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Selected Notes from the USPAS Winter 2008 Accelerator Physics Course 
Introduction.  

These notes are a sub-set of lectures presented in the Accelerator Physics course 
(USPAS, Santa Rosa, California, January 14-25, 2008) taught by Eduard Pozdeyev, Todd 
Satogata and myself. 

These notes comprised of five files: 1) My lecture notes with focus on a complete 
Hamiltonian dynamics in accelerators without simplification of plane trajectories or 
absence of coupling; 2) Two lecture notes by Eduard Pozdeyev: “Bogolyubov and 
Metropolsky’s averaging method” and “Space charge effects in accelerators”; 3) Three 
lecture notes by Todd Satogata: “Transport matrices”, ‘Poisson Brackets and Lie 
Operators” and “Colliders and Beam-Beam Effects”; 4) Problems for home works and 
mid-term exam; 5) Solutions to selected problems.  

A number of lectures with introductory character or been short reviews of complex 
subjects (such as instabilities or electron cloud) are omitted from these notes.  

My notes are based on my mostly unpublished notes I wrote during period from 1976 
to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in 
Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description 
starting from the arbitrary reference orbit, explicit expressions for 4-potential and 
accelerator Hamiltonian and finishing with parameterization with action and angle 
variables. To a large degree follow logic developed in Theory of Cyclic Particle 
Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond in a 
number of directions. One of unusual feature is these notes use of matrix function and 
Sylvester formula for calculating matrices of arbitrary elements. 

Teaching this course motivated me to translate significant part of my notes into the 
English. I also included some introductory materials following Classical Theory of Fields 
by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering 
various techniques are placed in the Appendices. 

I never found time to turn these notes into a perfect text I would like to see, but decided 
not to delay any further and to release them in the present imperfect form. Neither I had 
time to find all necessary references. I ask readers to excuse awkward places, lack of 
references and, unfortunately, some remaining typos in formulae. 

Copyrights for original material presented in these notes are reserved.  
 
Vladimir N Litvinenko     
September 1, 2010 
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Lecture 1: Particles In Electromagnetic Fields. 
Fundamentals of Hamiltonian Mechanics 

http://en.wikipedia.org/wiki/Hamilton_principle  
 

1.0. Least-Action Principle and Hamiltonian Mechanics 
 Let us refresh our knowledge of some aspects of the Least-Action Principle 
(humorously termed the coach potato principle) and Hamiltonian Mechanics. The Principle of 
Least Action is the most general formulation of laws governing the motion (evolution) of 
systems of particles and fields in physics. In mechanics, it is known as the Hamilton's 
Principle, and states the following:  

1) A mechanical system with n  degrees of freedom is fully characterized by a monotonic 
generalized coordinate, t, the full set of n  coordinates q = q1,q2,q3. ..qn{ } and their 
derivatives 

€ 

˙ q = ˙ q 1, ˙ q 2, ˙ q 3 ...˙ q n{ }  that are denoted by dots above a letter. We study the 
dynamics of the system with respect to t. All the coordinates, q = q1,q2,q3. ..qn{ }; 

€ 

˙ q = ˙ q 1, ˙ q 2, ˙ q 3 ...˙ q n{ }  should be treated as a functions of t that itself should be treated as an 
independent variable. 

2) Each mechanical system can be fully characterized by the Action Integral: 

 

€ 

S(A,B) = L(q, ˙ q ,t)dt
A

B

∫
  

     (L1.1) 

   that is taken between two events A and B described by full set of coordinates* (q,t) . The 
function under integral 

€ 

L(q, ˙ q ,t) is called the system’s Lagrangian function. Any system 
is fully described by its action integral. 

After that, applying Lagrangian mechanics involves just n  second -order ordinary differential 
equations: 

€ 

˙ ̇ q = f (q, ˙ q ).  
We can find these equations, setting variation of δSAB  to zero: 

€ 

δSAB = δ L(q, ˙ q ,t)dt
A

B

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

∂L
∂q
δq +

∂L
∂ ˙ q 
δ ˙ q 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

dt
A

B

∫ =
∂L
∂q
δqdt +

∂L
∂ ˙ q 
δdq

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ A

B

∫ =

∂L
∂ ˙ q 
δq

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

A

B

+
∂L
∂q

−
d
dt
∂L
∂ ˙ q 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ A

B

∫ δqdt = 0 ;  (L1.2) 

and taking into account δq(A) = δq(B) = 0 . Thus, we have integral of the function in the 
brackets, multiplied by an arbitrary function δq(t)  equals zero.  
Therefore, we must conclude that the function in the brackets also equals zero and thus obtain 
Lagrange's equations:  

€ 

∂L
∂q

−
d
dt
∂L
∂ ˙ q 

= 0.       (L1.3) 

                                                
* For one particle, the full set of event coordinates is the time and location of the particle. The integral is taken along a particle’s 
world line (its unique path through 4-dimentional space-time) and is a function of both the end points and the intervening 
trajectory.  
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Explicitly, this represents a set of n second-order equations 

€ 

d
dt
∂L(q, ˙ q ,t)
∂ ˙ q i

=
∂L(q, ˙ q ,t)
∂qi

   

€ 

˙ ̇ q j
∂ 2L(q, ˙ q ,t)
∂ ˙ q i∂ ˙ q j

+ ˙ q j
∂ 2L(q, ˙ q ,t)
∂ ˙ q i∂q j

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j=1

n

∑ =
∂L(q, ˙ q ,t)
∂qi

. 

The partial derivative of the Lagrangian over 

€ 

˙ q  is called generalized (canonical) momentum: 

€ 

Pi =
∂L(q, ˙ q ,t)
∂ ˙ q i

;       (L1.4) 

and the partial derivative of the Lagrangian over q  is called the generalized force: 

€ 

f i =
∂L(q, ˙ q ,t)
∂qi

 : (L1.4) can be rewritten in more familiar form: 
dPi

dt
= f i . Then, by a definition, 

the energy (Hamiltonian) of the system is: 

€ 

H = Pi

i=1

n

∑ ˙ q i − L ≡ ∂L
∂ ˙ q ii=1

n

∑ ˙ q i − L; L = Pi

i=1

n

∑ ˙ q i −H.     (L1.5) 

Even though the Lagrangian approach fully describes a mechanical system it has some 
significant limitations. It treats the coordinates and their derivatives differently, and allows only 
coordinate transformations ʹ′ q = ʹ′ q (q,t) . There is more powerful method, the Hamiltonian or 
Canonical Method. The Hamiltonian is considered as a function of coordinates and momenta, 
which are treated equally. Specifically, pairs of coordinates with their conjugate momenta (L1.4) 
(qi,Pi) or (qi,Pi) are called canonical pairs. The Hamiltonian method creates many links between 
classical and quantum theory wherein it becomes an operator. Before using the Hamiltonian, let 
us prove that it is really function of (q,P,t) :  i.e., that the full differential of the Hamiltonian is 

dH (q,P,t) =
∂H
∂qi

dqi +
∂H
∂Pi

dPi
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i=1

n

∑ +
∂H
∂t

dt.      (L1.6) 

Using equation (L1.5) explicitly, we can easily prove it: 

€ 

dH = d ∂L
∂ ˙ q ii=1

n

∑ ˙ q i − dL ≡ ∂L
∂ ˙ q i

d ˙ q i + ˙ q id
∂L
∂ ˙ q i

−
∂L
∂qi

dqi −
∂L
∂ ˙ q i

d ˙ q i −
∂L
∂t

dt
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ i=1

n

∑ =

˙ q id
∂L
∂ ˙ q i

−
∂L
∂qi

dqi −
∂L
∂t

dt
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ i=1

n

∑ = ˙ q idPi −
∂L
∂qi

dqi −
∂L
∂t

dt
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ i=1

n

∑ =
∂H
∂qi

dqi +
∂H
∂Pi dPi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

n

∑ +
∂H
∂t

dt.

 

wherein we substitute 

€ 

d(∂L /∂ ˙ q i) = dPi with the expression for generalized momentum. In 
addition to this proof, we find some ratios between the Hamiltonian and the Lagrangian: 

€ 

∂H
∂qi P= const

= −
∂L
∂qi ˙ q = const

; ∂H
∂t P ,q= const

= −
∂L
∂t q, ˙ q = const

;

€ 

˙ q i =
dqi

dt
=
∂H
∂Pi ; 

wherein we should very carefully and explicitly specify what type of partial derivative we use. 
For example, the Hamiltonian is function of (q,P,t) :  thus, partial derivative on q  must be taken 
with constant momentum and time. For the Lagrangian, we should keep 

€ 

˙ q ,t = const  to partially 
differentiate on q .  
The last ratio gives us the first Hamilton's equation, while the second one comes from Lagrange's 
equation (L1.5-11): 
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€ 

˙ q i =
dqi

dt
=
∂H
∂Pi ;

dPi

dt
=

d
dt
∂L(q, ˙ q ,t)
∂ ˙ q i

=
dPi

dt
=
∂L
∂qi ˙ q = const

= −
∂H
∂qi P= const

;
    (L1.7) 

both of which are given in compact form below in (L1.11).  
Now, to state this in a formal way. The Hamiltonian or Canonical Method uses a 
Hamiltonian function to describe a mechanical system as a function of coordinates and momenta: 

H = H (q,P,t)        (L1.8) 
 Then using eq. (L1.5), we can write the action integral as 

S = Pi

i=1

n

∑ dqi
ds

−H (q,P,t)
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

A

B

∫ dt = Pi
i=1

n

∑ dqi −H(q,P,t )dt
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

A

B

∫ ;   (L1.9) 

The total variation of the integral can be separated into the variation of the end points, and the 
variation of the integral argument: 

δ f (x)dt
A

B

∫ = f (x +δx)dt
A+δA

B+δB

∫ − f (x)dt
A

B

∫ = f (x + δx)dt
B

B+δB

∫ + f (x + δx)dt
A+δA

A

∫ + f (x +δx)dt
A

B

∫ − f (x)dt
A

B

∫ =

= f (B)ΔtB − f (A)ΔtA + ( f (x + δx) − f (x))dt
A

B

∫ ; ΔtC = t(C + δC) − t(C); forC = A,B.
 

 The first term represents the variation caused by a change of integral limits (events), 
while the second represents the variation of the integral between the original limits (events). The 
total variation of the action integral (L1.9) can separated similarly: 

δS = Pi

i=1

n

∑ Δqi − HΔt
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
A

B

+ δ Pi

i=1

n

∑ dqi −
∂H
∂qi

δqidt +
∂H
∂Pi δP

idt
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i=1

n

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

A

B

∫ =

= Pi
i=1

n

∑ Δqi − HΔt
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
A

B

+ δPidqi + Pidδqi −
∂H
∂qi

δqidt +
∂H
∂Pi δP

idt
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

A

B

∫
i=1

n

∑ ;

   (L1.10) 

This equation encompasses everything: The expressions for the Hamiltonian and the momenta 
through the action and Hamiltonian equations of motion. Now we consider variation in both 
the coordinates and momenta that are treated equally: δq;δP .  
To find the equation of motion we set constant events and δq(A) = δq(B) = 0;  the first term 
disappears, and the minimal-action principle gives us 

δS =
∂H
∂qi

δqidt +
∂H
∂Pi δP

idt −δPidqi − P
idδqi

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

A

B

∫
i=1

n

∑ = 0 ,    

which, after integration by parts of the last term translates into 
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€ 

δS = − Pi

i=1

n

∑ δqi
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
A

B

+
∂H
∂qi

δqidt +
∂H
∂Pi δP

idt −δPidqi + dPiδqi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫
i=1

n

∑ =

=
∂H
∂qi

+
dPi

dt
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
δqidt +

∂H
∂Pi −

dqi
dt

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
δPidt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫
i=1

n

∑ = 0;

   

where the variation of coordinates and momenta are considered to be independent. Therefore, 
both expressions in brackets must be zero at a real trajectory. This gives us the Hamilton's 
equations of motion: 

dqi
dt

=
∂H
∂Pi

; dP
i

dt
= −

∂H
∂qi
.       (L1.11) 

It is easy to demonstrate that these equations are exactly equivalent to the Lagrange's equation of 
motion. This is not surprising because they are obtained from the same principle of least action 
and describe the motion of the same system. Let us also look at the full derivative of the 
Hamiltonian: 

dH
dt

=
∂H
∂t

+
∂H
∂Pi

dPi

dt
+
∂H
∂qi

dqi
dt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i=1

n

∑ =
∂H
∂t

+ −
∂H
∂qi

∂H
∂qi

+
∂H
∂qi

∂H
∂Pi

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i=1

n

∑ =
∂H
∂t
.  

This equation means that the Hamiltonian is constant if it does not depend explicitly on t. It is an 
independent derivation of energy conservation for closed system. The conservation of 
momentum is apparent from equation (L1.11), viz., if the Hamiltonian does not depend explicitly 
on the coordinates, then momentum is constant. All these conservation laws result from the 
general theorem by Emmy Noether : Any one-parameter group of dimorphisms operating in a 
phase space (

€ 

(q, ˙ q ,t)  for Lagrangian ((q,P,t)  for Hamiltonian) and preserving the 
Lagrangian/Hamiltonian function equivalent to existence of the (first order) integral of motion. 
(Informally, it can be stated as, for every differentiable symmetry created by local actions there 
is a corresponding conserved current). 
 Returning to the Eq. (L1.10), we now can consider motion along real trajectories. Here, 
the variation of the integral is zero and the connection between the action and the Hamiltonian 
variables is obtained by differentiation of the first term: 

€ 

H = −
ΔS
Δt Δq= 0

= −
∂S
∂t

; Pi =
ΔS
Δqi Δqk≠i = 0

=
∂S
∂qi

;    S = Pidqi −Hdt( )
Along  real
Trajectrory

∫ ;
   

 (L1.12) 
Thus, knowing the action integral we can find the Hamiltonian and canonical (generalized) 
momenta from solving (L1.12) without using the Lagrangian. All conservation laws emerge 
naturally from (L1.10): if nothing depends on t, then H is conserved (i.e., the energy). If nothing 
depends on position, then the momenta are conserved: Pi (A) = Pi(B).  Finally, we write the 
Hamiltonian equations for one particle using the Cartesian frame: 

  

€ 

S =
 
P d r −H( r ,

 
P ,t)dt( )∫ ;      (L1.13) 
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H( r ,

 
P ,t) = − ∂S

∂ t
;
 
P = ∂S

∂
 r 
;  

  

d r 
dt

=
∂H
∂
 
P 
;
   

d
 
P 

dt
= −

∂H
∂
 r 
;
 
dH
dt

=
∂H
∂t

 

Hamiltonian method gives us very important tool – the general change of variables: 

€ 

Pi,qi{ }→ ˜ P i, ˜ q i{ }, called Canonical transformations. From the least-action principle, two 
systems are equivalent if they differ by a full differential: (we assume the summation on 
repeating indices i=1,2,3, 

€ 

aibi ≡ aibi
i
∑ ; aαbα ≡ aαbα

α

∑  and the use of co- and contra-variant 

vector components for the non-unity metrics tensor) 

€ 

δ Pidqi∫ −Hdt = 0∝δ ˜ P id ˜ q i∫ − ˜ H dt = 0 →Pidqi −Hdt = ˜ P id ˜ q i − ˜ H dt + dF    
 (L1.14) 

where F is the so-called generating function of the transformation.  Rewriting (L1.14), reveals 
that 

€ 

F = F(qi, ˜ q i,t): 

€ 

dF = Pidqi − ˜ P id ˜ q i + ( ʹ′ H −H)dt; ˜ P i =
∂F
∂qi

; Pi = −
∂F
∂ ˜ q i

; ʹ′ H = H +
∂F
∂t

.   (L1.15) 

In fact, generating functions on any combination of old coordinates or old momenta with new 
coordinates of new momenta are possible, totaling 4= 2 x 2 combinations:  

€ 

F(q, ˜ q ,t)                    ⇒ dF = Pidqi − ˜ P id ˜ q i + ( ʹ′ H −H)dt; Pi =
∂F
∂qi

; ˜ P i = −
∂F
∂ ˜ q i

; ʹ′ H = H +
∂F
∂t

.

Φ(q, ˜ P ,t) = F + ˜ q i ˜ P i   ⇒ dΦ = Pidqi + ˜ q id ˜ P i + ( ʹ′ H −H)dt; Pi =
∂Φ
∂qi

; ˜ q i =
∂Φ
∂ ˜ P i

; ʹ′ H = H +
∂Φ
∂t

;

Ω(P, ˜ q ,t) = F − Piqi   ⇒ dΩ = −qidPi − ˜ P id ˜ q i + ( ʹ′ H −H)dt; qi = −
∂Ω
∂Pi

; ˜ P i = −
∂Ω
∂ ˜ q i

; ʹ′ H = H +
∂Ω
∂t

;

Λ(P, ˜ P ,t) =Φ− Piqi  ⇒ dΛ = ˜ q id ˜ P i − qidPi + ( ʹ′ H −H)dt; qi = −
∂Λ
∂Pi

; ˜ q i =
∂Λ
∂ ˜ P ii

; ʹ′ H = H +
∂Λ
∂t

;

 

(L1.15’) 
The most trivial canonical transformation is 

€ 

˜ q i = Pi ; 

€ 

˜ P i = −qi  with trivial generation function of  

€ 

F(q, ˜ q ) = qi ˜ q i    Pi =
∂F
∂qi

= ˜ q i; ˜ P i = −
∂F
∂ ˜ q i

= − ˜ q i; ʹ′ H = H  

Hence, this is direct proof that in the Hamiltonian method the coordinates and momenta are 
treated equally, and that the meaning of canonical pair (and its connection to Poisson brackets) 
has fundamental nature. 

The most non-trivial finding from the Hamiltonian method is that the motion of a system, 
i.e., the evolution of coordinates and momenta also entails a Canonical transformation: 

€ 

qi(t + τ) = ˜ q i(qi(t),Pi(t), t); Pi(t + τ) = ˜ P i(qi(t),Pi(t), t); with generation function being the action 
integral along a real trajectory (L1.12): 
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€ 

S =  S = Pidqi −Hdt( )
A

t+τ

∫ −  Pidqi −Hdt( )
A

t

∫ ;

dS = Pi(t + τ)dqi − Pi(t)dqi + (Ht+τ −Ht )dt  
 

1.1 Relativistic Mechanics 
From here further: i=0,1,2,3 in Minkowki space with (1,-1,-1,-1) metric.  

      see Appendix A for 4-D metric, vectors and tensors 
 Let’s use Principle of Least Action for a relativistic particle. To determine the action 
integral for a free particle (which does not interact with the rest of the world), we must ensure 
that the action integral does not depend on our choice of the inertial system. Otherwise, the laws 
of the particle motion also will depend on the choice of the reference system, which contradicts 
the first principle of relativity. Therefore, the action must be invariant of Lorentz transformations 
and rotation in 3D space; i.e., it must depend on a 4D scalar. So far, from Appendix A, we know 
of one 4D scalar for a free particle: the interval. We can employ it as trial function for the action 
integral, and, by comparing the result with classical mechanics find a constant α  connecting the 

action with the integral of the interval: 
  

€ 

ds2 = dx idxi ≡ dx idxi
i=1

4

∑ = cdt( )2 − d r ( )2 

  

€ 

S = −α ds
A

B

∫ = −α cdt( )2 − d r 2
A

B

∫ .      (L1.16) 

The minus sign before the integral reflects a natural phenomenon: the law of inertia requires a 
resting free particle to stay at rest in inertial system. The interval ds = cdt  has a maximum 
possible value (  cdt ≥ cdt( )2 − d r 2 ) and requires for the action to be minimal, that the sign is set 
to be "-". 
 The integral (L1.16) is taken along the world line of the particle. The initial point A  
(event) determines the particle’s start time and position, while the final point B  (event) 
determines its final time and position. The action integral (L1.16) can be represented as integral 
with respect to the time: 

  
S = −α cdt( )2 − d r 2

A

B

∫ = −αc dt 1−  v 2 / c2
A

B

∫ = Ldt
A

B

∫ ; 
  
L = −αc 1−

 v 2

c2
;  v = d r 

dt
;  

where L  signifies the Lagrangian function of the mechanical system. It is important to note that 
while the action is an invariant of the Lorentz transformation, the Lagrangian is not. It must 
depend on the reference system because time depends on it. To find coefficient α , we compare 
the relativistic form with the known classical form by expanding L  by   

 v 2 / c2 : 

  
L = −αc 1−

 v 2

c2
≈ −αc + α

 v 2

2c
;  

  
L classical = m

 v 2

2
;  

which confirms that α  is positive and 

€ 

α = mc , where m  is the mass of the particle. Thus, we 
found the action and the Lagrangian for a relativistic particle: 

S = −mc ds
A

B

∫ ;        (L1.17) 
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L = −mc2 1 −

 v 2

c2
;        (L1.18) 

The energy and momentum of the particles are defined by the standard relations eqs. (L1.4) and 
(L1.5): 

  

 p = ∂L
∂
 v 
=

m v 

1 −
 v 2

c2

= γm v ;        (L1.19) 

  

€ 

E =
 p  v − L = γmc 2; γ =1/ 1−  v 2 /c 2       (L1.20) 

with ratio between them of 

  E
2 =
 p 2c2 + mc2( )2.        (L1.21) 

 
The energy of the resting particle does not go to zero as in classical mechanics but is equal to the 
famous Einstein value, E = mc2;  with the standard classical additions at low velocities (

v << c;p << mc ): 
  
E ≅ mc2 +m

 v 2

2
≅mc2 +

 p 2

2m
.  

