 
deviations from equilibrium spot size, current, and energy.

σ s z( )= σ eq + σ eq
1
2

δI s( )
I

−
1
2

δγ s( )
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + δs z( ) =  σ eq s( )+ δs(z)

δs(z)

σ eq s( )= σ eq + σ eq
1
2

δI s( )
I

−
1
2

δγ s( )
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
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z

r

σ eq

Continuous solenoid channel

σ eq s( )= σ eq + σ eq
1
2

δI s( )
I

−
1
2

δγ s( )
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Slice equilibrium orbit

Nominal equilibrium orbit

δs(z) Actual slice orbitSlice orbit deviation σ s z( )
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Linear oscillations about equilibrium, II
We substitute the expression describing the slice equilibrium envelope and 
small deviations back into the envelope equation and, retaining only linear 
terms, we obtain an equation of motion for the slice variations

δs
′′ +

′ γ 
γ

δs
′ + k 2δs = 0

k 2 = keff
2 + 3

εeff
2

σ eq
4 +

K
σ eq

2  =  4
εeff

2

σ eq
4 + 2 K

σ eq
2  ≈  2keff

2where

This linear, 2nd order ordinary differential equation describes the orbit deviations 
of the individual slices (parameterized by ‘s’) along the beamline coordinate (‘z’). 

We will make a few case studies.
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Coasting beam 
We first consider the case of a beam nearly matched into a continuous focusing 
channel, without any acceleration present, i.e. γ’=0 and keff is constant.

The equation of motion 

admits solutions

δs
′′ + k 2δs = 0

δs z( )= δs0 cosk z  +  δs0
′

k 
sink z

δs
′ z( )= δs0

′ cosk z  −  k δs0 sink z

We should pause a moment and observe that the oscillation wavenumber
has no dependence on the slice parameter variations, in the linear approximation. 

We expect all slices, regardless of current, spot size, emittance to oscillate with 
the same frequency regardless of amplitude. 

This is rather important.

k 
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Projected emittance of a coasting beam
Let’s calculate the projected emittance of our beam.  To simplify the 
calculation, we will make an assumption on the initial conditions: all slices start 
at a waist (i.e. zero slice radial divergence). The slice radii then evolve as 

εproj
2 =  σ r

2

s
σ r

′
2

s

− σ rσ r
′

s

2

σ s z( )= σ eq s( )+ δs0 cosk z  ,  σ s
′ z( )= −k δs0 sin k z

The projected emittance is then calculated from 

Carrying out the computation yields

εproj =  σ eqk  sink z  δs0
2 − δs0

2( )1/ 2

Recalling the definition of the radial spot size variation yields

σ s(z) −σ eq = δs z( )+ σ eq
1
2

δI s( )
I

−
1
2

δγ s( )
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  ⇒

εproj = σ eqk δ0( )2 1/ 2
 1+

1
4

∂I
I

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+
∂γ
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1/ 2

 sin k z
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Actual slice orbits

Nominal equilibrium 

Slice equilibrium orbits

Projected emittance

Units are arbitrary k z
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Adding acceleration
The envelope equation in it’s original form includes acceleration terms. 
We would like to re-write it in a form that permits easier analysis.

σ r,s
′′ +

′ γ s
γ s

σ r,s
′ + keff ,s

2 σ r,s −
εeff ,s

2

σ r,s
3 −

Ks

σ r,s

= 0

If we define a scaled rms envelope radius the linear portion 
of the envelope equation transforms as

ˆ σ = σ r γ

σ r
′′ +

′ γ 
γ

σ r
′ + keff

2 σ r =  
ˆ σ ′′ + ˆ k 2 ˆ σ 

γ1/ 2

where

ˆ k 2  =  keff
2 −

1
4

′ γ 
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−
1
2

′ γ 
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
′

⇒ ˆ k 2 = krf
2 + kL

2 +
γ 2 + 2( ) ′ γ ( )2

4γ 4 ≅ kL
2 +

3
4

′ γ 
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

kes
2 =

′ ′ γ 
2γ

  ,  krf
2 =

1
2

′ γ 
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

 ,   kL
2 =

eBz

2γmc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

keff
2  =  kes

2 + krf
2 + kL

2
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Transforming the equation
We transform the rest of the beam parameters in our accelerated frame

Original Transformed
σ r ˆ σ = σ rγ

1/ 2

keff
2 ˆ k 2 = kL

2 +
3
4

′ γ 
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

εeff
2 εn

2 = εeff
2 γ 2

K κ = Kγ 3 κ = 2I /I0

And find the invariant envelope equation

ˆ σ s′′ + ˆ k s
2 ˆ σ s −

εn
2

ˆ σ s
3 −

κ s

γ 2 ˆ σ s
= 0
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Coasting beam correspondence
The invariant envelope accounts for the expected and observed 
decrease of the beam radius with increasing energy, as well as the finite 
(non-zero) values of the divergence. It redefines what it means to have a 
‘matched beam’ solution in the presence of acceleration.

ˆ ′ ′ σ = 0  ⇒  ′ ′ σ +
′ γ 

γ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ′ σ −

′ γ 
2γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

σ = 0

ˆ ′ σ = 0  ⇒  ′ σ = −
′ γ 

2γ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ σ

Nevertheless, there is a formal equivalence between the coasting 
beam solution we already found, and the solutions for our invariant 
envelope equation.

