Lecture 12: Architecture of An Injector for 4th Generation Light Sources

D. H. Dowell, SLAC

- The objective of this lecture is to describe the components and their functions of a high-brightness injector for SASE light source.
- The student will learn what is required to meet the stringent beam requirements for 4th generation light sources operating in the x-ray region. The LCLS facility is used as the archetypal light source.

LCLS Design Parameters

Fundamental FEL Wavelength	1.5	15	Å
Electron Beam Energy	13.6	4.3	GeV
Normalized Slice Emittance (rms)	1.2	1.2	mm-mrad
Peak Current	3.4	3.4	kA
Energy Spread (slice rms)	0.01	0.03	%
Bunch/Pulse Length (FWHM)	≤ 200	≤ 200	fs
Saturation Length	87	25	m
FEL Fundamental Power @ Saturation	8	17	GW
FEL Photons per Pulse	1	29	10 ¹²
Peak Brightness @ Undulator Exit	0.8	0.06	10 ³³ *
^ pnotons/sec/mm²/mrad²/ 0.1%-BW			

Linac Coherent Light Source at SLAC X-FEL based on last 1-km of existing linac

Injector (35°) at 2-km point

Existing 1/3 Linac (1 km) (with modifications)

New e⁻ Transfer Line (340 m)

X-raý Transport Liñe (200 m)

1.5-15 Å

Undulator (130 m) — Near Experiment Hall

-Far Experiment Hall

LCLS Accelerator Schematic

X-rays in spring 2009

High Brightness Electron Injectors for Light Sources - January 14-18 2007

LCLS Injector Layout

High Brightness Electron Injectors for Light Sources - January 14-18 2007

Gun-To-Linac (GTL) Section

Laser Room and Injector Vault

High Brightness Electron Injectors for Light Sources - January 14-18 2007

Thales Drive Laser System

High Brightness Electron Injectors for Light Sources - January 14-18 2007

RF Photo-Cathode Gun

- 1.6-cell S-band (2856 MHz BNL/SLAC/UCLA)
- Copper cathode
- 120-Hz repetition rate
- 140-MV/m cathode field (max)
- Axially symmetric RF fields
 Dual RF-feed

dual feed design design fields

ANSIS model of thermal profile

Lecture 12 D**.H. Dowell**, S. Lidia, J.F. Schmerge

Details of the RF Gun and GTL

Drive Laser Performance

Laser reliability is very good: Up-time > 90%
Excellent support from Thales & Femtolasers
Delivering > 400 microJoules to cathode (250 is spec)
Shaping needs work, but still producing good emittances

Excellent energy stability (1.1%)
Position stability on cathode, ~10-20 microns.

High Brightness Electron Injectors for Light Sources - January 14-18 2007

9-AUG-07 22:33:36

Lecture 12 D.H. Dowell, S. Lidia, J.F. Schmerge

RF Phase & Amplitude Stability

Gun: rms amplitude error = 0.018% rms phase error = 0.032 degS

Linac: rms amplitude error = 0.056% rms phase error = 0.108 degS

Viewing the Cathode and Laser Mirror Surfaces

•Changing the zoom allows imaging of the mirrors and cathode surfaces

Imaging Cathode Emission on YAG at 5-10 pC

 R_{31}

110

 R_{34}

130

140

150

solenoid current (amperes)

160

120

xx-magnification, R₁₁

170

180

190

200

-2

100

Vlieks, "Measurement and Analysis of Field Emission Electrons in the LCLS Gun," Proceedings of PAC2007.

High Brightness Electron Injectors for Light Sources - January 14-18 2007

Cathode Uniformity: Comparison of White Light & Electron Emission Images

•Emission is very non-uniform on the 10-micron scale •Perform ~weekly inspection of the cathode surface

High Brightness Electron Injectors for Light Sources - January 14-18 2007

Bunch Length Measured with Transverse RF Deflectors: **One at 135 MeV & Another at 14 GeV**

Deflector used to measure:

- 1. absolute bunch length,
- 2. time-sliced x-emittance, and
- 3. time-sliced energy spread

High Brightness Electron Injectors for Light Sources - January 14-18 2007

Transverse RF Deflector in Injector (135 MeV) (55 cm long, ~1 MV)

BC1 Chicane in Linac Enclosure

Chicane length 6.3 m, 250 MeV, 5° bends

Coherent Edge Radiation used for L1S-linac RF phase: Compressor Diagnostics

ectron Injectors for huary 14-18 2007

used to drive bunch length feedback Lecture 12 2007 (J. Wu, D. Faidey) well, S. Lidia, J.F. Schmerge

Find the X-band RF Structure in the Linac

Length 60 cm, 20 MV, -160°

Compliments P. Emma

Lecture 12 S. Lidia, J.F. Schmerge

BC1 Chicane Emittance Growth

Best $\gamma \varepsilon_x$ after BC1 with nom. (& more) compression is 1.6 μ m (& larger)

Poor bend field quality (grad. + sext.) – $\Delta E/E$ scan shows 1st & 2nd-order η

- Screen image biased by COTR wires vibrate variable results (& in y)
- Bends will be upgraded in fall '07 + proper chirp set (now >2% \rightarrow 1.6%)

Light Sources - January 14-18 2007

slide compliments P. Emma

D.H. Dowell, S. Lidia, J.F. Schmerge

Transverse Cavity (RF-Deflector) Measurements of Bunch Length

Linearization of Longitudinal Phase Space Measured Using the RF Deflector & OTR Screen in Center of BC1

Bunch Length Measurements at 135 MeV & 15 GeV

High Brightness Electron Injectors for Light Sources - January 14-18 2007

Design and Demonstrated Parameters

Parameter	sym	dsgn	meas.	unit
Final injector e ⁻ energy	γmc^2	14	16	GeV
Bunch charge	Q	1	1	nC
Init. bunch length (fwhm)	Δt_0	9	11	ps
Fin. bunch length (fwhm)	Δt_f	2.3	0.4-10	ps
Initial peak current	I_{pk0}	100	100	А
Projected norm emittance	$\gamma \mathcal{E}_{x,y}$	1.2	1.2	$\mu { m m}$
Slice norm. emittance	$\gamma \mathcal{E}^{s}_{x,y}$	1.0	0.9	$\mu { m m}$
Slice energy spread (rms)	$\gamma \mathcal{E}^{s}_{x,y}$	<5	<6	keV
Single bunch rep. rate	f	120	10-30	Hz
RF gun field at cathode	E_{g}	120	110	MV/m
Laser energy on cathode	\underline{u}_l	250	300	μJ
Laser wavelength	λ_l	255	255	nm
Laser diameter on cath.	2R	1.5	1.7	mm
Cathode material	-	Cu	Cu	
Cathode quantum eff.	QE	6	2	10^{-5}
Commissioning duration	-	8	5	mo

High Light

Schmerge