 
Four-momentum, conservation laws. The least-action principle gives us the equations of 
motion and an expression for the momentum of a system. Let us consider the total variation of an 
action for a single particle: 

δS = −mcδ ds
A

B

∫ = −mcδ dxidxi =
A

B

∫ − mc{ dδxidxi + dxidδxi} =
A

B

∫

−mc{ dδxidxi
2 dxidxi

+
dxidδxi
2 dxidxi

}=
A

B

∫ −mc dxidδxi
ds

=
A

B

∫ −mc uidδxi
A

B

∫ ;
 

where 

€ 

ui ≡ dx i /ds is 4-velocity. Integrating by parts,  

δS = −mcuiδxi A
B +mc δxi

A

B

∫
dui

ds
ds;      (L1.22) 

we obtain the expression that can be used for all purposes. First, using the least-action principle 
with fixed A and B δxi(A) = δxi(B) = 0 , to derive the conservation of 4-velocity for a free 

particle: 
dui

ds
= 0; ui = const  or the inertia law.  

Along a real trajectory mc δxi
A

B

∫
dui

ds
ds = 0  the action is a function of the limits A and B (see eq. 

(L1.12):   δSreal traj = (−Eδt +
 
P δ r ) A

B , i.e.,   dSreal traj = −Edt +
 
P d r  is the full differential of t and   

 r  
with energy and momentum as the parameters. We note that this form of the action already is a 
Lorentz invariant: 

  δSreal traj = (−Eδt +
 
P δ r ) A

B = (−Piδxi) A
B;  

i.e. classical Hamiltonian mechanics always encompassed a relativistic form and a metric: a 
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scalar δS  is a 4-product of Pi  and δxi  with the metric (1,-1,-1,-1). Probably one of most 
remarkable things in physics is that its classic approach detected the metric of 4-D space 
and time at least a century before Einstein and Poincaré. 

To get 4-momentum, we consider a real trajectory mc δxi
A

B

∫
dui

ds
ds = 0  and set δxi(B) = δxi : 

  
pi = −

∂S
∂xi

= −∂ iS = mcui = γmc,γm v ( ) = E / c,  p ( )    (L1.23) 

with an obvious scalar product (uiui =1 , see Appendix A. eq. (A.42)) 

  p
ipi = E2 / c2 −  p 2 = m2c2uiui =m 2c2 .     (L1.24) 

Equivalent forms of presentation are   

  
pi = (E / c,  p ) ≡ mγ v (c,

 v ) ≡ (mc,m v )
1− v2 / c2

     (L1.25) 

and, Lorentz transformation (Pi is a 4-vector, K' moves with   
 

V = ˆ e xV ): 

E = γ V ( ʹ′ E + cβV ʹ′ p x );px = γV ( ʹ′ p x + βV ʹ′ E / c);py ,z = ʹ′ p y, z ;γ V =1 / 1− βV
2 ;βV = V / c;  

 (L1.26) 
where subscripts are used for γ ,β  to define the velocity to which they are related. .  
 Equation (L1.24) expresses energy, velocity, and the like  in terms of momenta and 
allows us to calculate all differentials: 

  
E = c  p 2 +m2c2 ;dE = cd  p 2 +m 2c2 = d p ⋅ c p 

 p 2 +m2c2
=

c2  p ⋅ d p 
E

=
 v ⋅ d p ;     

(L1.27) 

  

 v = c p 
 p 2 +m 2c2

;  a dt = d v = d c p 
 p 2 +m2c2

=
c d p (  p 2 + m2c2 ) −  p (  p d p )( )

 p 2 +m2c2( )
3 = c

d p ⋅m2c2 +  p × d p ×  p [ ][ ]
 p 2 +m2c2( )

3 ;

 (L1.28) 
Coefficients   γ = E /mc2;

 
β =
 v / c  differ from the above by constants, and satisfy similar 

relations. 
 The conservation laws reflect the homogeneity of space and time (see Mechanics): these 
natural laws do not change even if the origin of the coordinate system is shifted by δx . Then, 
δxi(A) = δxi(B) = δxi . We can consider a closed system of particles (without continuous 
interaction, i.e., for most of the time they are free). Their action is sum of the individual actions, 
and 

δSa
a
∑ = −( mac

a
∑ uia )δxi A

B = −( mac
a
∑ uia )δxi A

B={ pia(A)
a
∑ − pia(B)

a
∑ }δxi = 0    

(L1.29) 

  
pi

a(A)
a
∑ = pi

a (B)
a
∑ = Ea / c

a
∑ ,  p 

a
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = const .    (L1.30) 
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1.2 Particles in the 4-potential of the EM field.  
The EM field propagates with the speed of light, i.e., it is a natural product of relativistic 4-D 

space-time; hence, the 4-potential is not an odd notion!  
 
In contrast with the natural use of the interval for deriving the motion of the free relativistic 
particle, there is no clear guideline on what type of term should be added into action integral to 
describe a field. It is possible to consider some type of scalar function A(xi )ds∫ 2 to describe 
electromagnetic fields, but this would result in wrong equations of motion. Nevertheless, the next 
guess is to use a product of 4-vectors Aidxi , and surprisingly it does work, even though we do 
not know why? Hence, the fact that electromagnetic fields are fully described by the 4-
vector of potential   

€ 

Ai = (A0,
 
A )  must be considered as an experimental fact! 

 Nevertheless, it looks natural that the interaction of a charge with electromagnetic field is 
represented by the scalar product of two 4-vectors with the −e / c  coefficient chosen by 
convention: 

Sint = −
e
c

Ai

A

B

∫ dxi ;   A
i ≡ (Ao,

 
A ) ≡ (ϕ,

 
A )      (L1.31) 

where the integral is taken along the particle’s world line. A charge e  and speed of the light c are 
moved outside the integral because they are constant; hence, we use the conservation of the 
charge e  and constancy of the speed of the light ! 
It is essential that field is GIVEN, SINCE we are CONSIDERING a particle interacting with a 
given field. 
Turning our attention back to the Least-Action Principle and Hamiltonian Mechanics 
The standard presentation of 4-potential is  

  A
i ≡ (A0 ,

 
A ) ≡ (ϕ,

 
A ) ;       (L1.32) 

where ϕ  is called the scalar potential and   
 
A  is termed the vector potential of electromagnetic 

field. 
Gauge Invariance. As we discussed earlier the action integral is not uniquely defined; we can 
add to it an arbitrary function of coordinates and time without changing the motion: 

€ 

ʹ′ S = S + f (xi). This corresponds to adding the full differential of f in the integral  (L1.31)  

€ 

ʹ′ S = −mcds − e
c

Aidxi + dxi∂
i f

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ .  

This signifies that the 4-potential is defined with sufficient flexibility to allow the addition of any 

4-gradient to it (let us choose 

€ 

f (xi) =
e
c
g(xi)) 

€ 

ʹ′ A i = Ai −∂ ig(xi) = Ai −
∂g
∂xi

;      (L1.33) 

                                                
2 You can check that this function will give the equations of motion (mc − A)

dui

ds
+∂ iA = 0 . 
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without affecting the motion of the charge, a fact called THE GAUGE INVARIANCE .  
 WE SHOULD BE AWARE THAT THE EVOLUTION OF THE SYSTEM DOES NOT CHANGE BUT 
APPEARANCE OF THE EQUATION OF THE MOTION FOR THE SYSTEM COULD CHANGE. FOR EXAMPLE, 
AS FOLLOWS FROM  (L1.33), THE CANONICAL MOMENTA WILL CHANGE: 

ʹ′ P i = Pi − ∂ i f . 
NEVERTHELESS, ONLY THE APPEARANCE OF THE SYSTEM IS ALTERED, NOT ITS EVOLUTION. OFTEN 
THE RIGHT CHOICE OF THE GAUGE INVARIANCE ALLOWS THE EQUATION OF MOTION TO BE 
INTEGRATED EASILY. MEASURABLE VALUES (SUCH AS FIELDS, MECHANICAL MOMENTUM) DO NOT 
DEPEND UPON IT. ONE MIGHT CONSIDER GAUGE INVARIANCE AS AN INCONVENIENCE, BUT, IN 
PRACTICE, IT PROVIDES A GREAT OPPORTUNITY TO FIND A GAUGE IN WHICH THE PROBLEM BECOMES 
MORE COMPREHENSIBLE AND SOLVABLE. 
The action is an additive function: therefore, the action of a charge in electromagnetic field is 
simply the direct sum of a free particle’s action and action of interaction: (remember 
ds = ds2 / ds = dx idxi / ds = u

idxi ) 

S = −mcds − e
c
Aidxi

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

A

B

∫ = −mcui − e
c
Ai⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ 

A

B

∫ dxi      (L1.34) 

Then the total variation of the action is 

€ 

δS = δ −mcds − e
c
Aidxi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ = −mc dx
idδxi
ds

−
e
c
Aidδxi −

e
c
δAidxi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ =

− mcui +
e
c
Ai⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ δxi

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
A

B

+ mc du
i

ds
δxids+

e
c
δxidA

i −
e
c
δAidxi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ = 0.
  (L1.35) 

That gives us a 4-momentum 

  
Pi = −

δS
δxi

= mcui +
e
c

Ai⎛ 
⎝ 

⎞ 
⎠ = H / c,

 
P ( )= pi +

e
c

Ai ;      (L1.36) 

with  

  

H = E = c(mcu0 + e
c

A0 ) = γmc 2 + eϕ = c m2c2 +  p 2 + eϕ ;

 
P = γm

 
v + e

c

 
A =
 
p + e

c

 
A ;⇒

 
p =
 
P − e

c

 
A .    (L1.37) 

The Hamiltonian must be expressed in terms of generalized 3-D momentum, 
  

€ 

 
P =  p + e

c
 
A  and it 

is 

  

€ 

H( r ,
 
P ,t) = c m2c 2 +

 
P − e

c
 
A 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+ eϕ;    (L1.38) 

with Hamiltonian equation following from it: 
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€ 

 v = d r 
dt

=
∂H
∂
 
P 

=

 
P c − e

 
A 

m2c 2 +
 
P − e

c
 
A 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2  

  

€ 

d
 
P 

dt
=

d p 
dt

+
e
c

d
 
A 

dt
= −

∂H
∂
 r 

= −e
 
∇ ϕ − e

{(
 
P − e

c
 
A )⋅
 
∇ }
 
A 

m2c 2 +
 
P − e

c
 
A 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

= −e
 
∇ ϕ −

e
c
( v ⋅
 
∇ )
 
A ; 

From this equation we can derive (without any elegance!) the equation for mechanical 
momentum   

€ 

 p = γm v . We will not do it here, but rather we will use easier way to obtain the 4D 
equation of motion via the least-action principle. We fix A and B to get from equation (L1.35) 

δS = mcuiδxids +
e
c
δxidA

i −
e
c
δAkdxk

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

A

B

∫ = mc du
i

ds
δxids +

e
c
∂Ai

∂xk
δxidxk −

e
c
∂Ak

∂xi
δxidxk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ =

dpi

ds
+
e
c
∂Ai

∂xk
−
∂Ak

∂xi

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
uk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A

B

∫ δxids = 0.
 

(L1.39) 
As usual, the expression inside the round brackets must be set at zero to satisfy (L1.39); i.e., we 
have the equations of charge motion in an electromagnetic field: 

€ 

mc du
i

ds
≡
dpi

ds
=
e
c
F ikuk;      (L1.40) 

wherein we introduce an anti-symmetric electromagnetic field tensor 

€ 

F ik =
∂Ak

∂xi
−
∂Ai

∂xk
.      (L1.41) 

Electromagnetic field tensor: The Gauge Invariance can be verified very easily: 

€ 

ʹ′ F ik =
∂ ʹ′ A k

∂xi

−
∂ ʹ′ A i

∂xk

= F ik −
∂ 2g
∂xi∂xk

+
∂ 2g
∂xk∂xi

= F ik; 

which means that the equation of motion (L1.40) is not affected by the choice of the gauge, and 
the electromagnetic field tensor is defined uniquely! Using the Landau convention, we can 
represent the asymmetric tensor by two 3-vectors (see Appendix A):  

  

€ 

F ik = (−
 
E ,
 
B );Fik = (

 
E ,
 
B );  

€ 

F ik =

0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.         (L1.42) 

  

€ 

 
E  is the so-called vector of the electric field and   

€ 

 
B  is the vector of the magnetic field. Note the 

occurrence of the Lorentz group generator (see Appendix B) in (L1.42). The 3D expressions of 
the field vectors can be obtained readily:  
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Eα = Fα 0 =

∂A0

∂xα
−
∂Aα

∂x0
− = −

∂ϕ
∂rα

−
1
c
∂Aα

∂ t
; α = 1, 2,3;

 
E = − 1

c
∂
 
A 
∂ t

− gradϕ;    (43) 

  

€ 

Bα = −
1
2

eακλF κλ = eακλ ∂Aλ

∂xκ
−
∂Aκ

∂xλ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;
 
B = curl

 
A ; F κλ = eλκαHα .    (L1.44) 

 A 3D asymmetric tensor 

€ 

eακλ  and the 

€ 

curl  definition are used to derive last equation and use 
Greek symbols for the spatial 3D components. The electric and magnetic fields are also Gauge 
invariant being components of Gauge invariant tensor. 
(We have the first pair of Maxwell's equations without further calculation using the fact that 
differentiation is symmetric operator (∂ i∂ k ≡ ∂ k∂ i ): 

€ 

eiklm∂
kF lm = eiklm∂

k ∂ l Am −∂mAl( ) = 2eiklm (∂
k∂ l )Am = 0;   (L1.45) 

or explicitly: 

€ 

∂ kF lm +∂ lF mk +∂mF kl = 0 .     (L1.46) 
A simple exercise gives the 3D form of the first pair of Maxwell equations. They also can be 
attained using (L1.43) and (L1.44) and known 3D equivalencies:  div(curl

 
A ) ≡ 0 ;curl(gradϕ) ≡ 0 : 

  

€ 

 
E = −gradϕ − 1

c
∂
 
A 
∂t
;

 
B = curl

 
A ;

  
  

€ 

curl
 
E = −curl(gradϕ) − 1

c
curl∂

 
A 
∂t

= −
1
c
∂
 
B 
∂t
;

div
 
B = div(curl

 
A ) ≡ 0;

   (L1.47) 

I note that (L1.47) is the exact 3D equivalent of invariant 4D Maxwell equations (L1.45) that you 
may wish to verify yourself. There are 4 equations in (L1.45): i=0,1,2,3. The div is one equation 
and curl gives three (vector components) equations. Even the 3D form looks very familiar; the 
beauty and relativistic invariance of the 4D form makes it easy to remember and to use. 
EM Fields transformation, Invariants of the EM field. The 4-potential was defined as 4-
vector and it transforms as 4-vector. The electric and magnetic fields, as components of the 
asymmetric tensor, follow its transformation rules (See Appendix A). 

€ 

ϕ = γ( ʹ′ ϕ + β ʹ′ A x );Ax = γ( ʹ′ A x + β ʹ′ ϕ );
Ey = γ( ʹ′ E y + β ʹ′ B z );Ez = γ( ʹ′ E z −β ʹ′ B y );
By = γ( ʹ′ B y −β ʹ′ E z );Bz = γ( ʹ′ B z + β ʹ′ E y ).

     (L1.48) 

and the rest is unchanged. An important repercussion from these transformations is that the 
separation of the electromagnetic field in two components is an artificial one. They translate into 
each other when the system of observation changes and MUST be measured in the same units 
(Gaussian). The rationalized international system of units (SI) system measures them in V/m, Oe, 
A/m and T. Why not use also a horse power per square mile an hour, the old British thermal 
units as well? This makes about the same sense as using Tesla or A/m. 
While the values and directions of 3D field components are frame-dependent, two 4-scalars can 
be build from the EM 4-tensor   

€ 

F ik = (−
 
E ,
 
B )    

   

€ 

F ikFik = inv;    eiklmFikFlm = inv;      
(L1.49) 

which in the 3D-form appear as  
    

€ 

 
B 2 −

 
E 2 = inv; (

 
E ⋅
 
B ) = inv.      (L1.50) 



 15 

This conveys a good sense what can and cannot be done with the 3D components of 
electromagnetic fields. Any reference frame can be chosen and both fields transferred in a 
minimal number of components limited by (L1.50). For example; 1) if   

€ 

 
E >

 
B  in one system it 

is true in all systems and vice versa; and (L1.2) if fields are perpendicular in one frame, 
  

€ 

(
 
E ⋅
 
B ) = 0 , this is true in all frames. When   

€ 

(
 
E ⋅
 
B ) = 0  a frame can always be found where 

€ 

E  or 

€ 

B are equal to zero (locally!). 
Lorentz form of equation of a charged particle’s motion. 
The equations of motion (L1.40) can rewritten in the form: 

  

€ 

dE
dt

= c dp0

dt
= eF 0kvk = e

 
E ⋅  v ; vk =

dxk

dt
= (c,− v )

d p 
dt

= e ˆ e αFαk vk

c
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

e
c

ˆ e α ⋅ cFα 0 − ˆ e α ⋅ Fακvk( ) = e
 
E + ˆ e αeακλBλ

vk

c
= e
 
E + e

c
 v ×
 
B [ ].

   (L1.51) 

So, we have expressions for the generalized momentum and energy of the particle in an 
electromagnetic field. Generalized momentum is equal to the particle’s mechanical momentum 
plus the vector potential scaled by e/c. The total energy of the charged particle is its mechanical 
energy, 

€ 

γmc 2 , plus its potential energy, 

€ 

eϕ  , in an electromagnetic field. The Standard Lorentz 
(not Hamiltonian!) equations of motion for   

€ 

 p = γm v  are 

  

€ 

d p 
dt

= e
 
E + e

c
 v ×
 
B [ ].      (L1.52) 

with the force caused by the electromagnetic field (Lorentz force) comprised of two terms: the 
electric force, which does not depend on particle’s motion, and, the magnetic force that is 
proportional to the vector product of particle velocity and the magnetic field, i.e., it is 
perpendicular to the velocity. Accordingly, the magnetic field does not change the particle’s 
energy. We derived it in Eq. (L1.51):  

  

€ 

mc 2 dγ
dt

= e
 
E ⋅  v ;      (L1.53) 

Eqs. (L1.52) and (L1.53) are generalized equations. Using directly standard Lorentz equations of 
motion in a 3D form is a poor option. The 4D form is much better (see below) and, from all 
points of view, the Hamiltonian method is much more powerful! 
It is worth noting that the 4D form of the charge motion (L1.40) and its matrix form is the most 
compact one,  

€ 

ui =
dx i

ds
; mc du

i

ds
=
e
c
F i

kuk;⇒ d
ds

x[ ]= I[ ]⋅ u[ ]; d
ds

u[ ]=
e
mc 2

F[ ]⋅ u[ ]
  

(L1.54) 

and, in many cases, it is very useful. We treat the x, u as a vectors, and [F] as the 4x4 matrix. [I] 
is just the unit 4x4 matrix It has interesting formal solution in the matrix form: 

u[ ]= e
e

mc 2
F[ ]ds∫ u0[ ]; x[ ]= xo[ ]+ ds∫ e

e
mc 2

F[ ]ds∫⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
u0[ ]

    
(L1.55) 

Its resolution is well defined when applied to the motion of a charged particle in uniform, 
constant EM field: 



 16 

€ 

u[ ]= e
e

mc 2
F[ ](s−s0 )

u0[ ]; x[ ]= xo[ ]+ e
e

mc 2
F[ ](s−s0 )

ds∫ e
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ u0[ ]    (L1.56) 

THE LORENTZ GROUP OF THEORETICAL PHYSICS (SEE APPENDIX B) IS FASCINATING, AND THE FACT 
THAT EM FIELD TENSOR HAS THE SAME STRUCTURE AS THE GENERATOR OF LORENTZ GROUP IS NO 
COINCIDENCE – RATHER, IT IS INDICATION THAT PHYSICISTS HAVE PROBABLY COME VERY CLOSE TO 
THE ROOTS OF NATURE IN THIS SPECIFIC DIRECTION. THIS STATEMENT IS FAR FROM TRUTH FOR 
OTHER FUNDAMENTAL FORCES AND INTERACTIONS. 
To conclude this subsection, we will take one step further from (L1.54) and write a totally linear 
evolution equation for a combination of 4D vectors 

€ 

d
ds

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = Λ[ ]⋅

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ; Λ[ ]=

0 I
0 e

mc 2
F

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥      (L1.57)

 

where [Λ] is an 8x8 degenerated matrix. Similarly to (L1.55) and (L1.56)  

€ 

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = e

Λ[ ]ds∫ ⋅
x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 
o

;
x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = e Λ[ ](s−soI ⋅

x
u
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 
o

for Λ[ ]= const ;
   (L1.58) 

 
Power of Hamiltonian method: Phase space and invariants 
As discussed, when the Hamiltonian of the system does not depend on either the coordinates or 
momenta, we automatically gain “for-free” an integral of motion of the invariant. There are more 
general invariants of motion that exist for all Hamiltonian systems – the Poincaré invariants. Let’ 
us consider a Hamiltonian system that is described by the set of coordinates, Canonical 
momenta, and the independent variable s. In matrix form, the Hamiltonian equations are written 
as  

€ 

H = H(Q,P,s);X =

Q1
P1
...
Qn

Pn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;dX
ds

= S ∂H
∂X
;S =

0 1 ... 0 0
−1 0 ... 0 0
... ... ... ... ...
0 0 ... 0 1
0 0 ... −1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;   (L1.93)

 

where S is a generator (norm) of a symplectic group of matrixes (two different but closely related 
types of mathematical groups). The space of coordinates and momenta is called phase space of 
the system with dimension 2n. Here, consider an ensemble of particles in this phase space whose 
motions satisfy the Hamiltonian equations; then, their motion is completely determined by their 
initial position in the phase space. This means that in the Hamiltonian system the phase-space 
trajectories of particles, which initially were separated, will never cross! Consider one trajectory 
in the phase space Xo(s), which satisfies the Hamiltonian equation (L1.93) and another trajectory 
with an infinitesimally small deviation from Xo  
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€ 