Matched beam
conditions
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Invariant envelope ‘equilibrium’
Equilibrium or ‘matched’ beam envelope solutions will exhibit

ˆ σ eq =
κ

2γ 2 ˆ k 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

1+ 1+
2γ 2 ˆ k εn

κ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 2⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1/ 2

The space-charge dominated regime occurs at lower energies where

γ <<
κ

2 ˆ k εn

 ⇒  ˆ σ s−c =
4
3

κ
′ γ 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

⇒ σ s−c =
1
′ γ 

4
3

κ
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

At high energies the beam envelope is emittance dominated

γ >>
κ

2 ˆ k εn

 ⇒ ˆ σ emit =
εn
ˆ k 

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1/ 2

=
2γεn

3 ′ γ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

⇒ σ emit =
2εn

3 ′ γ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2
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Scaling

ˆ σ eq,s−c =
4
3

κ
′ γ 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

⇒ σ eq,s−c =
1
′ γ 

4
3

κ
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

In the space charge dominated regime the matched or equilibrium beam envelope 
has the limiting behavior 

The invariant envelope only scales as I1/2, since the dependence on γ is factored 
out. Small variations to the invariant envelope size have two sources - initial 
invariant spot size mismatches, and any modulation in the current

ˆ σ eq,s−c ∝ I1/ 2  ⇒  d ˆ σ eq,s−c = ∂ ˆ σ eq,s−c +
1
2

∂I
I

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ̂  σ eq ,s−c

ˆ σ s z( )= ˆ σ eq +
1
2

δI s( )
I

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ̂  σ eq + ˆ δ s z( ) =  ˆ σ eq s( )+ ˆ δ s(z)

The invariant envelope for individual slices

where ˆ σ eq s( ) =  ˆ σ eq +
1
2

δI s( )
I

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ̂  σ eq is the slice variation in equilibrium envelope

and            measures the mismatch from the slice equilibrium.ˆ δ s(z)
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Projected emittance under acceleration 
Recall our definition of the slice-averaged projected emittance for a 
coasting beam (no acceleration)

εproj
2 =  σ r

2 σ r
′
2

− σ rσ r
′

2

We will adopt the same definition of projected emittance in the case of 
a beam undergoing acceleration, using scaled envelope measures: 

ˆ ε proj
2 =  ˆ σ r

2 ˆ σ r′
2

− ˆ σ r ˆ σ r′
2

For envelope orbits near the matched invariant envelope solution we 
can show that

and we recover the normalized projected emittance.

ˆ ε proj
2 =  γ 2εproj

2 = εn,proj
2
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Emittance oscillations with acceleration
Carrying out a similar calculation to that for the coasting beam, we can compute 
the normalized, projected emittance for a nearly matched, accelerated, space-
charge dominated beam. By ‘nearly matched’ we mean matched in the average 
sense, but allowing rms variations. 

ˆ k 2 = ˆ k 2 + 3 εn
2

ˆ σ eq
4 +

κ
γ 2 ˆ σ eq

2  =  4 εn
2

ˆ σ eq
4 + 2 κ

γ 2 ˆ σ eq
2  ≈  2 ˆ k 2 = 2 kL

2 +
3
4

′ γ 
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
∝γ−2

Making the simplifying assumption that all slices are perfectly matched in their 
divergences, the normalized projected emittance follows 

εn,proj = ˆ σ eq
ˆ k ˆ δ 0( )2 1/ 2

 1+
1
4

∂I
I

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1/ 2

 sin ˆ k z

Defining the perturbation wavenumber
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Normalized emittance evolution

εn,proj =
2κ ( )

γ 0 + ′ γ z
δ0( )2 1/ 2

γ 0
1/ 2  1+

1
4

∂I
I

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2

+
∂γ
γ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1/ 2

 sin 3
2

′ γ z
γ 0 + ′ γ z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

In terms of the initial slice variations and energy at the entrance to the accelerating 
channel, the normalized emittance

At increasing energies, the rotation of the beam slices in phase space 
slows to a negligible rate, and the projected emittance is ‘frozen in’. 

Any residual projected emittance will remain with the beam

εn,proj ∝

sin 3
2

′ γ z
γ 0 + ′ γ z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ 0 + ′ γ z
  ⇒

sin 3
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ
    z ⇒ ∞
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Emittance compensation
Here’s our challenge as injector designers -

Given the requirements for beam charge (current), energy, etc., how do 
we obtain beams with the lowest possible projected emittance?

Answer: emittance compensation!

εn,proj =

By controlling the focusing lattice parameters and the schedule of 
acceleration down the beamline, we have the ability to tune the phase 
of the emittance oscillation.

We must, then arrange the emittance oscillation phase to approach 
nπ (where n is an integer) as the energy increases to the point where 
the oscillation stops.

ˆ σ eq
ˆ k ˆ δ 0( )2 1/ 2

 1+
1
4

∂I
I

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

1/ 2

 sin ˆ k z



High Brightness Electron Injectors
for Light Sources - January 14-18 2007

Lecture 6
D.H. Dowell, S. Lidia, J.F. SchmergeEmittance Compensation

Picture of emittance compensation
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