Lecture 13: Lasers

High Brightness Electron Injectors for Light Sources

January 14-18, 2007

J.F. Schmerge, SLAC

Outline

- Laser Parameters
 - Cathodes
 - Laser and Cathode
- Laser Components
 - Oscillator
 - Amplifier
 - Frequency Conversion
 - Transverse Pulse Shaping
 - Temporal Pulse Shaping
 - Transport Line
 - Diagnostics

Cathodes

Туре	QE	Lifetime	Work	$\epsilon_{ ext{thermal}}$
			Function	
Metal	≈ 10-4	Month	≈4 eV	>0.5 µm/mm
Semi- conductor	≈ 10 ⁻²	Hours	≈2 eV	>0.8 µm/mm

Laser Cathode System

- Cathode choice determines laser parameters
- Laser choice determines operation of cathode

Parameters

- QE 5 10⁻⁵ requires 100 µJ of laser energy to generate 1 nC
- 100 Hz repetition rate requires 10 mW of power but 1 MHz requires 100 W
- 4.5 eV work function requires 275 nm photon but 2.2 eV work function requires 550 nm photons

$$QE = \frac{n_{electrons}}{n_{photons}}$$

$$Q = en_{electrons}$$

$$E_{laser} = \frac{hc}{\lambda} n_{photons} = \frac{hcQ}{\lambda eQE}$$

$$P_{laser} = RE_{laser} = \frac{hcQR}{\lambda eQE}$$

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

Specs at the Cathode

- Wavelength
- Energy
- Temporal Pulse Shape
- Beam Size
- Transverse Beam Shape
- Repetition Rate

LCLS Injector Drive Laser

Storage Rings - January 14-18 2007

D.H. Dowell, S. Lidia, J.F. Schmerge

Oscillator

- Operates at sub-harmonic of RF frequency
 - Typical round trip time is 10 ns
 - ≈100 MHz pulse rate which is 28th sub-harmonic of S-band
- Phase lock laser to RF system
 - Require < 1° of jitter at RF frequency
 - Minimize jitter by locking harmonic rather than the laser fundamental frequency
- Pulse energy roughly 1 nJ
 - Requires significant amplification for injector application
- Oscillator must provide sufficient bandwidth for pulse shaping in later stages
 - Generally produce ≈ 100 fs pulse length

Amplifier

- Total gain required is approximately 7 orders of magnitude
- Use a regenerative amplifier, to amplify to mJ level and external amplifiers for final amplification
- Chirped Pulse Amplification (CPA)
 - Stretch pulse in time
 - Minimizes non-linear effects such as self focussing, self phase modulation
 - Allows increased amplification
 - Pulse is compressed after amplification
- Diode pumped amplifier minimize energy fluctuations
- Thermal effects limit rep rate and energy per pulse

Frequency Conversion

- Non-linear crystal with second order susceptibility
- Process commonly called Second Harmonic Generation (SHG)
- May require multiple stages to reach final photon energy
- Since process depends on E² or I, the final pulse length is often smaller than the input pulse length

$$P = \chi_1 E + \chi_2 E^2 + \chi_3 E^3 + \cdots$$

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

Spatial Shaping

- Transverse shape of the laser is reproduced on the electron beam assuming the QE is independent of position
- Methods
 - Aperture Clipping
 - Aspheric Lens
 - Adaptive Optics

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

Energy Loss With Aperture Clipping

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

Aspheric Lens

- Lens shaped to produce flat top output for a Gaussian input with a specific beam size
- Transmission near 100%
- Developed by IBM for lithography application
- Now commercially available from Newport

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

Aspheric Lens Measurement

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

Effect of Input Position Jitter

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

Lecture 13 D.H. Dowell, S. Lidia, **J.F. Schmerge**

Adaptive Optics

- Deformable mirror used to generate nearly arbitrary transverse pulse shape
- In principle could be combined with ebeam transverse shape measurement to compensate for QE spatial variations and generate a flat e-beam transverse shape

Dazzler

- Acousto-Optic Programmable Dispersive Filter (AOPDF)
- Birefringent TeO₂ Bragg diffracts different wavelengths at different depths
 - Optical path, or phase, is wavelength dependent
 - The phase delay of each wavelength is adjustable
 - Can generate approximate flat-top pulse

Temporal Pulse Shaping

- Dazzler (AOPDF)
- Frequency Domain
- Time Domain

Acousto-Optic Programable Dispersive Filter Dazzler

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

20

Temporal Shaping with Dazzler

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

Frequency Domain Pulse Shaping

Can generate nearly arbitrary pulse shapes limited by input bandwidth and available masks

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

Time Domain Pulse Shaping

- Split beam into multiple pulses
- Adjust delay of each pulse and recombine
- Gaussian pulse with delay between pulses approximately equal to the rms width produce approximately flat-top pulse
- Interference between pulses problematic
 - Rotate polarization between pulses minimizes interference
 - Elliptical polarization requires normal incidence due to QE variation with polaration

Time Domain Pulse Shaping Retro-reflectors 2 Output beams Input **Beam Splitter**

High Brightness Electron Injectors for Storage Rings - January 14-18 2007

Transport System

- Typically on the order of 10 m between the laser room and the gun
- Transport system must maintain all laser parameters with minimal loss
- Typically relay image the desired plane in the laser room to the cathode
 - Maintains transverse beam shape
 - Minimizes positional jitter
- Some system use a hard aperture a few cm before the cathode to produce a final

Diagnostics

- Monitor Spectrum
- Pulse Length
 - Streak Camera
 - AutoCorrelator
 - Cross Correlator
- Pulse Shape

- CCD camera at virtual camera location

• Energy per pulse

Losses

- Transmission After Amplifier
 - Compression 50%
 - Frequency Conversion 10%
 - Temporal Pulse Shaping 50%
 - Transverse Pulse Shaping 25%
 - Transport 50%
 - Total Transmission 0.3%
- For 100 μJ at cathode requires 30 mJ from the amplifier

Summary

- Laser System very complex and usually requires dedicated operators
- Laser specs highly dependent on choice of cathode
- Laser is a significant fraction of the cost of the injector