X1 = Xo(s) + δX;

dXo

dz
= S

∂H X( )
∂X X =Xo

;  H X + ΔX( )= H X( )+
∂H X( )
∂X

ΔX +
1
2
∂ 2H X( )
∂X 2 ΔX 2 +O(ΔX 3);

d Xo(s) + δX( )
ds

= S
∂H X( )
∂X X =Xo (s)+δX

≅ S
∂H X( )
∂X X =Xo

+ SH(s)δX +O(δX 2);

H(s) = 1
2
∂ 2H X( )
∂X 2

X =Xo (s)

;

H(s)[ ]ij =
∂ 2H
∂xi∂x j

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
X =Xo (s)

⇒ H(s)[ ]ij ≡ H(s)[ ] ji ⇒ HT (s) = H(s)

 (L1.94)

 

with a symmetric 2n x 2n matrix H(s). Thus, the equation of motion for a small deviations about 
the known trajectory are linear but s-dependent, and can be expressed via the linear transform 
matrix M(s): 

€ 

dδX
dz

= S ⋅H(s) ⋅ δX

δX(s) = M(s) ⋅ δX(0);
dM
ds

= S ⋅H(s) ⋅ M ⇒
dδX
ds

=
dM(s)
ds

⋅ δX(0) = S ⋅H(s) ⋅ M ⋅ δX(0) = S ⋅H(s) ⋅ δX#

(95)

 
The matrix M(s) is symplectic, which is proven as follows: 

€ 

MT (z) ⋅ S ⋅ M(z) = S − symplecticcondition; M(0) = ˆ 1 ⇒ MT (0) ⋅ S ⋅ M(0) = S;

d MTSM( )
ds

=
dMT

ds
SM + MTS dM

ds
dMT

ds
= S ⋅H ⋅ M( )T = MTHTST = −MTHS

 

€ 

because HT =H;  ST = −S; S2 = − ˆ 1 

d MTSM( )
ds

= −MTHSSM + MTSSHM = MTHM −MTHM ≡ 0

⇒ MT (s)⋅ S⋅ M(s) = conts = MT (0)⋅ S⋅ M(0) = S #

    

The symplectic condition has two asymmetric 2n x 2n matrixes on both sides 

€ 

MT (s) ⋅ S ⋅ M(s) = S        (L1.96)

 
and imposes n(2n-1) conditions on the matrix M. These conditions result in invariants of motion 
for the ensembles of particles, called Poincaré invariants. Accordingly, for 3-D motion, there are 
15 Poincaré invariants! The most well-known one, the conservation of the phase space volume 
(Liouville’s theorem), is a consequence of the unit determinant of the matrix M: 
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€ 

det MT (s) ⋅ S ⋅ M(s)[ ]= det S →

detM(s)( )2 =1→ detM = ±1;
butdetM(0) =1→ detM =1 #

       (L1.97)

 Next, we consider an infinitesimally small phase-space volume ΔV2n around a known trajectory 
and its transformation: 

€ 

ΔV2n (s) = det ∂ΔX(s)
∂ΔX(0)

ΔV2n (0) = detM(s) ⋅ ΔV2n (0)→

ΔV2n (s) = ΔV2n (0) = const
.    (L1.98)

 This is the core for the so-called Vlasov equations describing collective effects in accelerators 
(see Appendix 3).  
The 3-dimensional volume occupied by the particles often is termed 3-D beam emittance. The 
rest of the Poincaré invariants represent similar conservation laws for the sum of projections on 
hyper-surfaces in 2n-phase space. In the general case, interpreting coupled motion invariant is 
too involved for this introductory lecture.  
But there is one nice instance wherein the Hamiltonian is decoupled, i.e., it is the direct sum of 
individual Hamiltonians for each canonical pair.  

€ 

H = H(Q,P,s) = Hk (Qk,Pk,s)
k=1

3

∑

    (L1.99)

 

Then, the phase space is two-dimensional and the area of the space phase occupied by the beam 
is called beam emittance for a specific dimension – horizontal (x, Px), vertical (y, Py) or 
longitudinal (-t,E). All three emittances are constants (integrals) of motion.  
 



 19 

Lecture 2. Accelerator Hamiltonian 
 

2.1 Accelerator coordinate system.  
In accelerator physics we usually study beams of particles, i.e. particles moving in 

approximately the same direction (a huge difference from detectors) with approximately the 
same momenta. It is traditional, and very useful to choose one particle in the beam as the 
reference particle and study its trajectory   

€ 

 r o t( )

 

as natural reference. Furthermore, most 
accelerator equipment is bolted to the floor and, hence, can be better described by its position in 
space that its existence in time. This is the reason why accelerator physicists decided to use 
length along the reference trajectory, s, as independent coordinate instead of time: 

  

€ 

s(t) = d r o(t)
ti

t

∫ =
 v o(t)

ti

t

∫ dt;

 v o(t) =
d r o(t)

dt
; γ t( ) =1/ 1-  v o

2(t) /c 2 ;   p o(t) = γ t( )m v o(t);  Eo(t) = γ t( )mc 2  
 (L2.1)

 
It is important for independent variable to be a monotonous function (as is time), which requires 
that the reference particle never stops moving (except possibly at the beginning and the end of 
the reference trajectory).  

 
Fig. 1. Various possible reference trajectories, from a simple straight pass to a circular one, 

though all other possibilities. 
The reference trajectory is determined by initial 4-momentum of the reference particle and 

the EM field along its trajectory. We should consider that trajectory is given (and from   

€ 

 r o t( ) we 
also know the particle’s 4-momentum in each point of trajectory) and so satisfy the equation of 
motion (for example eqs. (L1.52) and (L1.53)).  

Usually EM fields are designed for the existence of such a trajectory (within constrains of 
Maxwell equation). Herein, the words reference trajectory and orbit are used interchangeably.  

Inverting (L2.1) we can write the 4D trajectory at the function of s: 

Reference trajectories 
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€ 

 r =  r o(s); t = to(s);  p =  p o(s), E = Eo(s).   (L2.2) 
with the charge to the designer of accelerator to make it real trajectory: 

  

€ 

d p o(s)
ds

=
dto(s)

ds
e
 
E  r o(s), to(s)( ) +

e
c
 v o(s) ×

 
B  r o(s), to(s)( )[ ]⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   (L2.3) 

Starting from this point, we use following conventions: Derivatives of any function with respect 
to the time will be shown by appropriate number of dots, while appropriate number of symbol ʹ′ 
will be used to indicate derivatives with respect to s: 

€ 

ʹ′ f =
df
ds

; ʹ′ ʹ′ f =
d2 f
ds2 ...... ˙ f =

df
dt

; ˙ ̇ f =
d2 f
dt 2 .   (L2.4) 

There is infinite variety of possible reference trajectories. The most popular ones are flat, i.e. 
they lie in a plane. A typical example is the circular orbit of a storage ring with a horizontal 
trajectory. Many of reference orbits are piece-wise combinations of trajectories lying in various 
planes. Still, there are 3D reference orbits by design. As the matter of fact, all real reference 
orbits are 3D because of the field errors in magnets, and errors in aligning these magnets.  

            
Fig. 2. Illustration of Frenet-Serret formulas and system from 

http://en.wikipedia.org/wiki/Frenet-Serret 
Hence, there is no good reason not to start this discussion from general 3D reference 

trajectory. Fortunately two French mathematicians, Jean Frédéric Frenet and Joseph Alfred 
Serret, in the mid-nineteenth century developed such a coordinate system, which is described by 
the Frenet-Serret formulas in classical differential geometry (O.Struik, Dirk J., Lectures on 
Classical Differential Geometry, Addison-Wesley, Reading, Mass, 1961). The Frenet-Serret 
coordinate system often is called the natural coordinate system. One important feature is that it 
has non-diagonal metrics. Hence, we have a bit of differential geometry to spice the mix.  

Figures 2 and 3 illustrate the Frenet-Serret coordinate system and define 3 orthogonal unit 
vectors: Normal   

€ 

ˆ e 1 =
 n (s) , tangent   

€ 

ˆ e 2 =
 
τ (s), and normal and bi-normal  

€ 

ˆ e 3 =
 
b (s) =

 n ×  τ [ ] :  

  

€ 

 n ⋅  τ ( ) =
 
b ⋅  n ( ) =

 
b ⋅  τ ( ) = 0. 
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Fig. 3. Unit vectors in the Frenet-Serret coordinate system and their definitions 

 
 
 
 
 
 
 
 
 

Fig. 4. Expansion of particle’s position in Frenet-Serret frame.  
The reference trajectory must be smooth, with finite second derivatives, etc….etc… The 

position of any particle located in close proximity3 to the reference trajectory can uniquely 
expressed as 

  

€ 

 r =  r o(s) + x ⋅  n (s) + y ⋅
 
b (s) .    (L2.5) 

i.e., it is fully described by 3 contra-variant coordinates: 

€ 

q1 = x; q2 = s,  q3 = y .     (L2.5-1) 

The vectors 
  

€ 

 n ,  τ ,
 
b { }  satisfy Frenet-Serret formulae: 

  

€ 

d τ 
ds

−K(s) ⋅  n ; d n 
ds

= K(s) ⋅  τ −κ s( ) ⋅
 
b ; d
 
b 

ds
=κ s( ) ⋅

 n ;.   (L2.6) 

where  

€ 

K(s) =1/ρ s( )      (L2.6-1) 
is the curvature of the trajectory, and 

€ 

κ s( ) is its torsion. If the torsion is equal to zero, the 
trajectory remains in one plane, as designed for majority of accelerators. Curvature of trajectory 
                                                
3 Proximity to the reference orbit is important for the uniqueness of the extension (L2.5): As shown on the figure above, equation 
(L2.6-2) may have multiple solutions if the requirement of proximity is not applied, i.e, the expansion (L2.5) may have multiple 
branches and mathematically become too involved.  

  

! 

ˆ e 3 =
! 
b 

  

! 

ˆ e 2 =
! 
" 

  

! 

ˆ e 1 =
! 
n   

! 

! 
" =

d
! 
r o(s)
ds

=
! 
r o#

! 
n = $

! 
r o##
! 
r o##

! 
b =
! 
n %
! 
" [ ]! 

e123 =1
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is more common – each dipole magnet makes trajectory to curve. 
As shown in Fig.4, the transverse part of the position vector   

€ 

 r ⊥ = x ⋅  n (s) + y ⋅
 
b (s) lies in the 

plane defined by the normal and by-normal unit vectors  

€ 

( n (s), 
 
b (s)), while s is defined from 

equation: 

  

€ 

 r −  r o(s)( ) ⋅
 
τ (s) = 0 .    (L2.6-2) 

Now we expand the differential geometry: 

  

€ 

d r =  a i
i=1

3

∑ dqi =
 n dx +

 
b dy + 1+ Kx( )

 
τ +κ

 n y −
 
b x( ){ }ds  (L2.7) 

with the co-variant basis of 

  

€ 

 a i =
∂
 r 

∂qi ;   a 1 =
 n ;  a 2 = 1+ Kx( )

 
τ +κ

 n y −
 
b x( );   a 3 =

 
b ;   (L2.8) 

A co-variant basis vector is readily derived from the orthogonal conditions: 

  

€ 

 a i
 a j = δi

j;   a 1 =
 n − κy

1+ Kx
 
τ ;  a 2 =

 
τ 

1+ Kx
+κ
 n y −
 
b x( );   a 3 =

 
b + κx

1+ Kx
 
τ ;   (L2.9) 

The components of the co- and contra-variant metric tensors are defined as follows: 

  

€ 

gik =
 a i ⋅
 a k =                   

1 κy 0
κy 1+ Kx( )2

+κ 2 x 2 + y 2( ) −κx
0 −κx 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

gik =
 a i ⋅  a k =

1
1+ Kx( )2 ⋅

1+ Kx( )2
+κ 2y 2 −κy −κ 2xy

−κy 1 κx
−κ 2xy κx 1+ Kx( )2

+κ 2x 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

go = det gik[ ] = 1+ Kx( )2

  (L2.10) 

Any vector can be expanded about both co- and contra-variant bases, as well can 
  

€ 

 n ,  τ ,
 
b { }: 

  

€ 

 
R ≡ Rx

 n + Rs
 
τ + Ry

 
b ≡ Rk  a k

k
∑ ≡ Rk

 a 
k
∑

k

Rk =
 
R ⋅  a k; R1 = Rx;R2 = 1+ Kx( )Rs +κ Rx y − Ry x( ); R3 = Ry;

Rk =
 
R ⋅  a k; R1 = Rx −

κy
1+ Kx

Rs; R2 =
Rs

1+ Kx
+κ Rx y − Ry x( );  R3 = Ry +

κx
1+ Kx

Rs;

 (L2.11) 

All this is trivial, and finally differential operators will look like: 

  

€ 

 
∇ ϕ =

 a k ∂ϕ
∂qk ;   div

 
A =

 
∇ ⋅
 
A ( ) =

1
go

∂
∂qk go Ak( );

curl
 
A =

 
∇ ×
 
A [ ] =

eikl

go

∂Al

∂qk

 a i;  Δϕ =
 
∇ 2ϕ =

1
go

∂
∂qi go gik ∂ϕ

∂qk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

.  (L2.12) 
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As discussed before, the Hamiltonian of a charged particle in EM field in Cartesian coordinate 
system is 

  

€ 

H( r ,
 
P ,t) = c m2c 2 +

 
P − e

c
 
A 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+ eϕ , (L1.38, Lecture 1) 

where the canonical momentum is 
  

 
P =
 
p +

e
c
 
A . Let us explore how we can make the 

transformation to our “curved and twisted” coordinate system. The easiest way is to apply 
canonical transformation with generation function 

  

€ 

F(
 
P ,qi) = −

 
P ⋅  r o(s) + x ⋅  n (s) + y ⋅

 
b (s)( ) .   (L2.13) 

to our new coordinates (L2.6):  

€ 

q1 = x; q2 = s,  q3 = y .     (L2.14-1) 
with new momenta obtained by simple differentiation 

€ 

P1 = Px;P2 = 1+ Kx( )Ps +κ Pxy − Pyx( ); P3 = Py;  (L2.14-2) 

 that alter the appearance of the Hamiltonian (L1.38)
 

€ 

H = c
1+ Kx( )−2 P2 −

e
c
A2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +κx P3 −

e
c
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy P1 −

e
c
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ P1 −
e
c
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+ P3 −
e
c
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+ m2c 2
+ eϕ

 (L2.15) 
This is still the Hamiltonian with t as independent variable and three sets of canonical pairs 

€ 

q1,P1{ }, q2,P2{ }, q3,P3{ } . Now, we change the independent variable to s by the easiest method, 
that, as always, is using the least-action principle: we consider the conjugate momentum to s, P2, 
as a function of the remaining canonical variables: 

€ 

 q1,P1{ },  q3,P3{ },  −t,H{ }   

€ 

S = P1dq
1 + P2(....)ds+ P3dq

3 −Hdt
A

B

∫ ;   δS = 0;  (L2.16)

 Notably, the coordinates and time, the canonical momenta and the Hamiltonian appear in the 4-D 
scalar product form in the action integral.  

€ 

Pidx
i; x i = ct,x,s,y{ };Pi = H /c,−P1,−P2,−P3{ },i = 0,1,2,3. 

This equivalency of the time and space is fundamental to the relativistic theory. Next is the 
following 

  

€ 

H = H(x i,P1,P2,P3)→
solve

P2 = P2(x i,P1,P2,H)   rename    Pt = −H;h* = −P2(x i,P1,P2,H)

S = P1dx + P3dy + Pzdz −Hdt ≡∫ P1dx − P3dy − h
*dz + Ptdt∫

 (L2.17) 
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These two forms are identical, so the immediate conclusion (we did explicitly in our class)4 is 
that 

€ 

ʹ′ x =
dx
ds

=
∂h*

∂P1

; dP1

ds
= −

∂h*

∂x
;                ʹ′ y =

dy
ds

=
∂h*

∂P3

; dP3

ds
= −

∂h*

∂y

ʹ′ t =
dt
ds

=
∂h*

∂Pt

≡ −
∂h*

∂H
;  dPt

ds
= −

∂h*

∂t
→

dH
ds

=
∂h*

∂t

 (L2.18) 

€ 

h* = − 1+ Kx( )
H − eϕ( )2

c 2
−m2c 2 − P1 −

e
c
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− P3 −
e
c
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
e
c
A2 +κx P3 −

e
c
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy P1 −

e
c
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

   (L2.19) 

Thus, by choosing one of coordinates as independent variable, the new Hamiltonian is nothing 
but its conjugate canonical momentum with a minus sign. Applying a canonical transformation 
that exchanges the coordinate with momentum and then employs a new coordinate (old 
momentum) as the independent variable it would turn the old coordinate into the new 
Hamiltonian. In all cases, the Hamiltonian is the function of the remaining canonical variables. 
This capability of the Hamiltonian systems is unique and one we can take advantage of. An 
important restriction is the monotonous behavior of independent variable. Otherwise, some or all 
of the derivatives can be infinite in the point where the independent variable stumbles (i.e., 
where the new time stops).  

The equations (L2.18) and (L2.19) are the general form of the single-particle Hamiltonian 
equation in an accelerator. It undoubtedly is nonlinear (the square root signifies relativistic 
mechanics), and cannot be solved analytically in general. Only few specific cases allow such 
solutions.  

The only additional option we have is to choose a gauge for the 4-potential. One good choice 
(my preference) is to make the vector potential equal to zero at the reference trajectory. Two 
other auxiliary conditions will allow us to express the components of the 4-vector potential in a 
                                                
4 As always,  

€ 

δSAB = δ Pidq
i −Hdt

A

B

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

δPidq
i + Pidδq

i +
∂P2
∂qi

δqids+
∂P2
∂Pi

δPids
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1,3
∑ +

−δHdt −Hdδt +
∂P2
∂t

δtds+
∂P2
∂H

δHds
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

A

B

∫ = 0  

and integrating by parts 

€ 

Piδq
i −Hδt

i=1,3
∑

A

B

≡ 0 , we obtain the direct equivalent of eqs. (L2.18,19): 

€ 

δSAB = δPi
∂P2

∂Pi
ds+ dqi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + δqi

∂P2

∂qi
ds− dPi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1,3
∑ + δt dH +

∂P2

∂t
ds

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + δH

∂P2

∂H
ds− dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

A

B

∫ = 0

dqi

ds
= −

∂P2

∂Pi
; dt
ds

=
∂P2

∂H
ds;     dPi

ds
= +

∂P2

∂qii
;dH
ds

= −
∂P2

∂t
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form of the Taylor series: 

  

€ 

a)  
 
A s,0,0,t( ) = 0; b)  ∂x

n A1 s,0,0,t
= ∂y

n A3 s,0,0,t
= 0; c)  ∂A1

∂x s,0,0,t

+
∂A3

∂y s,0,0,t

= 0    (L2.20) 

that can be achieved by gauge transformation  

  

€ 

 
A =
 ˜ A −
 
∇ f ;ϕ =ϕ +

1
c
∂f
∂t

; f = fa = fb + fc

fa = ˜ A 2 s1,0,0,t( )ds1
0

s

∫ + ˜ A 1 s1,0,0,t( ) ⋅ x+ ˜ A 3 s1,0,0,t( ) ⋅ y

fb = ∂x
n ˜ A 1 s,0,0,t

x n +1

n +1( )!
+ ∂y

n ˜ A 3 s,0,0,t

y n +1

n +1( )!
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n=1
∑

fc =
1
2

∂x
n∂y

k ∂y
˜ A 1 + ∂x

˜ A 3( ) xn +1

n +1( )!
yk +1

n +1( )!n,k= 0
∑

  (L2.21) 

Conditions (L2.20) have following important consequences: 

  

€ 

a)  ∂s
k∂t

l
 
A s,0,0,t( ) ≡ 0; b)A1 s,x,0,t( )  ≡ 0;A3 s,0,y,t( )  ≡ 0; c)∂s

k∂t
l∂x

m∂y
n ∂A1

∂x
+
∂A3

∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ≡ 0 

 (L2.20+) 
After a one-page-long exercise, using the first pair of Maxwell equations (eqs. (L1.47), Lect. 1) 
and conditions (L2.20), one can express the 4-potential in this gauge though the components of 
the magnetic- and electric- fields, in other words, make an unique vector potential: 

€ 

A1 =
1
2

∂x
k

n.k= 0

∞

∑ ∂y
n Bs ro

x k

k!
yn+1

(n +1)!
; A3 = −

1
2

∂x
k

n.k= 0

∞

∑ ∂y
n Bs ro

x k+1

(k +1)!
yn

n!

A2 = ∂x
n−1 1+ Kx( )By +κxBs( )ro

x n

n!
−∂y

n−1 1+ Kx( )Bx −κyBs( )ro
y n

n!
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ n=1

∞

∑ +

    + 1
2

∂x
n−1∂y

k 1+ Kx( )By +κxBs( )ro
x n

n!
yk

k!
−∂x

n∂y
k−1 1+ Kx( )Bx −κyBs( )ro

x n

n!
yk

k!
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ n.k=1

∞

∑ ;

ϕ =ϕo s,t( ) − ∂x
n−1

n=1

∞

∑ Ex ro

xn

n!
− ∂y

n−1

n=1

∞

∑ Ey ro

yn

n!
−

1
2

∂x
n−1∂y

k Ex ro + ∂x
n∂y

k−1Ey ro( )
n.k=1

∞

∑ xn

n!
yk

k!
;

         

 (L2.22) 

where 

€ 

f ro; f( )rodenotes that the value of the function f is taken at the reference orbit 

€ 

ro(s) : i.e., 
at 

€ 

x = 0;  y = 0, but in an arbitrary moment of time t. We reserve the notions 

€ 

f ref ; f( )ref  for 
values taken at the reference trajectory  

€ 

 r =  r o(s)  at the reference time 

€ 

t = to(s). It is noteworthy 
that the value of our new Hamiltonian for the reference particle is the full particle’s momentum 
with the minus sign: 

€ 

h*
ref

= −po(s)      (L2.23) 

We should note that 

€ 

ϕo(s,t)  is determined with the accuracy of an arbitrary constant, which 
can be eliminated by requesting 

€ 

ϕo so,to so( )( ) = 0 at some point along the reference trajectory. 
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The coefficients in (L2.22) can be expanded further using a trivial time series  

€ 

f (t) = f (to(s)) +
dn f
dt n t= to (s)

(t − to(s))
n

n!n=1

∞

∑ .     

