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Introduction

Bunch lengths are getting shorter:
30 ps in typical rings
< 10 ps with special low-momentum-compaction lattices
< 100 fs in linac based light sources (LCLS at SLAC)

Fastest streak camera has a resolution of 200 fs/pixel.
Also expensive and complex for a routine monitor.

Various new techniques have been devised.
A technically simple, but subtle, scheme (Zolotorev
and Stupakov, 1996) studies the statistics of single-
bunch emission, either examining:

Turn-to-turn variations in the energy in a narrow band, or
Single-shot variations in the spectrum
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Electric Field of a Bunch

The electrons in the bunch are randomly distributed:
Normalized distribution f(t): ,   f (t) is real
Characteristic time duration σt

Later we will use a Gaussian:

Electric field is the sum of the fields of the N >> 1 electrons:

Fourier transform of the field:

The total field is noisy.
ê is smooth; the noise in Ê comes
from the random spacing of the tk.
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Energy Radiated by the Bunch

The energy radiated by the bunch is:

We used |E|2 for power to simplify notation.
We made use of the identity:

( )

2

( ) ( )

1 1

( ) ( )
2

, 1

2 ( )

,

( )

1 1ˆ ˆe( ) e*( )
2 2

1 ˆ ˆe( )e*( )
2
1 ê( )
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Mean, Variance, and Standard Deviation

To get the bunch-length, we find the mean (1st moment) and 
variance (2nd moment) of the energy per pulse W.
For any distribution p(t) and function q(t):

Mean

Variance

Standard deviation = σq
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Mean of the Energy

The ensemble-averaged (also time-averaged) energy is then:

The first term is incoherent radiation from the N electrons.
The second term is coherent radiation:

The characteristic width of 
Coherent term is insignificant when ω >> σω
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Bandwidth and Coherence Time

The light is filtered to a narrow bandwidth σfilt centered at ωfilt
The characteristic coherence time for oscillations of the filtered electric 
field is:  τcoh = 1/σfilt

We are interested in the statistics of the incoherent part of the emission.
The filter is chosen so that  M = σt/τcoh >> 1 , or 1/σt = σω << σfilt

We can neglect the coherent-radiation term. 
The filter band is also narrow compared to ωfilt, and so σω << σfilt << ωfilt

Since the bunch duration is many coherence times, it can be pictured as M
independently radiating modes, each with random amplitude.
The power |ê(ω)|2 from each electron, which is not random (but has 
random timing), has a characteristic width of σfilt.
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Variance of the Energy
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Wait…How Was That Done?

As before, we kept only the significant combinations:
k = l, m = n:  Canceled by the last term (mean squared).
k = n, l = m:  Gives ω+ω′ terms.
Neglect coherent-radiation terms.

has width σω , much narrower than width of ê(ω′).
We can set ê(ω′) ≈ ê(ω) when integrating over ω′.

ˆ ( )f ω ω′−
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Ratio to Mean

Ratio of the variance to the mean squared:

A beam in a storage ring is Gaussian in time (slide 3). In the 
frequency domain, the distribution becomes:

Assume that the filter is also Gaussian.
A filter’s RMS width σfilt is generally expressed in terms of intensity 
(E2), not field. So, after the filter, the single-electron spectrum is:
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Finding the Length of a Gaussian Bunch
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ê( )

ê( )
2

2ˆ ( )

1 1
2 2 2

t

W

W t t

d p

pd

d f

m M

ω ω

ω ω
πσ

πω ω
σ

σ τ
σ σ σ

=

=

=

= = =

∫

∫

∫

Conclusion: The bunch length σt can be determined by finding 
the mean and variance of many measurements of the radiated 
energy W through a narrow filter of known bandwidth σfilt.
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Example

View 550-nm light through a filter with a 1-nm 
bandwidth (in intensity):

ωfilt = 2πc/λfilt = 3.425×1015 s-1

σfilt = ωfilt σλ /λfilt = 6.227×1012 s-1

τcoh = 1/σfilt = 0.16 ps
Measure the statistics:

σW/mW = 0.08

The bunch length σt = 18 ps.
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What if the Pulse isn’t Gaussian?

Interferometric method
Split the pulse, delay one part by a time τ, and recombine at the 
detector, for a total field:

A Michelson interferometer can be used for this.
In the frequency domain:

When τ = 0, this is the same as the previous approach.
We will see that the result is the autocorrelation of the distribution f(t) 
as a function of the delay τ :

When f(t) is real and symmetric, the autocorrelation can normally be 
inverted to find f.
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Energy in the Pulse
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As before, we neglect the second term, for coherent radiation, 
because the filter passes light only at a high frequency ωfilt .



2008-01-17 Fisher — Fluctuations and Bunch Length 15

Variance

2 22 22
2

, , ,

( ) ( )

2
22

2 22 2
2

,

1 ˆ ˆ( ) e( ) e( ) 1 1
(2 )

( ) ( ) ( ) ( )
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The next slide explains 
some steps used here.
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The Usual Tricks

Only certain combinations of the sum are significant:
k = l, m = n:  Canceled by the last term (mean squared).
k = m, l = n:  Gives the ω-ω′ terms that provide our result.

has width σω , much narrower than width of ê(ω′).
We can set ê(ω′) ≈ ê(ω) when integrating over ω′.

Recall that:
ê(ω) is centered at a high frequency ωfilt

The delay τ is comparable to the pulse width σt

ωτ ∼ ωfiltσt >> 1
As a result:

In expanding the |1+αeiωτ| factors, all but the constant terms and those 
involving ω-ω′ oscillate rapidly, vanishing in the ω′ integral.
But for τ = 0 this argument does not apply, and we simply pull the 
|1+α| factors out of the integral.

ˆ ( )f ω ω′−
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Variance and Autocorrelation
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Again, see the next slide 
for some steps used here.
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And More Tricks

We used a theorem of Fourier transforms: The product of two 
transforms is an autocorrelation in the time domain.

We also used a special case of this, Parseval’s theorem:

We also made use of the fact that f(t) is real.

When we look at the change in the variance as τ is scanned, 
we can ignore the first, τ-independent term.
For α = 0 (no interference), the result reverts to the prior case.
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Ratio to Mean
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As τ is scanned, the ratio of the variance to the central (peak) 
value of the mean gives a constant and a varying term.
When f(t) is real and symmetric, the autocorrelation from the 
varying term can be inverted to determine f.
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Additional Complications

Transverse beam size
If the beam is too wide for transversely coherent emission, 
or if there is diffraction at a limiting aperture, then the 
measured variance is reduced.

Detector noise
Detector noise adds to the measured fluctuations, and must 
be accounted for to find the correct bunch length.

Photon count
If the number of photons on the detector is too low, shot 
noise will increase the measured fluctuations.
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Another Variation

Spectrographic method
Use a spectrometer to make many narrow filters.
The fluctuations from one wavelength bin to the next then 
give the bunch length in a single measurement of the pulse.
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Conclusion

We can find the length σt of a short bunch using a 
simple statistics of many measurements of the 
radiated energy W through a narrow filter.
A more elaborate setup can provide more information 
about the temporal profile.
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