One important feature of this expansion that no conditions in the EM field are assumed; thus, it 
can be in free-space field (typical for single-particle dynamics) or a field with sources (for 
example, charges and currents of beam are examples). Hence, the expansion is applicable to any 
arbitrary accelerator problem. 
 

2.2 An equilibrium particle and a reference trajectory.  
 

A particle that follows the reference trajectory is called an equilibrium (or reference) one: 

  

€ 

 r =  r o(s);  t = to(s); H = Ho(s) = Eo(s) +ϕo(s,to(s)),   (L2.23) 

with 

€ 

x ≡ 0;  y ≡ 0; px ≡ 0;py ≡ 0. This is where condition (L2.20a) 
  

€ 

 
A 

ref
= 0  is useful, i.e., for  

€ 

x ref = 0; y ref = 0; P1 ref
= px ref +

e
c
A1 ref ≡ 0;  P3 ref = py ref

+
e
c
A3 ref ≡ 0. (L2.24) 

The differential form of (L2.24)  

€ 

dx
ds ref

=
∂h*

d P1 ref

= 0; dy
ds ref

=
∂h*

dP3 ref

= 0; dP1

ds ref

= −
∂h*

dx ref

= 0; dP3

ds ref

= −
∂h*

dy ref

= 0; (L2.25) 

should be combined with the expression for the Hamiltonian (L2.19). The two first equations in 
(L2.25) give us the already known conditions, viz., that of the zero transverse component of 
momentum. The following two equations are not as trivial; they set the two conditions at the 
reference orbit. Completing a trivial differentiation on x (where most of the terms are turned into 
zero at the reference orbit, except 

€ 

∂xϕ  and 

€ 

∂xA2 ) we have 

€ 

−
∂h*

∂x ref

= K G
ref
− 1+ Kx( )ref

eE
c 2

∂ϕ
∂x

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+ px

e
c
∂A1
∂x

+ py
e
c
∂A3
∂x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ref

G
ref

+
e
c
∂A2
∂x

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ ref
+κ py( )ref +κ

e
c
∂A1
∂x

y − e
c
∂A3
∂x

x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ref

= 0

E ≡ H − eϕ( ); G =
E 2

c 2
−m2c 2 − px

2 − py
2; G

ref
= po ...

 

Note: The term(s) that do not vanish at the limit are identified by the square brackets […]  
and using the above expansions, we derive the well-know equation for the curvature of the 
trajectory: 

€ 

K s( ) ≡ 1
ρ s( )

= −
e
poc

By ref
+
Eo

poc
Ex ref

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .   (L2.26)  

Differentiation on y is similar  

€ 

−
∂h*

∂y ref

= − 1+ Kx( )ref

eE
c 2

∂ϕ
∂y

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + px

e
c
∂A1
∂y

+ py
e
c
∂A3
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ref

G
ref

+
e
c
∂A2
∂y

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
ref

− px( )ref +κ
e
c
∂A1
∂y

y − e
c
∂A3
∂y

x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ref

= 0 

and yields  
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€ 

Bx ref =
Eo

poc
Ey ref

,    (L2.27)  

That represents only the absence of “vertical curvature”. The difference between (L2.26) and 
(L2.27) arises from the choice of coordinates in Frenet-Serret system: x (i.e., q1) corresponds to 
the plane where trajectory bends. 

The conditions in (L2.23) for the arrival time of the reference particle and values of its 
Hamiltonian are also informative, but not surprising. First, the condition on the arrival time 

€ 

dto(s)
ds

= −
∂h*

dH ref

=
H − eϕ
c 2 G ref

=
Ho − eϕo

poc
2 ≡

Eo

poc
2 =

1
vo(s)

   (L2.28) 

gives an understandable definition of velocity along trajectory: v=ds/dt, and the velocity of the 
reference particle

€ 

vo = poc
2 /Eo .  

The condition on energy (3D Hamiltonian) gives  

€ 

∂h*

∂t ref

= 1+ Kx( )ref

eE
c 2

∂ϕ
∂t

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
+ px

e
c
∂A1

∂t
+ py

e
c
∂A3

∂t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ref

G
ref

+
e
c
∂A2

∂t
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ref

+κ
e
c
∂A1

∂x
y − e

c
∂A3

∂x
x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ref

=
eEo

poc
2
∂ϕ
∂t ref

dHo(s)
ds

=
∂h*

d t ref

=
eEo

poc
2
∂ϕ
∂t ref

;   

(L2.29)s 

which can be transferred using 

€ 

H = E + eϕ  and 

€ 

dϕo(s,to(s)) =
∂ϕo

∂s
ds+

∂ϕo

∂t
ds
vo(s)

 into the energy 

gain of the reference particle along is trajectory: 

€ 

dEo(s)
ds

=
d Ho(s) −ϕo(s,to(s)( )

ds
= −e∂ϕ

∂s ref

≡ eE2(s,to(s)) .  (L2.30) 

As discussed before, accelerator designers face the problem of ensuring that the reference 
particle faithfully follows the reference trajectory. Our goal is to use the above conditions to the 
maximum, and, as we see below, to eliminate zero- order terms from the equations of motion. By 
selecting the reference trajectory as basis for our coordinate system, we set the transverse 
coordinates and momenta at zero at the reference orbit. Hence, two canonical pairs have a good 
and solid origin.  

The third pair (-t,H) is odd; it is not zero for the reference particle. Furthermore, it has 
different units. Hence, we can move step forward with a more natural Canonical pair 

€ 

qτ = −ct, pτ = H /c{ }  - whose generating function is obvious: 

€ 

Φ q = −t, ˜ P = pτ( ) = −ct ⋅ pτ . In this 
case, the analogy is complete: 

€ 

qτ = −ct  has the dimension of distance and is just –xo in 4D space, 
while 

€ 

pτ = H /c  has the dimension of momentum and is just Po in 4D space.  
We also should select variables that are zero at the reference orbit. The following pair is one of 

better choices:  

€ 

τ = −c(t − to(s)), δ = H − Eo(s) − eϕo(s,t)( ) /c{ },   (L2.31) 

which are zero for the reference particle. Generation function is easily to come with: 
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€ 

Φ(q, ˜ P ,s) = ˜ P 1x  + ˜ P 3y − Eo(s) + cδ( ) t − to(s)( ) − e ϕo(s,t1)dt1
t

∫ ,  (L2.32) 

and it produces what is desired:  

€ 

P1 =
∂Φ
∂x

= ˜ P 1; P3 =
∂Φ
∂y

= ˜ P 3;H =
∂Φ
∂(−t)

= Eo + cδ + eϕo(s,t);

˜ q 1 =
∂Φ
∂ ˜ P 1

= x;  ˜ q 3 =
∂Φ
∂ ˜ P 3

= y; ˜ q δ =
∂Φ
∂δ

= −c t − to(s)( ) = τ

 ˜ h = h +
∂Φ
∂s

= h +
Eo(s) + cδ

vo(s)
+ ʹ′ E o(s)τ /c − e ʹ′ ϕ o(s,t1)dt1

t

∫

  (L2.33) 

The change to the Hamiltonian comprises meaningful terms as well as just a trivial function of 
s, g(s):  

€ 

∂Φ
∂s

=
c
vo(s)

δ − eϕ // (s,τ) + g(s); g(s) = Eo(s) /vo(s) − e ʹ′ ϕ o(s,t1)dt1
to (s)

∫

ϕ // (s,τ) =def
∂
∂s

ϕo(s,to(s) + ζ ) −ϕo(s,to(s))( )dζ
0

−τ / c

∫ ≡ − E2(s,to(s) + ζ ) − E2 ref( )dζ
0

−τ / c

∫
 (L2.34) 

where we used eq. (L2.30) as

€ 

ʹ′ E o(s) = −e∂ϕ
∂s ref

. Additive g(s) simply can be dropped from the 

Hamiltonian - it does not change equations of motion. Now the only remaining task is to express 
the new Hamiltonian function with an updated canonical pair (L2.33) and (L2.19): 

€ 

˜ h = − 1+ Kx( ) po
2 +

2Eo

c
δ −

e
c
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + δ −

e
c
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−  P1 −
e
c

A1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− P3 −
e
c

A3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+

       + e
c

A2 +κx P3 −
e
c

A3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy P1 −

e
c

A1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

c
vo

δ −
e
c
ϕ // (s,τ )

  (L2.35) 

where we used following trivial expansion and definition: 

€ 

Eo + cδ + eϕo(s,t) − eϕ( )2

c 2
−m2c 2 = po

2 +
2Eo

c
δ −

e
c
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + δ −

e
c
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

;

ϕ⊥def =ϕ s,x,y,t( ) −ϕo(s,t) ≡ϕ s,x,y,t( ) −ϕ(s,0,0,t)
 (L2.36) 

2.3 Scaling variables.  
 

Frequently, it is useful to scale one of canonical variables. Typical scaling in accelerator 
physics involves dividing the canonical momenta 

€ 

P1,P3,δ  by the momentum of the reference 
particle: 

€ 

π1 =
P1

po
; π 3 =

P3

po
;  π o =

δ
po

.    (L2.37) 

These variables are dimensionless and also are close to 

€ 

ʹ′ x , ʹ′ y ,  δE / poc  for small deviations. 
Such scaling only is allowed in Hamiltonian mechanics when the scaling parameter is constant, 
i.e., is not function of s. Thus, scaling by the particle’s momentum remains within the framework 
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of Hamiltonian mechanics only if the reference particle’s momentum is constant, that is, when 
the longitudinal electric field is zero along the reference particle’s trajectory (i.e. at moment 
t=to(s)). One similarly can scale the coordinates by a constant. 

€ 

ξ1 =
x
L

; ξ3 =
y
L

;  ξo =
τ
L

. 

Scaling by a constant is easy; divide the Hamiltonian by the constant and rename the variables. 
Hence, transforming (L2.37) with constant, called po, will make Hamiltonian (L2.35) into  

€ 

˜ h = − 1+ Kx( ) 1+
2Eo

poc
δ −

e
poc

ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + δ −

e
poc

ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−  π1 −
e

poc
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− π 3 −
e

poc
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+

       + e
poc

A2 +κx π 3 −
e

poc
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy π1 −

e
poc

A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

c
vo

δ −
e

poc
ϕ // (s,τ )

 (L2.35 @ 

constant energy) 
Usage of this Hamiltonian is very popular for storage rings or transport channels, wherein the 

energy of the particles remains constant in time. It should not be employed for particles 
undergoing an acceleration.  

 
2.4 Expanding the Hamiltonian.  

Expanding the Hamiltonian (L2.35) is a nominal tool in accelerator physics that allows the 
separation of the effects of various orders and sometimes the use of perturbation-theory 
approaches. Having completed the process of creating canonical variables, which are zero for the 
reference particle, the next step is to assume (which is true for operational accelerators) that the 
relative deviations of momenta are small  

€ 

P1

po
<<1; P3

po
<<1;  δ

po
<<1; 

and that the EM fields are sufficiently smooth around the reference trajectory to allow expansion 
in terms of 

€ 

x; y;  τ . We will consider5 all six variables to be of the same order (of 
infinitesimality, α). We call the order of expansion to be the maximum total power in a product 
that is any combination of 

€ 

x,y,τ,P1,P2,δ . Unless there is a good reason not to do so, we truncate 
the series using this rule. 

The general expansion of Hamiltonian (L2.35) can be accomplished via the already derived 
expansion for 4-potential and the well-known expansion of the square root: 

€ 

˜ h = − 1+ Kx( ) po 1+
2Eo

poc
δ
po

−
e

poc
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

δ
po

−
e

poc
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−  P1

po

−
e

poc
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−
P3

po

−
e

poc
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+

       + e
c

A2 +κx P3 −
e
c

A3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy P1 −

e
c

A1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

c
vo

δ −
e
c
ϕ // (s,τ )

;(L2.38)  

€ 

1+ g =1+ (−1)n−1 g
n

2nn=1

∞

∑ 2n − 3)!!( )
n!

=1+
y
2

+O y 2( ) . 

                                                
5 Sometimes, one can keep explicit the time dependence of fields and expand only the rest of the variables. One such case is an 
approximate, and useful, description of synchrotron oscillation.  
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Let us discuss a few general issues first. If we expand (L2.37) into an finite series 

€ 

˜ h = −po(s) + Cijklnm
i+ j +k +
l +m +n=ν

∑
ν =1

Ν

∑ x iy jτ kP1
lP3

mδ n + O(α N +1) = −po + Cν { pi }
pi

i=1,6
∑ =ν

∑
ν =1

Ν

∑ xi
pi

i=1

6

∏ + O(α N +1); (L2.39) 

where we introduce our phase-space vector  

€ 

X =

x1
x2
x3
x4
x5
x6

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

≡

x
P1
y
P2
τ

δ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;     (L2.40) 

which we will use in its 2n-dimensional phase-space appetence  

€ 

XT = q1 P1 ..... .... qn Pn[ ] = x1 x2 ..... .... x2n−1 x2n[ ],  (L2.41) 

where T stands for “transposed”. Using this notion, Hamiltonian equations can be written as one  

€ 

dX
ds

= S ⋅ ∂H
∂X

     ⇔ dxi
ds

= Sij ⋅
∂H
∂x j

≡ Sij ⋅
∂H
∂x jj=1

2n

∑    (L2.42) 

wherein we introduce matrix S – a generator of the symplectic group (see further). The matrix, S, 
is asymmetric, with 

€ 

S2m−1,2m =1= −S2m,2m−1, m =1,...,n  , and other elements are zero.  
In matrix form S has n diagonal blocks with a 2x2 matrix σ, and the rest is the field of zeros: 

€ 

S =

σ 0 .... 0
0 σ .... 0
.... .... .... ....
.... .... .... σ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
2nx2n

; σ =
0 1
−1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥     (L2.43) 

This is one of the very important objects in Hamiltonian mechanics. 
Using expansion (L2.39), we would dispose of po (s) as valueless, and look initially at the first-
order terms in the expansion: 

€ 

˜ h = C1i
i=1.6
∑ xi + O(α 2);     (L2.39-0) 

That should give us the zero- order terms in the equation of motion: 

€ 

dxk
ds

= Skj ⋅
j=1

2n

∑ C1 j +O(α) 

By design of our variables (section 2.2) 

€ 

dxk
ds ref

= 0, i.e. all zero order terms are equal to zero. 

Hence, the expansion of our Hamiltonian does not have first-order terms: 

€ 

h = Cν {pi }
pi

i=1,6
∑ =ν

∑
ν = 2

Ν

∑ xi
pi

i=1

6

∏ +O(α N +1);    (L2.44) 

Next, we look at the second-order term that is of foremost importance in accelerator physics. We 
can write it as a quadratic form in matrix notations: 
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€ 

h =
1
2

hij xi
i=1

6

∑
i=1

6

∑ x j +O(α 3) ≡ 1
2
XT ⋅H ⋅ X +O(α 3);    (L2.45) 

Matrix H can be chosen to be symmetric by a simple 

€ 

H = ( ˜ H T + H) /2 and noting the obvious 

€ 

ZT ( ˜ H T −H)Z ≡ 0,   ∀Z  equivalence of the asymmetric matrix. Applying (L2.42) with 

€ 

∂zi ( h jk∑ x j xk ) = h jk + hkj( )xi = 2h jk xi  the linear part of the equations of motion is obtained:  

€ 

dX
ds

= D ⋅ X +O(α 2); D = S ⋅H     (L2.45) 

We finish this section with the explicit form of the first non-trivial term in the expansion of 
(L2.38): 

€ 

˜ h = P1
2 + P3

2

2po

+ F x 2

2
+ Nxy + G y 2

2
+ L xP3 − yP1( ) +

        δ
2

2po

⋅
m2c 2

po
2 + U τ 2

2
+ gx xδ + gy yδ + Fx xτ + Fy yτ

;   (L2.46)  

with 

€ 

F
po

= −K ⋅ e
poc

By −
e
poc

∂By

∂x
+

eBs
2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
−

e
povo

∂Ex

∂x
− 2K eEx

povo
+

meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

;

G
po

=
e
poc

∂Bx

∂y
+

eBs

2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
−

e
povo

∂Ey

∂y
+

meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

;

2N
po

=
e
poc

∂Bx

∂x
−

e
poc

∂By

∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −K ⋅

e
poc

Bx −
e
povo

∂Ex

∂y
+
∂Ey

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2K

eEy

povo
+

meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

; (L2.47)  

€ 

L =κ +
e

2poc
Bs;         

U
po

=
e
pc 2

∂Es

∂t
;  gx =

mc( )2
⋅ eEx

po
3 −K c

vo

; gy =
mc( )2

⋅ eEy

po
3 ;

Fx =
e
c
∂By

∂ct
+
e
vo

∂Ex

∂ct
;Fy = −

e
c
∂Bx

∂ct
+
e
vo

∂Ey

∂ct
.

 

If momentum po is constant, we can use (L2.37) and rewrite Hamiltonian of the linearized 
motion (L2.46) as  
 

€ 

˜ h n =
π1

2 + π 3
2

2
+ f x 2

2
+ n ⋅ xy + g y 2

2
+ L xπ 3 − yπ1( ) +

        π o
2

2
⋅

m2c 2

po
2 + u τ

2

2
+ gx xπ o + gy yπ o + fx xτ + fy yτ

;   (L2.46-n)  

with 

€ 

f =
F
po

; n =
N
po

; g =
G
po

; u =
U
po

; fx =
Fx
po

; fy =
Fy
po

;   (L2.47-n)  

Note that  

€ 

ʹ′ x =
∂hn

∂π1

= π1 − Ly;   ʹ′ y =
∂hn

∂π 3

= π 3 + Lx;  ;   (L2.48)  
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i.e. as soon as L=0, we can use traditional x’ and y’ as reduced momenta. 
For flat reference orbit - 

€ 

κ = 0, in the absence of transverse coupling (L=0, N=0) and transverse 
electric fields, DC magnetic fields it becomes a much simpler and much more familiar form: 

€ 

˜ h = P1
2 + P3

2

2po

+ F x 2

2
+ G y 2

2
+
δ 2

2po

⋅
m2c 2

po
2 + U τ 2

2
+ gx xδ

or

˜ h n =
ʹ′ x 2 + ʹ′ y 2

2po

+ f x 2

2
+ g y 2

2
+
π o

2

2
⋅

m2c 2

po
2 + u τ

2

2
+ gx xδ

;   (L2.49)  

with 

€ 

f = −K ⋅ e
poc

By −
e
poc

∂By

∂x
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; g =

e
poc

∂Bx

∂y
;  u =

e
pc 2

∂Es

∂t
;  gx = −K c

vo

.  (L2.50)  

 
Finally, see an Appendix where Mathematica tool allowing expansion of the accelerator to an 

arbitrary order is presented. 
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Lecture 3. Equations of motion, matrix functions & transport matrices 
First, we review what we already discussed: Accelerator Hamiltonian (see Appendix D).  

Important (self-evident?) features are  
 

€ 

ST = −S;  S2 = −I;   STS = I;   S−1 = −S    (L3-0) 
 

3.1 Linear equations of motion 
Thus, we finished by concluding that the first not-trivial term in the accelerator Hamiltonian 

expansion is a quadratic term of canonical momenta and coordinates. This Hamiltonian can be 
written in the matrix form (letting n be a dimension of the Hamiltonian system with n canonical 
pairs{qi, Pi}) 

€ 

H =
1
2

hij (s)xi
i=1

2n

∑
i=1

2n

∑ x j ≡
1
2
XT ⋅H(s) ⋅ X ;       (L3-1) 

€ 

XT = q1 P1 ..... .... qn Pn[ ] = x1 x2 ..... .... x2n−1 x2n[ ],  

with the self-evident feature that a symmetric matrix can be chosen  

€ 

HT =H       (L3-2) 
(to be exact, a quadratic form with any asymmetric matrix has zero value). The equations of 
motion are just a set of 2n linear ordinary differential equations with s-dependent coefficients: 

€ 

dX
ds

=D(s) ⋅ X; D = S ⋅H(s) .    (L3-3) 

One important feature of this system is that  

€ 

Trace[D] = 0,     (L3-4) 
(the trivial proof is based on 

€ 

Trace[AB] = Trace[BA]; Trace[AT ]=Trace[A]  and

€ 

SH( )T = − HS( )). 
i.e., the Wronskian determinant of the system (http://en.wikipedia.org/wiki/Wronskian ) is equal 
to one.  The famous Liouville theorem comes from well-known operator formula 

€ 

ddet[W(s)]
ds

= Trace[D]; we do not need it here because we will have an easier method of proof.  

The solution of any system of first-order linear differential equations can be expressed through 
its 2n initial conditions Xo at azimuth so  

€ 

X(so) = Xo ,     (L3-5) 
through the transport matrix M(so/s) : 

€ 

X(s) =M so s( ) ⋅ Xo .     (L3-6) 

There are two simple proofs of this theorem. The first is an elegant one: Let us consider the 
matrix differential equation 

€ 

ʹ′ M ≡ dM
ds

= D(s) ⋅M;      (L3-7) 

with a unit matrix as its initial condition at azimuth so  

€ 

M so( ) = I.    (L3-8) 
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Such solution exists6 and then we readily see that 

€ 

X(s) =M s( ) ⋅ Xo .     (L3-7-1) 
satisfies eq.(L3-3): 

€ 

dX
ds

=
dM s( )
ds

⋅ Xo =D(s) ⋅M s( ) ⋅ Xo ≡D(s) ⋅ X #.     

A more traditional approach to the same solution is to use the facts that a) there exists a 
solution of equation (L3-3) with arbitrary initial conditions  (less-trivial statement); and, b) any 
linear combination of the solutions also is a solution of eq. (L3-3) (very trivial one). Considering 
a set of solutions of eq.(L3-3) Mk(s), k=1,…2n, with initial conditions at azimuth so ,then 

€ 

M1(so) =

1
0
...
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;M2(so) =

0
1
...
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;..........M2n (so) =

0
0
...
0
1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;, 

€ 

dMk (s)
ds

=D(s) ⋅ Mk (s); (L3-9) 

and their linear combination 

€ 

X(s) = xko
k=1

2n

∑ ⋅ Mk (s),     (L3-10) 

which satisfies the initial condition (L3-5) 

€ 

X(so) = xko
k=1

2n

∑ ⋅ Mk (so) =

x1,0
x2,0
...

x2n−1,0
x2n,0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

= Xo
.    (L3-11) 

Now, we recognize that our solution (L3-10) is nothing other than the transport matrix eq. (L3-7-
1) with matrix M(s) being a simple combination of 2n columns Mk(s): 

€ 

M(s) = M1(s),M2(s),...,M2n (s)[ ] . 
Eq. (L3-9) then makes it equivalent to eqs. (L3-7) and (L3-8). Finally, we use notion 

€ 

M so s( )  to 
clearly demonstrate that 

€ 

M so( ) = I at azimuth so 
In differential calculus, the solution is defined as 

€ 

M so s( ) = exp D(s)ds
so

s

∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

= lim
N→∞

I+D(sk )( )Δs
k=1

N

∏ ;

Δs = (s− so) /N; sk ∈ {so + (k −1) ⋅ Δs,so + k ⋅ Δs}

  (L3-12) 

The fact that the transport matrix for a linear Hamiltonian system has unit determinant (i.e., the 
absence of dissipation!) 
                                                
6 Mathematically, it is nothing else but 

€ 

M(s) = lim
N→∞

I+D(sk )( )Δs
k=1

N

∏ ; Δs = (s− so) /N; sk = so + k ⋅ Δs. 
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€ 

detM = exp Trace(D(s))ds
so

s

∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=1.   (L3-13) 

is the first indicator of the advantages that follow. Let us consider the invariants of motion 
characteristic of linear Hamiltonian systems, i.e., invariants of the symplectic phase space7. 
Starting from the bilinear form of two independent solutions of eq. (L3-3), X1(s) and X2(s), (it is 
obvious that XTSX=0) we show that  

€ 

X2
T (s) ⋅S ⋅ X1(s) = X2

T (so) ⋅S ⋅ X1(so) = inv .   (L3-14) 
The proof is straightforward  

€ 

d
ds

X2
T ⋅S ⋅ X1( ) = X2

T ʹ′ ⋅S ⋅ X1 + X2
T ⋅S ⋅ X1ʹ′ = X2

T ⋅ (SD)T S+ SSD( ) ⋅ X1ʹ′ ≡ 0 . 

Proving that transport matrices for Hamiltonian system are symplectic is very similar: 

€ 

MT ⋅S ⋅M = S.     (L3-15) 
Beginning from the simple fact that the unit matrix is symplectic: 

€ 

IT ⋅S ⋅ I = S, i.e. 

€ 

M so so( ) is 
symplectic, and following with the proof that 

€ 

MT so s( ) ⋅S ⋅M so s( ) =MT so so( ) ⋅S ⋅M so so( ) = S: 

€ 

d
ds

MT ⋅S ⋅M( ) = MTʹ′ ⋅S ⋅M + MT ⋅S ⋅ ʹ′ M = MT ⋅ (SD)T S + SSD( ) ⋅M ≡ 0 # 

Symplectic square matrices of dimensions 2n x 2n, which include unit matrix I, create a 
symplectic group, where the product of symplectic matrices also is a symplectic matrix.8. The 
symplectic condition (L3-15) is very powerful and should not be underappreciated. Before going 
further, we should ask ourselves several questions:  How can the inverse matrix of M be found? 
Are there invariants of motion to hold-on to? Can something specific be said about a real 
accelerator wherein there are small but all-important perturbations beyond the linear equation of 
motions? 

As you probably surmised, the Hamiltonian method yield  many answers, and is why it is so 
vital to research.  

We can count them: The general transport matrix M (solution of 

€ 

ʹ′ M = D(s) ⋅M with arbitrary 
D) has (2n)2 independent elements. Because the symplectic condition 

€ 

MT ⋅S ⋅M −S = 0 represents 
an asymmetric matrix with n-diagonal elements equivalently being zeros, and the conditions 
above and below the diagonal are  identical – then only the n(2n-1) condition remains and only 
the n(2n+1) elements are independent. For n=1 (1D) there is only one condition, for n=2 there 
are 6 conditions, and n=3 (3D) there are 15 conditions. Are these facts of any use in furthering 
this exploration? 

First, symplecticity makes the matrix determinant to be unit9: 
                                                
7 Phase space is defined as the 2n-dimentional space of canonical variable {qi,Pi}, that is, the space where this Hamiltonian 
system evolves.  
8 Group G is defined as a set of elements, with a definition of a product of any two elements of the group; P = A • B ∈G ; 
A, B∈G . The product must satisfy the associative law : A • (B •C) = (A • B)• C;  there is an unit element in the group 

€ 

I ∈ G;I • A = A • I = A :∀A ∈ G;  and inverse elements: 

€ 

∀A ∈ G;∃B(called A−1)∈ G : A−1A = AA−1 = I. 
9 Look at a simple n=1 case with 2x2 matrices to verify  that the symplectic product is reduced to determine  

€ 

M2x2 =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; S2x2 =σ;⇒MT ⋅σ ⋅M = detM ⋅σ   (Note-4) 
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€ 

det MT (s) ⋅S ⋅M(s)[ ] = detS → detM(s)( )2
=1→ detM = ±1;   detM(0) =1→ detM =1 #  

i.e., it preserves the 2n-D phase space volume occupied by the ensemble of particles (system):  

€ 

dqi
i=1

n

∏ dPi∫ = inv      (L3-16) 

The other invariants preserved by symplectic transformations are called Poincaré invariants and 
are the sum of projections onto the appropriate over- manifold in two, four…. (2n-2) dimensions: 

€ 

dqi∫∫ dPi

i=1

n

∑ = inv; dqidP
idq jdP

j∫∫∫∫
i≠ j
∑ = inv......  (L3-17) 

For example, matrix M can be represented as n2 combinations of 2x2 matrices Mij: 

€ 

M =

M11 ... M1n

... ... ...
Mn1 ... Mnn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

.     (L3-18) 

Using equation (Note-4), we easily demonstrate the requirement for the symplectic condition 
(L3-15) is  that the sum of determinants in  each row of these 2x2 matrices is equal to one; the 
same is true for the columns: 

€ 

det Mij[ ]
i=1

n

∑ = det Mij[ ]
j=1

n

∑ =1    (L3-19) 

with a specific prediction for decoupled matrices, which are block diagonal: 

€ 

M =

M11 0... 0
0 ... 0
0 0... Mnn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

; det Mii[ ] =1.   (L3-20) 

Other trivial and useful features: 

€ 

M = C1 C2 .... C2n−1    C2n[ ]    ⇒ C2k+1
T SC2k   = −C2k

T SC2k+1 =1, others  are  0   (L3-18-1) 
 

€ 

M =

L1

L2

....
L2n−1

L2n

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

   ⇒−L2k+1
T SL2k   = L2k

T SL2k+1 =1, others  are  0   (L3-18-2) 

We could go further, but we will stop here by showing the most incredible feature of symplectic 
matrices, viz., that it is easy to find their inverse (recall there is no general rule for inverting a 2n 
x 2n matrix!) Thus, multiplying eq. (L3-15) from left by –S we get  

€ 

−S ⋅MT ⋅S ⋅M = I  ⇒  M−1 = −S ⋅MT ⋅S.   (L3-21) 
As an easy exercise for 2x2 symplectic (i.e. with unit determinant – see note below) matrices, 
you can show that  

€ 

M =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (L3-21) gives 

€ 

M =
d −b
−c a
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . It is a much less trivial task to invert 
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6x6 matrix; hence, the power of symplecticity allows us enact many theoretical manipulations 
that otherwise would be impossible. Obviously, and easy to prove, transposed symplectic and 
inverse symplectic matrices also are also symplectic:  

€ 

M−1T ⋅S ⋅M−1 = S; M ⋅S ⋅MT = S.   (L3-21-1) 
 

3.2 Calculating matrices 
 
Next, we focus on the question of how matrices are calculated. Equation (L3-12) imparts the 

general idea than they can be integrates piece-wise wherein the coefficients in the Hamiltonian 
expansion do not change significantly. In practice, accelerators are build from elements, which, 
to a certain extent, offers such conditions. The typical elements in high-energy accelerators 
contributing to the linear part of the equations are the drift (free space, vacuum), the dipoles with 
and without transverse gradient, the quadrupoles (both normal and SQ), and the RF cavities for 
acceleration and bunching. Except for the last, the typical elements are magnetic and DC (or 
varying very slowly compared with the passing or turn-around time for particles). Electric 
elements are rare, so simplifying the Hamiltonian to some degree: 

€ 

˜ h = P1
2 + P3

2

2po

+ F x 2

2
+ Nxy + G y 2

2
+ L xP3 − yP1( ) +

δ 2

2po

⋅
m2c 2

po
2 + U τ 2

2
+ gx xδ ; (L2-46)  

€ 

F
po

= K 2 −
e
poc

∂By

∂x
+

1
2
eBs
poc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

G
po

=
e
poc

∂Bx

∂y
+

1
2
eBs

poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
;  2N

po
=

e
poc

∂Bx

∂x
−

e
poc

∂By

∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; (L2-47)  

€ 

L
po

=κ +
e

2poc
Bs;         

U
po

=
e
pc 2

∂Es

∂t
; gx = −K c

vo

;  

In general, many elements of accelerators are designed to keep constant the coefficients of 
Hamiltonian expansion, with exception of edges. Here we will consider simple rigid-edge 
elements, where the magnetic field ends abruptly (compared with the wavelength of betatron 
oscillations).  

Hence, initially we will explore a general way of calculating matrices, and then consider few 
examples. When the matrices D are piece-wise constant and the D from different elements do not 
commute, we can write  

€ 

M so s( ) = M si−1 si( )
i
∏ ;M si−1 s( )= exp Di s− si−1( )[ ]

elements
∏    (L3-22) 

The definition of the matrix exponent is very simple 

€ 

exp A[ ] = I+
A k

k!k=1

∞

∑ ;    exp D ⋅ s[ ] = I+
Dksk

k!k=1

∞

∑    (L3-23) 

According to the general theorem of Hamilton-Kelly, the matrix is a root of its characteristic 
equation: 

€ 

d(λ) = det[D− λI];  d(λk ) = 0    (L3-24) 

€ 

d(D) ≡ 0     (L3-25) 
i.e., a root of a polynomial of order ≤ 2n. There is a theorem in theory of polynomials (rather 
easy to prove) that any polynomial p1(x) of power n can be expressed via any polynomial p2(x) 
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of power m<n  as 

€ 

p1 x( ) = p2 x( ) ⋅ d x( ) + r x( )  
where r(x) is a polynomial of power less than m. Accordingly, series (L3-23) can be always 
truncated to  

€ 

exp D[ ] = I + ckD
k

k=1

2n−1

∑ ,     (L3-26) 

with the remaining daunting task of finding coefficients ck! There are two ways of doing this; 
one is a general, and the other is case specific, but an easy one. Starting from a specific case 
when the matrix D is nilpotent (m<2n+1), i.e., 

€ 

Dm = 0. 
In this case, 

€ 

Dm+ j = 0 the truncation is trivial: 

€ 

exp D[ ] = I +
Dk

k!k=1

m−1

∑ .    (L3-27) 

We lucky to have such a beautiful case in hand – a drift, where all fields are zero and K=0 and 
κ=0: 

€ 

˜ h = π1
2 + π 3

2

2
+
πδ

2

2
⋅

m2c 2

po
2 ;  D =

D1 0 0
0 D1 0
0 0 D2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

;D =
0 1
0 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;D2 =

0 m2c 2

po
2

0 0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
; (L3-28) 

where it is easy to check: 

€ 

D2 = 0. Hence, the 6x6 matrix of drift with length l will be 

€ 

Mdrift = exp D ⋅ l[ ] = I+
Dklk

k!k=1

∞

∑ = I+D ⋅ l =

Mt 0 0
0 Mt 0
0 0 Mτ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

; Mt =
1 l
0 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;Mτ =

1 l /(βoγ o)
2

0 1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; (L3-29) 

The general evaluation of the matrix exponent in (L3-22) is straightforward using the eigen 
values of the D-matrix: 

€ 

det D − λ⋅ I[ ] = det SH − λ⋅ I[ ] = 0    (L3-30) 
When the eigen values are all different (2n numerically different eigen values, 

€ 

λi = λi ⇒ i = j , no 
degeneration, i.e., D can be diagonalized),  

€ 

D =UΛU−1; Λ =

λ1 0 0
0 λ2 0

... 0
0 0 0 λ2n

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

;  

we  can use  Sylvester’s formula that is correct for any analytical f(D), 
http://en.wikipedia.org/wiki/Sylvester’s_formula for evaluating (L3-22): 

€ 

exp Ds[ ] = eλk s
D− λ jI
λk − λ jj≠k

∏
k=1

2n

∑     (L3-31) 

Another easy case is when D can be diagonalized, even though the number of different eigen 
values is m < 2n  (there is degeneration, i.e. some eigen values have multiplicity >1). We can use 
again simple Sylvester’s formula (L3-31) again, which just has fewer elements (m instead of 2n): 
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€ 

exp Ds[ ] = eλk s
D− λ jI
λk − λ jλ j ≠λk

∏
k=1

m

∑     (L3-32) 

Furthermore, in most general case when matrix D cannot be diagonalized (i.e. there is 
degeneracy, some of eigen values have multiplicity, and D can be only reduced to a Jordan form) 
we can still write a specific from (generalization of Sylvester’s formula): 

€ 

exp Ds[ ] = eλk s D− λiI
λk − λi

D− λkI
λi − λk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j

j= 0

nk −1

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

ni
sp

p!
D− λkI( )p

p= 0

nk −1

∑
i≠k
∏

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

k=1

m

∑   (L3-33) 

where nk < 2n is so called height of the eigen value λk. Details of the definitions and as well the 
proof of Sevester’s formulae are given in Appendix E. It is also shown there that nk can be 
replaced in (L3-33) by any number nn > nk – it will add only term, which are zeros, but can make 
(L3-33) look more uniform. One of the logical choices will be nn =max{nk}. The other natural 
choice will be nn =2n+1–m, especially if computer does it for you. Eq. (L3-33) is a bit uglier 
than (L3-31), but still can be used with some elegance. 

Eigen values split into pairs with the opposite sign because it is a Hamiltonian system: 

€ 

det SH − λ ⋅ I[ ] = det SH − λ ⋅ I[ ]T = det −HS− λ ⋅ I[ ] =

(−1)2n det HS + λ ⋅ I[ ] = det S−1 HS+ λ ⋅ I[ ]S( ) = det SH + λ ⋅ I[ ]#
.  (L3-35) 

First, it makes finding eigen values a easier problem, because characteristic equation is bi-
quadratic: 

€ 

det[D− λI] = λi − λ( ) −λi − λ( )∏ = λ2 − λi
2( ) = 0∏ .  (L3-35-1) 

For accelerator elements it is of paramount importance, 1D case is reduces to trivial (L3-37), 2D 
case is reduced to solution of quadratic equation and 3D case (6D phase space) required to solve 
cubic equation. For analytical work it gives analytical expressions – compare it with attempt to 
write analytical formula for roots of a generic polynomial of 6-order? It simply does not exist! 
Thus, we have an extra gift for accelerator physics – the roots can be written and studied!  
It is also allow us to simplify (L3-31) into 

€ 

exp Ds[ ] = eλk s D+ λkI
2λk

D2 − λ j
2I

λk
2 − λ j

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j≠k
∏ − e−λk s D− λkI

2λk

D2 − λ j
2I

λk
2 − λ j

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j≠k
∏

k=1

n

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

exp Ds[ ] =
eλk s + e−λk s

2
I+

eλk s − e−λk s

2λk
D

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

D2 − λ j
2I

λk
2 − λ j

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j≠k
∏

k=1

n

∑

  (L3-36) 

where index k goes only through n pairs of

€ 

λk,−λk{ }. While (L3-36) does not look simpler, it 
really makes it easier (4 times less calculations) when we do it by hands… For example we can 
look at 1D case. First, we can easily see that  

€ 

λ1 = −λ2 = λ;   λ2 = −det[D]     (L3-37) 
Thus, it is non-degenerated case only when 

€ 

det[D] ≠ 0 . (L3-31) give us a simple two-piece 
expression : 

€ 

exp Ds[ ] = eλs D− λI
2λ

− e−λs D+ λ I
2λ

    (L3-38) 

while (L3-36) bring it home right away: 
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€ 

exp Ds[ ] = I⋅ e
λs + e−λs

2
+D e

λs − e−λs

2λ
;

exp Ds[ ] = I⋅ coshλ s+
Dsinhλ s

λ
;  det[D] < 0;  λ = −det[D]

exp Ds[ ] = I⋅ cosλ s+
Dsinλ s

λ
;     det[D] > 0;   λ = det[D]

  (L3-39) 

The case 

€ 

det[D] = 0 means in this case that D is nilpotent: eqs (L3-24-25) look like follows 

€ 

detD = 0⇒ λ1 = −λ2 = 0; d(λ) = det[D− λI] = λ1 − λ( ) −λ1 − λ( ) = λ2  ⇒ D2 = 0  (L3-40) 
hence 

€ 

exp Ds[ ] = I+Ds;   det[D] = 0;    (L3-41) 
Naturally, (L3-41) is result of full-blown degenerated case – eq. (L3-33), but it also can be 
obtained as a limit case of (L3-39) when 

€ 

λ →0. 
The value of this approach to matrix calculation is that we do not need to memorize all the 
different ways of deriving the matrices of various elements in accelerators, and ways of solving a 
myriad of systems of 2, 4, 6… linear differential equations. Just a smart “coach potato principle” 
allover again…. 
The elements of 6x6, 4x4, or 2x2 accelerator matrixes (often called R or T) are numerated as Rij, 
where i is the line number and j is the column number. For example, R56 will signify an 
increment in τ (-arrival time by c) caused by the particle’s energy change, δ. Let’s look at most 
trivial case of decoupled transverse motion. 
Most accelerators have a flat orbit (κ=0), avoid longitudinal fields (Bs=0), and do not have the 
SQ-quadrupole (N=0). Let us examine a magnetic element (no RF field) and a field in vacuum, 
where 

  

€ 

 
∇ ×
 
B = 0⇒

∂By

∂x
=
∂Bx

∂y
. 

This renders the one-liner Hamiltonian: (the momenta are normalized) 

€ 

˜ h = π 3
2

2
+ K1

y 2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

π1
2

2po

+ K 2 −K1[ ] x 2

2
+
πδ

2

2
⋅

m2c 2

po
2 −K c

vo

xπδ ; K1 =
e

poc
∂By

∂x
; (L3-42)  

with a clearly separated vertical (y) part of motion. In the presence of the curvature K, i.e., a non-
zero dipole field in the reference orbit, both the longitudinal and horizontal (x) degrees of 
freedom remain coupled. In a quadrupole K=0, the Hamiltonian is completely decoupled into 
three degrees of freedom: 

€ 

˜ h = π 3
2

2
+ K1

y 2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

π1
2

2
−K1

x 2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

πδ
2

2
⋅

m2c 2

po
2 ; K1 =

e
poc

∂By

∂x
;  (L3-43) 

The matrix in the longitudinal direction is the same as that for a drift (L3-29), while the x and y 
matrices are given by (L3-39).  Depending on the sign of the gradient 

€ 

∂By /∂x , the quadrupole 
focuses in x and defocuses in y, or vice versa:  
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€ 

Dx =
0 1
K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  Dy =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;   φ = s K1

MF =
cosφ sinφ / K1

− K1 sinφ cosφ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  MD =

coshφ sinhφ / K1

K1 sinhφ coshφ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

   (L3-44) 

It is worth noting that there is no difference if we use momentum and coordinates, not x, x’.  

€ 

˜ h = P3
2

2po

+ poK1
y 2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

P1
2

2po

− poK1
x 2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

δ 2

2po

⋅
m2c 2

po
2 ; K1 =

e
poc

∂By

∂x
;  (L3-45) 

€ 

Dx =
0 1/ po
poK1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  Dy =

0 1/ po
−poK1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; φ = s K1

MF =
cosφ sinφ / po K1

−po K1 sinφ cosφ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  MD =

coshφ sinhφ / po K1

po K1 sinhφ coshφ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 (L3-46) 

As we can see, this is not a more complicated that using x,x’, but definitely correct for any 
accelerator. 
Matrix of general DC accelerator element (including twisted quads or helical wiggler) can be 
found using our recipe. With all diversity of possible elements on accelerators, DC (or almost 
DC) magnets play the most prominent role. In this case energy of the particle stays constant and 
we can use reduced variables. Furthermore, large number of terms is the Hamiltonian simply 
disappear and from the previous lecture we have:  

€ 

˜ h n =
π1

2 + π 3
2

2
+ f x 2

2
+ n ⋅ xy + g y 2

2
+ L xπ 3 − yπ1( ) +

π o
2

2
⋅

m2c 2

po
2 + gx xπ o + gy yπ o;      (L2-46-n)  

Even though it is tempting to remove electric field, it does not either helps or hurts in general 
case of an element. Hence, we will keep DC transverse electric fields. We also assume that these 

fields are in vacuum and 

€ 

∂By

∂x
=

€ 

∂Bx

∂y
, 

€ 

∂Ex

∂x
+ KEx +

∂Ey

∂y
= 0: 

€ 

f = K 2 −
e
poc

∂By

∂x
−

e
povo

∂Ey

∂y
+

eBs

2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

;

g =
e
poc

∂By

∂x
+

e
povo

∂Ey

∂y
+

eBs

2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

;

2n =
e
poc

∂Bx

∂x
−

e
poc

∂By

∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −K ⋅

e
poc

Bx −
e
povo

∂Ex

∂y
+
∂Ey

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2K

eEy

povo
+
meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

;  (L3- 47)  

€ 

L =κ +
e

2poc
Bs;       gx =

mc( )2
⋅ eEx

po
3 −K c

vo

; gy =
mc( )2

⋅ eEy

po
3 ;  

In the absence of longitudinal electric field, the momentum P2 is constant as well 

€ 

π o = const, 
δ=const. The fact that particle’s energy does not changes in such element is rather obvious10: 
                                                
10 It is completely correct for magnetic elements. Presence of electric field makes it less obvious, but it comes from 
the fact that Hamiltonian does not depend on time! 
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€ 

π o
ʹ′ = −

∂h
∂τ

= 0 . 

Equations of motion become specific: 

€ 

XT = x,π1,y,π 3,τ,π o[ ] = XT ,τ,π o[ ]; XT = x,π1,y,π 3[ ],  (L3-48) 

€ 

dX
ds

=D(s) ⋅X; D = S ⋅H(s) =

0 1 −L 0 0 0
− f 0 −n −L 0 gx
L 0 0 1 0 0
−n L −g 0 0 gy
gx 0 gy 0 0 m2c 2 / po

2

0 0 0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;   (L3-49) 

and can be rewritten in a slightly different (just deceivingly looking better) way: 

€ 

dX
ds

= D ⋅ X + π o ⋅C; 

dτ
ds

= gxx + gyy + π o ⋅m
2c 2 / po

2;D =

0 1 −L 0
− f 0 −n −L
L 0 0 1
−n L −g 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

; C =

0
gx
0
gy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.

   (L3-50) 

Hence, solution for transverse motion (4-vector) in such an element can be written as 
combination general solution of homogeneous equation plus specific solution of inhomogeneous 
one: 

€ 

X = M(s) ⋅ Xo + π o ⋅ R(s); M = eD s−so( );  ʹ′ R = D ⋅ R + C;  R so( ) = 0.   (L3-51) 
It worth noting that C=0 as soon as there is no field on the orbit – E=0, B=0. In this case R=0. 
Before finding 4x4 matrixes M and vector R, let’s see what we will know about the 6x6 matrix 
after that. First, the obvious: 

€ 

M6x6 =

M4x4 0 R
R51 R52 R53 R54 1 R56

 0   0   0   0  0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

   (L3-52) 

with a natural question of what are non-trivial R5k elements? Usually these elements, with 
exception of R56 are not even mentioned in most of textbooks. Fortunately for us, Mr. 
Hamiltonian gives us a hand in the form of symplecticity of transport matrixes. Using (L3-18) 
and (L3-18-1) we can find that: 

€ 

M6x6
TSM6x6 ==

MT
4x4 LT 0

0 1 0
RT R56 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

S4 x4 0 0
0 0 1
0 −1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 
M4 x4 0 R
L 1 R56

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

S4 x4 0 0
0 0 1
0 −1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

MT
4 x4S4 x4 0 LT

0 0 1
RTS4x4 −1 R56

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
 
M4 x4 0 R
L 1 R56

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

MT
4x4S4x4M4x4 0 0

0 0 1
RTS4 x4M4 x4 − L −1 RTS4x4R

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

S4x4 0 0
0 0 1
0 −1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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where we used 

€ 

L = R51,R52,R53,R54[ ]. We should note what XTSX=0 for any vector, 

€ 

MT
4x4S4x4M4x4 = S4x4  and only non-trivial condition from the equation above is: 

€ 

RTS4x4M4x4 − L=0 
which gives us very valuable dependence of the arrival time on the transverse motions: 

€ 

L = RTS4x4M4x4;  or   LT = −MT
4x4S4x4R .  (L3-53) 

Element R56 is decoupled form the symplectic condition in this case and should be determined by 
direct integration  - no magic here: 

€ 

τ(s) = τ (so) + π o ⋅ m2c 2 / po(s− so) +2 gxR(s)16 + gyR36(s)( )
so

s

∫ ds
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

R56 = m2c 2 / po(s− so) +2 gxR(s)16 + gyR36(s)( )
so

s

∫ ds

  (L3-54) 

Let’s find the solutions for 4x4 matrixes of arbitrary element. First, let solve characteristic 
equation for D: 

€ 

det[D− λI] = λ4 + λ2 f + g + 2L2( ) + fg + L4 − L2 f + g( ) − n2 = 0   (L3-55) 

with easy roots: 

€ 

λ2 = a ± b; a = −
f + g + 2L2

2
; b2 =

f − g( )2

4
+ 2L2 f + g( ) + n2  (L3-56) 

Before starting classification of the cases, let’s note that  

€ 

f + g = K 2 + 2 eBs

2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

≥ 0  

i.e. 

€ 

a ≤ 0; b2 ≥ 0;  Im b( ) = 0.The solutions can be classified as following: remember that the full set 
of eigen values is 

€ 

λ1,−λ1,λ2,−λ2: 
 
I. 

€ 

λ1 = λ2 = 0;  a = 0; b = 0;  
II. 

€ 

λ1 = λ2 = iω;  a = −ω 2; b = 0; 
III. 

€ 

λ1 = 0;  λ2 = iω;  a + b = 0;  2b =ω 2 
IV. 

€ 

λ1 = iω1;  λ2 = iω 2;   ω1
2 = −a − b; ω 2

2 = −a + b; a > b   
V. 

€ 

λ1 = iω1;  λ2 =ω 2; ω1
2 = −a − b; ω 2

2 = b − a; b > a   
 
Before going to case-by-case calculations, lets use Sylvester’s formulae and try to find solution 
of inhomogeneous equation: 

€ 

dR
ds

=D⋅ R+C; R 0( ) = 0 .    (L3-57) 

When matrix detD≠0, (L3-57) can be inversed using a 

€ 

R = A + eDs⋅ B  as a guess and the boundary 
condition 

€ 

R(0) = 0 : 

€ 

R = M4x4(s) − I( )⋅ D−1 ⋅ C    (L3-58) 
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is the easiest solution. Prove is just straight forward: 

€ 

ʹ′ R = D⋅ M4x4
−1 ⋅ C;

D⋅ M − I( )⋅ D−1 ⋅ C + C = D⋅ M4x4
−1 ⋅ C   #

 

In all cases we can use method of variable constants to find it: 
 

€ 

dR
ds

= ʹ′ R = D ⋅ R + C;  ʹ′ M = DM; 

R = M(s)A(s)⇒ ʹ′ M A + M ʹ′ A = DMA + C;    R(0) = 0⇒ Ao = 0

ʹ′ A = M−1(s)C ⇒ A = M−1(z)Cdz
0

s

∫ = e−Dzdz
0

s

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅C;  R = eDs e−Dzdz

0

s

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅C

  (L-53) 

It is important to remember that M-1(s) is just the M(-s) = e-Ds. Hence in all our formulae for 
matrixes from previous lectures we need to replace s by –s to get M-1(s).  Other vice, we have to 
use general formula (L3-33) for the homogeneous solution and use method of variable constants 
(see Appendix F) to find it: 

€ 

R(s) =
D− λiI
λk − λi

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

D− λkI
λi − λk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j

j= 0

nk −1

∑
i≠k
∏
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ k=1

m

∑ D− λkI( )n
n= 0

nk −1

∑ sn

n!
⋅ (−1)p+1 D− λkI( )p
p= 0

nk −1

∑ ⋅C ⋅ sp−q

p − q( )!λk
q+1 −

eλk

λk
p+1

q= 0

p1

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

(L3-60) 
In all specific cases I, II, III, IV and V, integrating (L-53) directly is usually easier that using 
general form of (L3-60). 
 

Case I.   

€ 

f + g + 2L2

2
= 0; 

f − g( )2

4
+ 2L2 f + g( ) + n2 = 0;

f + g = pos2 ≥ 0⇒ f − g( )2
= 0; L2 f + g( ) = 0; n2 = 0

f + g + 2L2 = pos2 + 2L2 = 0⇒ L = 0; f + g = 0⇒  
f − g = 0⇒ f = g = L = n = 0!!!

 

means that there is nothing in the Hamiltonian but p2– is this the drift section matrix of which we 
already know. Hence, there is not curvature as well and R=0. 

€ 

M4x4 =

1 s 0 0
0 1 0 0
0 0 1 s
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

; R =

0
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.     (L3-I-1) 

The only not trivial (ha-ha – it is also as trivial as it can be) is R56:  

€ 

R56 =
m2c 2

po
2 s      (L3-I-2) 

we already had seen it when studied nilpotent case… 
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Case II: 

€ 

b =  
f − g( )2

4
+ 2L2 f + g( ) + n2 = 0;

f = g; n = 0  and  L2 f + g( ) = L2 K 2 +Ω2 + El2( ) = 0;Ω = eBs / poc;E⊥ = 0.
 

i.e. there are two cases: L=0 or 

€ 

f + g = 0 .  
If both are equal zero, i.e. 

€ 

f + g = 0;  L = 0, this is equivalent to the case I above.  
Case II a: 

€ 

f + g = 0 , K≠0, Bs=0 -> L=κ. Thus, this is just a drift (straight section) with rotation, 
whose matrix is trivial: Drift + rotation. There is not transverse force – hence R=0. 

€ 

M4x4 =
Md ⋅ cosκs −Md ⋅ sinκs
Md ⋅ sinκs Md ⋅ cosκs
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; Md =

1 s
0 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  R =

0
0
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.   (L3-IIa-1) 

R56is as for a drift: 

€ 

R56 =
m2c 2

po
2 s      (L3-IIa-2) 

Case II b: L=0;

€ 

f = g = K 2 +Ω2( ) /2;κ = −Ω; i.e. the motion is uncoupled: 

 

€ 

D =

0 1 0 0
− f 0 0 0
0 0 0 1
0 0 − f 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

; C =

0
gx
0
gy

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

. 

€ 

M4x4 =
M 0
0 M

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; M =

cosωs sinωs /ω
−ω sinωs cosωs
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    (L3-IIb-1) 

Here we may have non-zero R: yes, it may be! It is simple integrals to be taken care of: 

€ 

Cx,y = −gx,y

0
1
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ; M−1(z) =

cosωz −sinωz /ω
ω sinωz cosωz
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Cx,y = gx,y

sinωz /ω
−cosωs
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; 

M−1(z)Cx,ydz
0

s

∫ = gx,y

sin ωz( )dz
0

s

∫ /ω

− cos ωz( )dz
0

s

∫

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=
gx,y

ω

1− cosωs( ) /ω
−sin ωs( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

Cx,y = −gx,y

0
1
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ; M−1(z)dz

0

s

∫ ⋅Cx,y = −gx,y

0
1
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ;

M(s) M−1(z)Cx,ydz
0

s

∫ =
gx,y

ω

cosωs sinωs /ω
−ω sinωs cosωs
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

1− cosωs( ) /ω
−sin ωz( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

gx,y

ω 2

cosωs−1
−ω sinωs
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
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€ 

R56 = s ⋅m2c 2 / po + gxR(z)16 + gyR36(z)( )
0

s

∫ dz =

gxR(z)16 + gyR36(z)( )
0

s

∫ dz =
gx
2 + gy

2

ω 2 cosωz −1( )
0

s

∫ dz =
gx
2 + gy

2

ω 2
sinωs
ω

− s
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 

with the result:  
 

€ 

R =

gx
ω 2 cosωs−1( )

−
gx
ω

sinωs
gy
ω 2 cosωs−1( )

−
gx
ω

sinωs

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;  R56 =
m2c 2

po
2 s+

gx
2 + gy

2

ω 2
sinωs
ω

− s
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (L3-IIb-2) 

Case III: 

€ 

a + b = 0; detD = 0;  ω 2 = 2b;  λ1,2 = ±iω;λ3 = 0; m = 3. 
We have to use degenerated case formula, but the maximum height of the eigen vector is 2 and 
only for 3-rd eigen value. Since it is not scary at all: n1=1;n2=1;n3=2 
Because of the Hamilton-Kelly theorem, 

€ 

D2(D2 +ω 2I) = 0. Let’s do it 
 

€ 

exp Ds[ ] = eλk s D− λiI
λk − λi

D− λkI
λi − λk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j

j= 0

nk −1

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

ni
sp

p!
D− λkI( )p

p= 0

nk −1

∑
i≠k
∏

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

k=1

3

∑ =

λ1λ2 =ω 2; iω   

k = 3; I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

I+ sD( ); I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

=  I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
D2

ω 2 I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ↓0= I+

D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k = 3; I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I+ sD( )

k =1+ 2; eiωs D+ iωI
−2iω

D2

ω 2 + c.c.= −D
2

ω 2 Icosωs+
D
ω

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

M = I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I+ sD( ) − D

2

ω 2 Icosωs+
D
ω

sinωs
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

   

€ 

M4x4 = I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I+ sD( ) − D

2

ω 2 Icosωs+
D
ω
sinωs

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    (L3-III-1) 

Similarly 

€ 

R = I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Is+D s

2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
D2

ω 4 D(cosωs−1) − Iω sinωs( )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
C    (L3-III-2) 
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Next is just 

€ 

CT I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Iz +D z

2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
D2

ω 4 D(cosωz −1) − Iω sinωz( )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
C

o

s

∫ dz =

CT I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I

s2

2
+D s

3

6
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
D2

ω 4 D
sinωs
ω

− s
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I(cosωz −1)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
C

  

with result of: 

€ 

R56 = m2c 2 / pos+ CT I+
D2

ω 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I

s2

2
+D s

3

6
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +
D2

ω 4 D
sinωs
ω

− s
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ I(cosωz −1)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
C  (L3-III-3) 

Case IV: all roots are different, no degeneration. Use formula (L3-36) 

€ 

exp Ds[ ] =
eλk s + e−λk s

2
I+

eλk s − e−λk s

2λk
D

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

D2 − λ j
2I

λk
2 − λ j

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ∏

k=1

2

∑      

with only one term in the product: 

€ 

M4x4 =
1

ω1
2 −ω2

2 Icosω1s+D sinω1s
ω1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 +ω2

2I( ) − Icosω2s+D sinω2s
ω2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 +ω1

2I( )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (L3-IV-1) 

For R we invoke a simplest formula:  

€ 

R = M4x4(s) − I( )D−1 ⋅C     (L-3-IV-2) 
For R56 it is tedious but easy: 

  

€ 

R56 = m2c 2 / pos+CTMD−1C;

M= 1
ω1

2 −ω 2
2

I sinω1s
ω1

+D1− cosω1s
ω1

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 +ω 2

2I( ) −

I sinω 2s
ω 2

+D1− cosω 2s
ω 2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 +ω1

2I( ) − I⋅ s

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 

⎭ 

⎪ 
⎪ 

  (L3-IV-3) 

Case V: all roots are different, no degeneration. Use formula (L3-36) again 

€ 

M4x4 =
1

ω1
2 +ω2

2 Icosω1s+D sinω1s
ω1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 −ω2

2I( ) − Icoshω2s+D sinhω2s
ω2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 +ω1

2I( )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
 (L3-V-1) 

€ 

R = M4x4(s) − I( )D−1 ⋅C     (L3-V-2) 

  

€ 

R56 = m2c 2 / pos+CTMD−1C;

M= 1
ω1

2 +ω 2
2

I sinω1s
ω1

+D1− cosω1s
ω1

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 −ω 2

2I( ) −

I sinhω 2s
ω 2

+D coshω 2s −1
ω 2

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ D2 +ω1

2I( ) − I⋅ s

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

⎫ 

⎬ 

⎪ 
⎪ 

⎭ 

⎪ 
⎪ 

  (L3-V-3) 
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Before going into the discussion of the parameterization of the motion, we need to finish 
discussion of few remaining topics for 6x6 matrix of an accelerator. First is multiplication of the 
6x6 matrixes for purely magnetic elements: 

€ 

Mk (6x6) =  
Mk (4 x4 ) 0 Rk

Lk 1 R56 k

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

;

M2 (6x6)M1(6x6) =

M(4x4 ) 0 R
L 1 R56

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

==

M2M1 0 R2 +M2R1

L2 + L1M2 1 R561
+ R56 2

+ L2R1

0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 (L3-61) 

i.e. having transformation rules for mixed size objects: a 4x4 matrix M, 4-elemetn column R, 4 
element line L, and a number R56. As you remember, L is dependent (L4-7) and expressed as L= 
RTSM. Thus: 

€ 

M(4x4 ) = M2M1; R =M2R1 + R2; L = L2M1 + L1; R56 = R561
+ R56 2

+ L2R1 (L3-62) 

 
One thing is left without discussion so far – the energy change. Thus, we should look into a 
particle passing through an RF cavity, which has alternating longitudinal field. Again, for 
simplicity we will assume that equilibrium particle does not gain energy, i.e. po stays constant 
and we can continue using reduced variables. We will also assume that the is no transverse field, 
neither AC or DC. In this case the Hamiltonian reduces to a simple, fully decoupled: 

€ 

˜ h = π1
2 + π 3

2

2
+
π o

2

2
⋅

m2c 2

po
2 + u τ

2

2
;;   (L2-46)  

€ 

dX
ds

=D ⋅ X;  D =

Dx 0 0
0 Dy 0
0 0 Dl

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

;  Dx = Dy =
0 1
0 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;Dl =

0 m2c 2

po
2

−u 0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
;

M =

Mx 0 0
0 My 0
0 0 Ml

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

;Mx = My =
1 s
0 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;                          ω = detDl =

mc
po

u

Ml =
cosωs m2c 2

po
2 sinωs /ω

−usinωs /ω cosωs

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
; u > 0; Ml =

coshωs m2c 2

po
2 sinhωs /ω

−usinhωs /ω coshωs

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
; u < 0;

(L3-63) 

In majority of the cases 

€ 

ωs<<1 (mc/po ~ 1/γ) and RF cavity can be represented as a thin lens 
located in its center:  

€ 

M =

I 0 0
0 I 0
0 0 Ml

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
;  Ml =

1 0
−q 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;   q = u⋅ lRF = −

e
poc

∂Vrf

∂t
         (L3-64) 
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Lecture 5. Parameterization of motion 
5.1 Parameterization of motion 

 
A periodic system can be a circular pass, or the cells of an accelerator (FODO is an example) 
repeating themselves again and again with period C, i.e.,  

€ 

H =
1
2

hij (s)xi
i=1

2n

∑
i=1

2n

∑ x j ≡
1
2
XT ⋅H(s) ⋅ X,   H(s+ C) =H(s);   (L5-1) 

In this case, a one-turn (or one period) transport matrix  

€ 

T(s) =M s s+ C( )    (L5-2) 

plays a very important role. Its eigen values, λi,  

€ 

det T− λi ⋅ I[ ] = 0    (L5-3) 
determine its motion is stable , that all 

€ 

λi ≤1 or are unstable, some 

€ 

λi >1. Before making 
specific statements about the stability, we look at the properties of the eigen vectors.  
First, eigen values are a function of periodic system and do not depend on the azimuth, s. It is 
easy to show that a one-turn matrix is transformed by the transport matrix as 

€ 

T(s1) =M s s1( )T(s)M−1 s s1( )      (L5-4) 

€ 

T(s1) =M s1 s1 + C( ) =M s+ C s1 + C( )M s1 s+ C( ) =M s+ C s1 + C( )M s s+ C( )M s1 s( )  

€ 

M s+ C s1 + C( ) ≡M s s1( ); M s s+ C( ), M s1 s( ) ≡M−1 s s1( ) ⇒ T(s1) =M s s1( )T(s)M−1 s s1( )#  

It means that

€ 

T(s1)has the same eigen values (L5-3); thus, the eigen values of 

€ 

T(s)  do not depend 
upon s because 

€ 

det MTM−1 − λi ⋅ I[ ] = det M T− λi ⋅ I( )M−1[ ] = det T− λi ⋅ I[ ]

⇒ T s1( ) − λi ⋅ I[ ] = T s( ) − λi ⋅ I[ ] = 0
  (L5-5) 

The matrix 

€ 

T is a real, complex conjugate of eigen value 

€ 

λi
* which is also eigen value of 

€ 

T 

€ 

T− λi ⋅ I[ ]* = T− λ*i ⋅ I[ ] = 0  

Furthermore, the symplecticity of 

€ 

T requires that 

€ 

λi
−1  also is eigen value of 

€ 

T. Proving that the 
inverse matrix 

€ 

T−1 has 

€ 

λi
−1 as a eigen value is easy. At the same time 

€ 

0 = det T−1 − λi
−1I[ ] = det S TT − λi

−1I[ ]S−1( ) = det TT − λi
−1I[ ] = det T− λi

−1I[ ]  (L5-5’) 

and here, symplectic conditions help us again. Thus, the real symplectic matrix has n pairs of 
eigen values as follows: a) inverse {

€ 

λi,λi
−1}, and b) complex conjugate {

€ 

λi,λi
*}. We assume that 

matrix T can be diagonalized (see note on the following page for the general case of Jordan 
normal form). 
Therefore, repeating the matrix T again and again undoubtedly will cause an exponentially 
growing solution if 

€ 

λi >1. This statement is readily verified, but in so, we introduce some useful 
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term and matrices. The set of eigen vectors Yi of matrix T 11 

€ 

T ⋅Yi = λi ⋅Yi;                      i =1,2....2n   (L5-6) 
is complete and an arbitrary vector X can be expanded about this basis: 

€ 

X = aiYi
i=1

2n

∑ ≡U ⋅ A,  U = Y1.......Y2n[ ],     AT = a1.......a2n[ ].  (L5-7) 

where we introduces matrix U built from eigen vector of the matrix T: 

€ 

T ⋅U =U ⋅ Λ, Λ =

λ1 ... 0
... ... ....
0 .... λ2n

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

     (L5-8) 

The later equation is equivalent to diagonalization of the matrix T: 

€ 

U−1 ⋅T ⋅U = Λ, or T =U ⋅ Λ ⋅U−1     (L5-9) 
Multiple application of matrix T (i.e., passes around the ring) 

€ 

Tn ⋅ X = λi
naiYi

i=1

2n

∑      (L5-10) 

exhibit exponentially growing terms if the module of even one eigen value is larger than 1 

€ 

λk = λ eiµ , 

€ 

λ >1; we easily observe that a solution with the initial condition 

€ 

Xo = ReakYk grows 
exponentially: 

€ 

TnXo = λ
n ReakYke

inµ . 
Immediately this suggests that the only possible stable system is when all eigen values are uni-
modular 

€ 

λi =1.      (L5-11) 
otherwise assuming 

€ 

λi <1 means that there is eigen value 

€ 

λk = λi
−1; λk =1/ λi >1. We also 

consider only cases when all eigen vectors differ. Then, there are n pairs of eigen vectors, which 
we term modes of oscillations: 

€ 

λk ≡1/λk+n ≡ λ
*
k+n ≡ eiµk ; µk ≡ 2πν k,   {k =1,...n}.   (L5-12) 

where the complex conjugate pairs are identical to the inverse pairs. Eq. (L5-9) can be rewritten 
as  

€ 

T(s) =U(s)ΛU−1(s); Λ =

λ1 0 0
0 λ1

* 0
... 0

0 0 0 λn
*

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

; T(s) ⋅U(s) =U(s) ⋅ Λ    (L5-13) 

and matrix U built from complex conjugate eigen vectors of T: 
                                                
11 In general case of multiplicity of eigen vectors, the matrix cannot be diagonalized but can be brought to Jordan normal form 
http://en.wikipedia.org/wiki/Jordan_normal_form#Generalized_eigenvectors , Glenn James and Robert C. James, Mathematics. 
In this case, there is a subset of generalized eigen vectors 

€ 

Yk,1,...,Yk,h{ }  that belong to a eigen value 

€ 

λk  with multiplicity h:  

€ 

T ⋅Yk,h = λkYk,h; T ⋅Yk,m = λkYk,m +Yk,m+1; m = 1...h − 1 . 

The result is even stronger than in the diagonal case; motion is unstable even when 

€ 

λk =1:  

€ 

T ⋅Yk,h−1 = λkYk,h−1 +Yk,h ⇒ Tn ⋅Yk,h−1 =Yk,h−1 + n ⋅Yk,h  
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€ 

U(s) = Y1,Y1
* ....Yn ,Yn

*[ ];     T(s)Yk (s) = λkYk (s)    ⇔  T(s)Yk
*(s) = λk

*Yk
*(s)    (L5-14) 

Thus, eigen vectors can be transported from one azimuth to another by the transport matrix: 

€ 

˜ Y k (s1) =M s s1( ) ˜ Y k (s) ⇔ d
ds

˜ Y k =D s( ) ⋅ ˜ Y k     (L5-15) 

It is eigen vector of 

€ 

T(s1). - just add (L5-4) to (L5-14): 

€ 

T(s1) ˜ Y k (s1) =M s s1( )T(s)M−1 s s1( )M s s1( ) ˜ Y k (s) =M s s1( )T(s) ˜ Y (s) = λkM s s1( ) ˜ Y (s) = λk
˜ Y k (s1)#  

Similarly,  

€ 

˜ U (s1) = M s s1( ) ˜ U (s) ⇔ d
ds

˜ U = D s( ) ⋅ ˜ U     (L5-16) 

with the obvious follow-up by 

€ 

˜ U (s + C) = ˜ U (s) ⋅ Λ, ˜ Y k (s + C) = λk
˜ Y k (s) = eiµk ˜ Y k (s)    (L5-17) 

The kth eigen vectors are multiplied by 

€ 

eiµk  after each pass through the period. Hence, we can 
write 

€ 

˜ Y k (s) = Yk (s)eψ k s( ); Yk (s + C) = Yk (s); ψk s + C( ) =ψk s( ) + µk   (L5-18) 

€ 

˜ U (s) = U(s) ⋅ Ψ(s), Ψ(s) =

eiψ1 (s) 0 0
0 e− iψ1 (s) 0

... 0
0 0 0 e−iψ n (s)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

   (L5-19) 

It is remarkable that the symplectic products (L5-12) of the eigen vectors are non-zero-only 
complex conjugate pairs: in other words, the structure of the Hamiltonian metrics is preserved 
here. 

€ 

Yk
T ⋅S ⋅Yk

T ≡ 0  is obvious. Using only the symplecticity of T gives us desirable yields 

€ 

Yk
T ⋅S ⋅Yj

T =Yk
T ⋅TTST ⋅Yj

T = λkλ j Yk
T ⋅S ⋅Yj

T( )⇒ (1− λkλ j ) Yk
T ⋅S ⋅Yj

T( ) = 0 

 for 

€ 

λkλ j ≠1 

€ 

Yk
T * ⋅S ⋅Yj≠k = 0; Yk

T ⋅S ⋅Yj = 0; .    (L5-20) 

and only the nonzero products for 

€ 

λk =1/λ j = λ* j  are clearly pure imaginary 12: 

€ 

Yk
T * ⋅S ⋅Yk = 2i,     (L5-21) 

where we chose the calibration of purely imaginary values as 2i for the following expansion to 
be symplectic. Eqs. (L5-20-21) in compact matrix form is  

€ 

UT ⋅S ⋅U ≡ ˜ U T ⋅S ⋅ ˜ U = −2iS, U−1 =
1
2i

S ⋅UT ⋅S.   (L5-22) 

The expressions for the transport matrices through β, α-functions, and phase advances often 
derived as a “miraculous” result, and hence called matrix gymnastics, is just a trivial 
consequence of equations (L5-16), (L5-19), and (L5-22): 

€ 

M s s1( )= ˜ U (s1) ˜ U −1(s) =
1
2i

˜ U (s1) ⋅S ⋅ ˜ U T (s) ⋅S =
1
2i

U(s1) ⋅ Ψ(s1) ⋅S ⋅ Ψ
−1(s) ⋅UT (s1) (L5-16’) 

                                                
12 

€ 

A*T ⋅S ⋅ A( )
*

= AT ⋅S ⋅ A*( ) = − A*T ⋅S ⋅ A( )
T

= − A*T ⋅S ⋅ A( )  
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with a specific case of a one-turn matrix: 

€ 

T =UΛU−1 =
1
2i
UΛSUTS    (L5-13’) 

S-orthogonality (L5-20) provides an excellent tool of finding complex coefficients in the 
expansion eq. (L5-7) of an arbitrary solution X(s) 

€ 

Xo = aiYi ⇒
i=1

2n

∑ X(s) =
1
2

ak
˜ Y k + ak

* ˜ Y k
*( )

k=1

n

∑ ≡ Re akYke
iψ k

k=1

n

∑ ≡
1
2

˜ U ⋅ A =
1
2

U ⋅ Ψ ⋅ A =
1
2

U ⋅ ˜ A  (L5-23) 

where 2n complex coefficients, which are constants of motion13 ! for linear Hamiltonian system, 
can be found by a simple multiplications (instead of solving a system of 2n linear equations (L5-
7)) 

€ 

ai =
1
2i

Yi
*T SX; ˜ a i ≡ aie

iψ
i =

1
2i

Yi
*T SX;

A = 2 ˜ U −1 ⋅ X = −iΨ−1 ⋅S ⋅UT * ⋅S ⋅ X; ˜ A = ΨA = −i ⋅S ⋅UT * ⋅S ⋅ X .
   (L5-24) 

Equation (L5-23) is nothing else but a general parameterization of motion in the linear 
Hamiltonian system. It is very powerful tool and we will use this many times in this course.  
We consider next a specific case of a 1D system with a linear periodical Hamiltonian: 

€ 

˜ h = p2

2
+ K1(s) y 2

2
; H =

K1 0
0 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;D = SH =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .  (L5-25) 

The equations of motion are simple 

€ 

d
ds

x
p
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

x
p
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

p
−K1x
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ (i.e. ʹ′ x ≡ p).  (L5-26) 

A one-turn matrix within its determinant (ad-bc=1)  

€ 

T(s) =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =U(s)ΛU−1(s); Λ =

λ 0
0 1/λ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

eiµ 0
0 e−iµ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;   (L5-27) 

€ 

Y =
w

u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; ˜ Y =

w
u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ ; U =

w w
u + i /w u − i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; ˜ U = U ⋅

eiψ 0
0 e−iψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   (L5-28) 

where w(s)14 and u(s) are real functions and calibration was used for (L5-21). T has a trace  

€ 

Trace(T) = Trace(Λ) = 2cosµ   (L5-29) 
(because 

€ 

Trace(ABA−1) = Trace(B) ). Thus, the stability of motion (when µ is real!) is easy to check:  

€ 

−2 < Trace(T) < 2     (L5-30) 
where some well-know resonances are excluded: The integer 

€ 

µ = 2πm , and the half-integer

€ 

µ = 2(m +1)π  as being unstable (troublesome!).  
Combining (L5-28) into the equations of motion (L5-25)  
                                                
13 in matrix form using (L5-16) we have 

€ 

X =
1
2

˜ U A, ʹ′ X =
1
2

˜ ʹ′ U A + ˜ U ʹ′ A ( ),= DX =
1
2

D ˜ U ⋅ A =
1
2

˜ ʹ′ U ⋅ A ⇒ ʹ′ A = 0  

14 We are free to multiply the eigen vector Y by 

€ 

eiφ  to make a real number. In other words we define the choice of our phase as 

€ 

˜ Y (s) =
˜ y 1(s)
˜ y 2(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; w(s) = ˜ y 1(s);ψ(s) = arg ˜ y (s)( ). 
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€ 

d
ds

w
u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ ˜ Y =

w
u + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ ⇒

ʹ′ w +iw ʹ′ ψ = u + i /w
ʹ′ u − i ʹ′ w /w 2 + i ʹ′ ψ u + i /w( ) = −K1w

.  (L5-31) 

Then, separating the real and imaginary parts, we have from the first equation: 

€ 

u = ʹ′ w ; ʹ′ ψ =1/w 2.     (L5-32) 
Plugging these into the second equation yields one nontrivial equation on the envelope function, 
w(s): 

€ 

ʹ′ ʹ′ w + K1(s)w =
1

w 3 .       (L5-33) 

Thus, the final form of the eigen vector can be rewritten as 

€ 

Y =
w
ʹ′ w + i /w

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; ʹ′ ψ =

1
w 2 ; ˜ Y = Yeiψ      (L5-34) 

The parameterization of the linear 1D motion is  

€ 

x
ʹ′ x 

⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = Re aeiϕ w

ʹ′ w + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;      

€ 

x = a ⋅w(s) ⋅ cos ψ(s) +ϕ( )
ʹ′ x = a ⋅ ʹ′ w (s) ⋅ cos ψ(s) +ϕ( ) − sin ψ(s) +ϕ( ) /w(s)( )

    (L5-35) 

where a and ϕ  are the constants of motion.  
 

 
Tradition in accelerator physics calls for using the so-called β-function, which simply a square of 
the envelope function: 

€ 

β ≡ w2 ⇒ ʹ′ ψ =1/β .     (L5-36) 
and a wavelength of oscillations divided by 2π. Subservient functions are defined as 

€ 

α ≡ − ʹ′ β ≡ −w ʹ′ w , γ ≡ 1+α 2

β
.    (L5-37) 

Manipulations with them is much less transparent, and oscillation (L5-35) looks like 

! 

aw
! 

a /w

! 

a " w 2 +1/w 2

x'

x
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€ 

x = a ⋅ β(s) ⋅ cos ψ(s) +ϕ( )
ʹ′ x = −

a
β(s)

⋅ α(s) ⋅ cos ψ(s) +ϕ( ) + sin ψ(s) +ϕ( )( )
    (L5-35’) 

Finally, (L5-13’) gives us a well-known feature in AP parameterization of a one-turn matrix:  

€ 

T =UΛU−1 = Icosµ + Jsinµ;   J =
α β

−γ −α

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    (L5-13’’) 

Another important parameter in accelerator physics is the transformation to action-angle 

variables 

€ 

ϕk,Ik =
ak
2

2
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

. Usually this requires two steps: The first is  

€ 

˜ q k = ake
iϕ k / 2, ˜ p k = iake

iϕ k / 2{ } . 

The second was given as a homework. Let us demonstrate that symplectic transformation 

€ 

X(s)⇒ ˜ X (s). 

€ 

X(s) = V s( ) ˜ X ,    ʹ′ V s( ) = SH s( )V s( ) .    (L5-38) 
is canonical. Beginning from a Hamiltonian composed of two parts, a linear part and an arbitrary 
one  

  

€ 

H =
1
2
XTH s( )X + H 1 (X,s) .     (L5-39) 

The equation of motion  

  

€ 

dX
ds

= S ⋅ ∂H
∂X

= SH s( ) ⋅ X + S ⋅ ∂H 1
∂X

.    (L5-40) 

becomes with substitution (L5-38) 

  

€ 

V ˜ X ( )ʹ′ = SHV ⋅ ˜ X + V ˜ ʹ′ X = SH s( ) ⋅V ˜ X + S ⋅ ∂H 1
∂X

⇒ V ˜ ʹ′ X = S ⋅ ∂H 1
∂X

.   (L5-41) 

equivalent to the equations of motion with the new Hamiltonian:   

€ 

H 1 (V ˜ X ,s)  

  

€ 

˜ ʹ′ X = V−1S ⋅ ∂H 1
∂X

; ∂
∂X

= V−1T ∂
∂ ˜ X 

⇒ ˜ ʹ′ X = V−1SV−1T( ) ⋅ ∂H 1
∂ ˜ X 

⇒ ˜ ʹ′ X = S ⋅ ∂H 1
∂ ˜ X 

. (L5-42) 

This result (even though expected) has long-lasting consequences – the trivial (linear) part in the 
Hamiltonian can be removed from equations of motion, so allowing one to use this in 
perturbation theory or at least to focus only on non-trivial part of the motion.  

€ 

V =
1
2
Y1,iY1......[ ] ⇒ VTSV = S #    (L5-43) 

 
One should note for completeness that there is another way of parameterization of coupled 
motion proposed by Edward and Teng parameterization (D.A.Edwards, L.C.Teng, IEEE Trans. 
Nucl. Sci. NS-20 (1973) 885), which differs we do not discuss here.  

Because parameterization is very useful for solving many standard accelerator problems, 
bellow I summarize our main funding with emphasis on most useful cases. I will not repat the 
argument but write all appropriate equations: 
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General parameterization of motion of an arbitrary linear Hamiltonian system:

€ 

H =
1
2

hij (s)xi
i=1

2n

∑
i=1

2n

∑ x j ≡
1
2
XT ⋅H(s) ⋅ X , 

€ 

XT = q1 P1 ..... .... qn Pn[ ] = x1 x2 ..... .... x2n−1 x2n[ ]. 

€ 

dX
ds

=D(s) ⋅ X; D = S ⋅H(s) , 

€ 

X(s) =M so s( ) ⋅ Xo .     (I) 

€ 

ʹ′ M ≡ dM
ds

= D(s) ⋅M;  

€ 

M so( ) = I, 

€ 

MT ⋅S ⋅M = S,  

€ 

M−1 = −S ⋅MT ⋅S.   (II) 

Parameterization of motion: a periodic system with period C 

€ 

H(s+ C) =H(s) 

€ 

T(s) =M s s+ C( ), 

€ 

det T− λi ⋅ I[ ] = 0    (III) 

Stable system  

€ 

λi =1.

€ 

λk ≡1/λk+n ≡ λ
*
k+n ≡ eiµk ; µk ≡ 2πν k,   {k =1,...n}.   (IV) 

 
1D - ACCELERATOR 

€ 

˜ h = p2

2
+ K1(s)

y 2

2
; H =

K1 0
0 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;D = SH =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  

€ 

d
ds

x
p
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

0 1
−K1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

x
p
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ =

p
−K1x
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ (i.e. ʹ′ x ≡ p) . 

€ 

T(s) =
a b
c d
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =U(s)ΛU−1(s); Λ =

λ 0
0 1/λ
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

eiµ 0
0 e−iµ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;  

€ 

T = Icosµ + Jsinµ;

J =
−w ʹ′ w w2

− ʹ′ w 2 −
1

w2 w ʹ′ w 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
α β

−γ −α

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;    J2 = −I

 

 
HENCE: 

 

€ 

€ 

T = Icosµ + Jsinµ;

J =
−w ʹ′ w w2

− ʹ′ w 2 −
1

w2 w ʹ′ w 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
α β

−γ −α

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;    J2 = −I;   γ = 1+α 2( ) /β

cosµ = Trace(T) /2 =
T11 + T22

2
Stability  if :−1 < Trace(T) /2 <1

w2 ≡ β =
T12

sinµ
=

T12

1− Trace(T) /2( )2
; w =

T12

1− Trace(T) /2( )2
;

w ʹ′ w ≡ −α =
T22 −T11

2cosµ
= −

T11 −T22

T11 + T22
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€ 

T(s) =U(s)ΛU−1(s); Λ =

λ1 0 0
0 λ1

* 0
... 0

0 0 0 λn
*

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

; T ⋅U =U ⋅ Λ; Λ =U−1 ⋅T ⋅U....  (V) 

€ 

U(s) = Y1,Y1
* ....Yn ,Yn

*[ ];     T(s)Yk (s) = λkYk (s)    ⇔  T(s)Yk
*(s) = λk

*Yk
*(s)     (VI) 

€ 

˜ Y k (s1) =M s s1( ) ˜ Y k (s) ⇔ d
ds

˜ Y k =D s( ) ⋅ ˜ Y k ; 

€ 

˜ U (s1) = M s s1( ) ˜ U (s) ⇔ d
ds

˜ U = D s( ) ⋅ ˜ U   (VII) 

€ 

˜ U (s + C) = ˜ U (s) ⋅ Λ, ˜ Y k (s + C) = λk
˜ Y k (s) = eiµk ˜ Y k (s)     (VIII) 

€ 

˜ Y k (s) = Yk (s)eψ k s( ); Yk (s + C) = Yk (s); ψk s + C( ) =ψk s( ) + µk    (IX) 

€ 

˜ U (s) = U(s) ⋅ Ψ(s), Ψ(s) =

eiψ1 (s) 0 0
0 e− iψ1 (s) 0

... 0
0 0 0 e−iψ n (s)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

    (X) 

€ 

Yk
T * ⋅S ⋅Yj≠k = 0; Yk

T ⋅S ⋅Yj = 0;  

€ 

Yk
T * ⋅S ⋅Yk = 2i      (XI) 

€ 

UT ⋅S ⋅U ≡ ˜ U T ⋅S ⋅ ˜ U = −2iS, U−1 =
1
2i

S ⋅UT ⋅S    (XII) 

€ 

X(s) =
1
2

ak
˜ Y k + ak

* ˜ Y k
*( )

k=1

n

∑ ≡ Re akYke
iψ k

k=1

n

∑ ≡
1
2

˜ U ⋅ A =
1
2

U ⋅ Ψ ⋅ A =
1
2

U ⋅ ˜ A   (XIII) 

€ 

ai =
1
2i

Yi
*T SX; ˜ a i ≡ aie

iψ
i =

1
2i

Yi
*T SX;

A = 2 ˜ U −1 ⋅ X = −iΨ−1 ⋅S ⋅UT * ⋅S ⋅ X; ˜ A = ΨA = −i ⋅S ⋅UT * ⋅S ⋅ X .
   (XIV) 

 
1D - ACCELERATOR 

 

€ 

Y =
w
ʹ′ w + i /w

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; ˜ Y =

w
ʹ′ w + i /w

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ ; U =

w w
ʹ′ w + i /w ʹ′ w − i /w

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ; ˜ U = U ⋅

eiψ 0
0 e−iψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

€ 

ʹ′ ʹ′ w + K1(s)w =
1

w 3 ,   

€ 

ʹ′ ψ =1/w2 ;

€ 

x
ʹ′ x 

⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = Re aeiϕ w

ʹ′ w + i /w
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ eiψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; 

€ 

x = a ⋅w(s) ⋅ cos ψ(s) +ϕ( )
ʹ′ x = a ⋅ ʹ′ w (s) ⋅ cos ψ(s) +ϕ( ) − sin ψ(s) +ϕ( ) /w(s)( )

 

€ 

β ≡ w2 ⇒ ʹ′ ψ =1/β ;

€ 

α ≡ − ʹ′ β ≡ −w ʹ′ w , γ ≡ 1+α 2

β
 - definitions 

€ 

x = a ⋅ β(s) ⋅ cos ψ(s) +ϕ( )
ʹ′ x = −

a
β(s)

⋅ α(s) ⋅ cos ψ(s) +ϕ( ) + sin ψ(s) +ϕ( )( )
 

Complex amplitude and real amplitude and phase are easy to calculate. Expression for a2 is 
called Currant-Snyder invariant. 
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€ 

X = Re ˜ a Y;

aeiϕ = −iY *T SX =
w
ʹ′ w − i /w

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

T

⋅
ʹ′ x 

-x
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = x /w + i ʹ′ w x - w ʹ′ x ( )

a2 =
x2

w 2 + ʹ′ w x - w ʹ′ x ( )2
≡

x2 + αx +β ʹ′ x ( )2

β
≡ γx2 + 2αx ʹ′ x + β ʹ′ x 2

ϕ = arg x /w + i ʹ′ w x - w ʹ′ x ( )( ) = tan−1 w ʹ′ w x - w 2 ʹ′ x 
x

= −tan−1αx +β ʹ′ x 
x

;

ϕ = sin−1 ʹ′ w x - w ʹ′ x 

x2 + w 2 ʹ′ w x - w ʹ′ x ( )2
= −sin−1 αx +β ʹ′ x 

γx2 + 2αx ʹ′ x + β ʹ′ x 2

 

 
 
Inverse ratios – matrices through parameterization: reverse of eq (VII), where U is propagated by 
M. 

€ 

M s1 s2( )= ˜ U (s2) ˜ U −1(s1) =
i
2

˜ U (s2) ⋅S ⋅ ˜ U T (s1) ⋅S =
i
2

U(s2) ⋅ Ψ(s2) ⋅S ⋅ Ψ−1(s1) ⋅U
T (s1) ⋅S

Ψ(s2) ⋅S ⋅ Ψ−1(s1) ≡ Ψ(s2 − s1) ⋅S; M s1 s2( )=
i
2

U(s2) ⋅ Ψ(s2 − s1) ⋅S ⋅U
T (s1) ⋅S

(XV) 

€ 

T =UΛU−1 =
i
2
UΛSUTS   Specific case of s1=s+C 

€ 

T =
1
2i
UΛSUTS =

1
2i

w w
ʹ′ w + i

w ʹ′ w − i
w

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
⋅

eiµ 0
0 e−iµ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

0 1
−1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

w ʹ′ w + i
w

w ʹ′ w − i
w

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⋅
0 1
−1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

1
2i

weiµ we−iµ

ʹ′ w + i
w

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ eiµ ʹ′ w − i

w
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e− iµ

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⋅

i
w
− ʹ′ w w

i
w

+ ʹ′ w −w

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

eiµ + e− iµ

2
−

eiµ − e−iµ

2i
w ʹ′ w w2 eiµ − e− iµ

2i

− ʹ′ w 2 +
1

w2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

eiµ − e−iµ

2
eiµ + e− iµ

2
+

eiµ − e−iµ

2i
w ʹ′ w 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

€ 

T =
1
2i
UΛSUTS =

cosµ − w ʹ′ w ⋅ sinµ w2 ⋅ sinµ

− ʹ′ w 2 +
1

w2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ sinµ cosµ + w ʹ′ w ⋅ sinµ

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

= Icosµ + Jsinµ;

J =
−w ʹ′ w w2

− ʹ′ w 2 −
1

w2 w ʹ′ w 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

=
α β

−γ −α

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;    

J2 =
−w ʹ′ w w2

− ʹ′ w 2 +
1

w2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ w ʹ′ w 

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
 −

−w ʹ′ w w2

ʹ′ w 2 +
1

w2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ w ʹ′ w 

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

=
−1 0
0 −1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = −I
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1D - ACCELERATOR 
 

€ 

M s1 s2( ) =
1
2i

w 2 w 2

ʹ′ w 2 + i /w 2 ʹ′ w 2 − i /w 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

eiΔψ 0
0 e−iΔψ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

0 1
−1 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅

w1 ʹ′ w 1 + i /w1

w1 ʹ′ w 1 − i /w1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

0 1
−1 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Δψ =ψ s2( ) −ψ s1( );

M s1 s2( ) =
1
2i

w 2 w 2

ʹ′ w 2 + i /w 2 ʹ′ w 2 − i /w 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅
− ʹ′ w 1 − i /w1( )eiΔψ w1e

iΔψ

ʹ′ w 1 + i /w1( )e−iΔψ -w1e
−iΔψ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

w 2 /w1 cosΔψ −w 2 ʹ′ w 1 sinΔψ w1w 2 sinΔψ

ʹ′ w 2 /w1 − ʹ′ w 1 /w 2( )cosΔψ

− ʹ′ w 1 ʹ′ w 2 +1/ w 2w1( )( )sinΔψ
w1 /w 2 cosΔψ + w1 ʹ′ w 2 sinΔψ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

use 

€ 

w = β ; ʹ′ w = -α / β  to get a standard 

€ 

M s1 s2( ) =

cosΔψ +α1 sinΔψ
β1 /β2

β1β2 sinΔψ

−
(α2 −α1)cosΔψ + (1+α1α2)sinΔψ

β1β2

cosΔψ −α2 sinΔψ
β2 /β1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

with obvious simplification for one-turn matrix: 

€ 

T = M ss+ C( ) =
t11 t12
t21 t22
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =

cosµ +α sinµ β sinµ

−
(1+α 2)sinµ

β
cosµ −α sinµ

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
Icosµ + Jsinµ; J =

α β

−γ −α

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

from where one can get easily all functions and constants: 

€ 

µ = cos−1 t11+ t22
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ with sign sinµ( ) = sign t12( ); β = t12 /sinµ; α =

t11− t22
2sinµ

 

 
 
A little bit more complex is fully coupled 2D case.  
 
 

€ 

T s( ) =
N1 N2

N3 N4

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  det T − λI[ ] = λ4 − λ

3

Tr T[ ] + λ
2

(2 + a) − λTr T[ ] +1= 0

a = Tr N1[ ] ⋅Tr N4[ ] −Tr N2N3[ ] − 2detN2

(note  detN2 = detN3 =1− detN1 =1− detN4 )

 

Finding roots: 

€ 

zk = λk + λk
−1; zk =

Tr N1 + N1[ ]
2

±
Tr 2 N1 − N1[ ]

4
+ Tr N2N3[ ] + 2detN2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
 

 

€ 

X =

x
Px

y
Py

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

= Re ˜ a 1Y1 + Re ˜ a 1Y2 = Re a1
˜ Y 1 + Re ˜ a 1 ˜ Y 2  
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€ 

Yk = Rk + iQk;   ˜ Y k =

wkxe
iψ kx

ukx + ivkx( )eiψ kx

wkye
iψ ky

uky + ivky( )eiψ ky

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;   ψkx (s + C) =ψkx (s) + µk; ψky (s + C) =ψky (s) + µk;

wkxvkx + wkyvky =1;

 

Conditions: there are  

€ 

Yk
*T SYk = 2i;  Y1

*T SY2 = 0; Y1
T SY2 = 0;   θk =ψkx −ψky

a)  w1xv1x = w2yv2y =1− q     ⇒ v1x =
1− q
w1x

;  v2y =
1− q
w2y

b)   w1yv1y = w2xv2x = q   ⇒ v2x =
q
w2x

;  w1y =
q
w1y

c)    c = w1xw1y sinθ1 = −w2xw2y sinθ2

d)   d = w1x u1y sinθ1 − v1y cosθ1( ) = −w2x u2y sinθ2 − v2y cosθ2( )
e)   e = w1y u1x sinθ1 + v1x cosθ1( ) = −w2y u2x sinθ2 + v2x cosθ2( )

 

 
Conditions are result of symplecticity. Conditions a) and b) are equivalent to Poincaré’s 
invariants conserving sum of projections on (x-px)  and (y-py) planes.   

 

€ 

Y1 =

w1xe
iϕ1x

u1x + i q
w1x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ eiϕ1x

w1ye
iϕ1y

u1y + i1− q
w1y

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ e

iϕ1y

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

;  Y2 =

w2xe
iϕ 2x

u2x + i1− q
w2x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ eiϕ 2x

w2ye
iϕ 2y

u2y + i q
w2y

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ e

iϕ 2y

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
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Lecture 6. Action-phase variables, applications of the parameterization.  
 
6.1 Action-phase variables and “slow” equation of motion 
 
 
 
 
 
 
In many practical situations the perturbation is weak  

  

€ 

H =
1
2
XTH s( )X + H 1 (X,s) .     (6-1) 

and use of the action and angle variables provide the tool needed to solve the equations either 

exactly or using various perturbation or averaging methods. The transformation to 

€ 

ϕk,Ik =
ak
2

2
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 

is canonical, and it reduces equation of motion to:  
 

€ 

dϕk

ds
=
∂H1(X Ik,ϕk,s( )

∂Ik
; dIk
ds

= −
∂H1(X Ik,ϕk,s( )

∂ϕk

    (6-2) 

where fast regular oscillatory terms are taken care of by our parameterization.  
 

6.2 Applications of parameterization to standard problems 
 

Complete parameterization developed in previous lecture can be used to solve most (if not 
all) of standard problems in accelerator. Incomplete list is given below: 

1. Dispersion 
2. Orbit distortions 
3. AC dipole (periodic excitation) 
4. Tune change with quadrupole (magnets) changes 
5. Chromaticity  
6. Beta-beat 
7. Weak coupling 
8. Synchro-betatron coupling 
9. …….. 

We do not plan to go through all these examples while focusing on general methodology and use 
selected examples to demonstrate power of the symplectic linear parameterization. 



 61 

Sample I. Let’s start from simplest problems such as dispersion and closed orbit. We found a 
general form of parameterization of linear motion in Hamiltonian system, which is solution of 
homogeneous linear equations, where B is constant vector: 
 

€ 

dX
ds

= D(s) ⋅ X; X = ˜ U (s) ⋅ B    (6-I-1) 

A standards problems is a solution of inhomogeneous equations: 

€ 

dX
ds

=D(s) ⋅ X + F(s);    (6-I-2) 

It can be done analytically by varying the constant B: 

€ 

X = ˜ U s( )B s( )⇒ ˜ U ⋅ ʹ′ B = F s( )⇒ ʹ′ B = ˜ U −1 s( )F s( )⇒ B(s) = Bo + ˜ U −1 ξ( )F ξ( )
so

s

∫ dξ  

A general solution is a specific solution of inhomogeneous equation plus arbitrary solution of the 
homogeneous – result you expect in linear ordinary differential equations (in this case with s-
depended coefficients): 

€ 

X s( ) = ˜ U s( )Ao + ˜ U s( ) ˜ U −1 ξ( )F ξ( )
so

s

∫ dξ; ˜ U −1 =
i
2

S ⋅ ˜ U T ⋅S    (6-I-3) 

For a periodic force (orbit distortions, dispersion function) 

€ 

F s+ C( ) = F s( )one can fine periodic 
solution 

€ 

X s+ C( ) = X s( ): 

€ 

˜ U −1 s( ) × ˜ U s( )Ao + ˜ U s( ) ˜ U −1 ξ( )F ξ( )
so

s

∫ dξ = ˜ U s+ C( )Ao + ˜ U s+ C( ) ˜ U −1 ξ( )F ξ( )
so

s+C

∫ dξ
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

Ao I− Λ( ) = Λ ˜ U −1 ξ( )F ξ( )
s

s+C

∫ dξ ≡ ˜ U −1 ξ( )F ξ( )
s−C

s

∫ dξ ⇒ Ao = I− Λ( )−1 ˜ U −1 ξ( )F ξ( )
s−C

s

∫ dξ

X s( ) = ˜ U s( ) I− Λ( )−1 ˜ U −1 ξ( )F ξ( )
s−C

s

∫ dξ

 (6-I-4) 

It is easy to see that 

€ 

X s+ C( ) = X s( )  exists if none of the eigen values is not equal 1 – otherwise 
matrix 

€ 

I− Λ( ) would have zero determinant and can not be inverted! 
Specific examples: Orbit distortions caused by the field errors, transverse dispersion. 
When the conditions for the equilibrium particle and the reference trajectory are slightly 
violated: 

€ 

XT = x,P1,y,P3,τ,δ{ };FT = 0, e
c
δBy +

Eo

poc
δEx

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,0,

e
c
δBx −

Eo

poc
δEy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,0,0

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

K s( ) ≡ 1
ρ s( )

−
e
poc

By ref
+
Eo

poc
Ex ref

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − fx; fx =

e
poc

δBy +
Eo

poc
δEx

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;

e
poc

Bx ref −
Eo

poc
Ey ref

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = − fy =

e
poc

δBx −
Eo

poc
δEy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

.  (6-I-5) 

Plugging (6-I-5) into (6-I-4) will give one the periodic closed orbit for such a case. For finding 
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reduces to 

€ 

˜ h = P1
2 + P3

2

2po

+ F x 2

2
+ Nxy + G y 2

2
+ L xP3 − yP1( ) +  δ

2

2po

⋅
m2c 2

po
2 + gx xδ + gy yδ  

with  

€ 

F = S ∂H
∂X

= 0,−gx,0,− gy,0,−
m2c 2

po
3

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

T

. 

 
 

1D ACCELERATOR 
 

€ 

X s( ) =
w(s) w(s)

ʹ′ w (s) + i /w(s) ʹ′ w (s)− i /w(s)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅

ʹ′ w ξ( ) − i /w ξ( )( )eiψ(s)− iψ ξ( ) 1− eiµ( )−1
-w ξ( )eiψ(s)− iψ ξ( ) 1− eiµ( )−1

- ʹ′ w ξ( ) + i /w ξ( )( )eiψ ξ( )− iψ(s) 1− eiµ( )
−1

w ξ( )eiψ ξ( )− iψ(s) 1− eiµ( )
−1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

iF ξ( )
2s−C

s

∫ dξ

€ 

XT = x, ʹ′ x { };FT =
e

poc
δBy 0,1{ }  - orbit; 

€ 

FT = K(s) 0,1{ } for dispersion,  i.e. 

€ 

FT = f s( ) 0,1{ } 

€ 

X s( ) =

Re w(s)w ξ( )ei(ψ(s)−ψ ξ( )−µ / 2) e− iµ / 2 − eiµ / 2

−i
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

......

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

f ξ( )
s−C

s

∫ dξ  

i.e. 

€ 

x s( ) =
w(s)

2sinµ /2
f ξ( )w ξ( )cos(ψ(s)−ψ ξ( ) −µ /2)dξ

C
∫  

 
First example: orbit distortion 

€ 

fx s( ) = −
eδBy s( )
poc

;  fy s( ) =
eδBx s( )
poc

 

€ 

δx s( ) = −
w(s)

2sinµ /2
eδBy ξ( )
poc

w ξ( )cos(ψ(s)−ψ ξ( ) −µ /2)dξ
C
∫

δy s( ) =
w(s)

2sinµ /2
eδBx ξ( )
poc

w ξ( )cos(ψ(s)−ψ ξ( ) −µ /2)dξ
C
∫

 

but this is not the end of the story for horizontal motion! (what about change of the orbiting 
time?) 
Second example: Dispersion 

€ 

fx s( ) = Ko(s)π l = Ko(s)πτ /βo;   

€ 

x s( ) = D(s) ⋅ π l = D(s) ⋅ πτ /βo;   

€ 

D s( ) = −
w(s)

2sinµ /2
Ko ξ( )w ξ( )cos(ψ(s)−ψ ξ( ) −µ /2)dξ

C
∫  
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Sample II: Beta-beat – 1D case 
 
It is simple fact that any solution can be expanded upon the eigen vectors of periodic system 
(FOD cell repeated again and again is an example). Let ‘s consider that at azimuth s=so initial 
value of “injected” eigen vector V being different from the periodic solution Y. We expand it as  

€ 

V (so) = aYk (so)+ bYk
*(so) =

vo

ʹ′ v o +
i

vo

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
;Yk =

wo

ʹ′ w o +
i

wo

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

a =
1
2i

 Yk
*T (so)SV (so)  ; b =

1
−2i

 Yk
T (so)SV (so)

a =
1
2i

vo ʹ′ w o − wo ʹ′ v o + i vo

wo

+
wo

vo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
;b = −

1
2i

vo ʹ′ w o − wo ʹ′ v o + i vo

wo

−
wo

vo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
;

d
ds

˜ Y (s) =D s( ) ⋅ ˜ Y (s);  ˜ Y (s) = Y (s)eiψ(s);Y (s + C) = Y (s)

  (6-II-1) 

It is self-evident that  

€ 

˜ ʹ′ V = D ˜ V ;  ˜ V (s) = a ˜ Y k (s)+ b ˜ Y k
*(s) =

v
ʹ′ v +

i
v

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
eiϕ = Yk = a

w
ʹ′ w +

i
w

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
eiψ + b

w
ʹ′ w − i

w

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
e− iψ

 v 2
=

w 2

4
aeiψ + be− iψ 2

=
w 2

4
a 2

+ b 2
− 2Re ab*e2iψ( )( )

  (6-II-2) 

i.e. beta-function will beat with double of the betatron phase. 
 
Sample III: Perturbation theory (ala quantum mechanics)  
 
Small variation of the linear Hamiltonian terms (including coupling) 

€ 

dX
ds

= D(s) + εD1(s)( ) ⋅ X;    (6-III-1) 

Assuming that changes are very small we can express the changes in the eigen vectors using 
basis of (VII): 

€ 

˜ Y 1k = ˜ Y ke
iδφk + ε j

˜ Y j;
d ˜ Y 1k

ds
= D(s) + εD1(s)( ) ⋅ ˜ Y 1k + o(ε2); 

€ 

˜ Y 1k = ˜ Y ke
iδφk + ε j

˜ Y j;
d ˜ Y 1k

ds
= D(s) + εD1(s)( ) ⋅ ˜ Y 1k + o(ε2);

d ˜ Y k
ds

=D(s) ˜ Y k;
dε j

ds
˜ Y j = εD1(s) ˜ Y k;⇒ε j = ε j 0 +

ε
2i

˜ Y j
*T (ζ )SD1(ζ ) ˜ Y k

s

∫ (ζ )dζ ;

i dδφk

ds
˜ Y k = εD1(s) ˜ Y k ⇒δφk =

ε
2

˜ Y k
*T (ζ )SD1(ζ ) ˜ Y k

s

∫ (ζ )dζ;

  (6-III-2) 
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€ 

ε j (s+C) = ε j (s)

ε j =
ε

2i ei µk −µ i( ) −1( )
ei ψ k (s)−ψ i (ζ )( )Yj

*T (ζ)SD1(ζ)Yk
0

C

∫ (ζ)dζ;   (6-III-2) 

 

One should be aware of the resonant case 

€ 

ei µk −µ i( ) =1, when one should solve self-consistently 
the set of (6-II-2). It is well known case well described in weak coupling resonance case or in the 
case of parametric resonance. 
 
Sample IV: small variation of the gradient. It can come from errors in quadrupoles or from a 
deviation of the energy from the reference value. In 1D case (reduced) it is simple addition to the 
Hamiltonian: (including sextupole term!) 

  

€ 

H1 = δK1
z2

2
; z = {x,y};

π l = p / po −1

δK1 x,y = δ
e
pc

∂By

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 

e
pc
δ
∂By

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −K1π l 

e
pc

∂ 2By

∂x 2 Dx

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ π l + o π l

2( )

 (6-IV-1) 

Plugging our parameterization into the residual Hamiltonian we get: 

€ 

z = w(s) 2I cos ψ s( ) +ϕ( )
H1 = δK1(s) ⋅ w

2(s) ⋅ I ⋅ cos2 ψ s( ) +ϕ( )
  (6-IV-2) 

The easiest way is to average the Hamiltonian (on the phase of fast betatron oscillation – our 
change is small! And does not effect them strongly) to have a well-know fact that the beta-
function is also a Green function (modulo 4π) of the tune response on the variation of the 
focusing strength. 
 

€ 

H1 =
δK1(s) ⋅ w

2(s)
2

⋅ I ≡
δK1(s) ⋅ β(s)

2
⋅ I

ʹ′ ϕ =
∂ H1

∂I
=
δK1(s) ⋅ β(s)

2
;

Δϕ =
1
2

δK1(s) ⋅ β(s)ds;  ∫ ΔQ =
Δϕ
2π

=
1

4π
δK1(s) ⋅ β(s)ds;  ∫

 (6-IV-3) 

 
Direct way will be to put it into the equations (43) and to find just the same, that <I’>=0 and the 
above result. 
Finally, putting a weak thin lens as a perturbation gives a classical relation: 
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€ 

δK1(s) =
1
f
δ s− so( )

ΔQ =
Δϕ
2π

=
1
4π

βo(s)
f

    (6-IV-1) 

 
In order to find variation of the eigen vector (i.e. bet-function) one will need to use the 
Perturbation theory (ala quantum mechanics) – see above. 
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Lecture 7. Synchrotron oscillations and effects of synchrotron radiation 
 
First, let’s try to finish our 3D oscillator picture, before jumping into a simplified picture usually 
used in accelerator literature. Passing through a magnetic system will result in as 6x6 matrix  

€ 

T6x6 =

T4x4 0 R
RTS4 x4T4 x4 1 R56

 0   0   0   0  0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

   (L3-61) 

In the absence of RF cavity, the solutions are already known: 

€ 

X = Rea1Y1(s)e
iψ1 (s) + Rea2Y2(s)eiψ2 (s) +D(s)πτ +Θ⋅ s ⋅ πτ

Y1(s+ C) = Y1(s); Y2(s+ C) = Y2(s);
ψ1(s+ C) =ψ1(s) + µ1; ψ2(s+ C) =ψ2(s) + µ2;
D(s+ C) =D(s); 

 (7-1) 

which has one growing term – the arrival time continuously grows if energy of particle deviates 
from the reference value. We already discussed the x and y components of the eigen vectors Y. 
Let’s define what is the form is: 

€ 

D(s) =

D(s)
d56(s)

1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

;  D(s) = T − I( )−1R    ! 

Θ =

04

−η

1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 ;  η = R56 C( ) /C =
1

βo
2γ o

2 −αC ; αC = − gx (s)Dx (s) + gy (s)Dy (s)( )ds
0

C

∫  

 

 (7-2) 

In normal uncoupled case the orbit compaction factor 

€ 

αC = K(s)Dx (s)ds
0

C

∫ /βo  is determined by 

the product horizontal dispersion and the orbit curvature. It is usually positive number, because 
particles in typical accelerator go to outside of the ring (Dx>0). For such ring, there is an energy 
when time of flight around the ring does not depend (in the first order!) on the particle’s energy: 

€ 

η = 0   ⇒βtγ t =
1
αC

   (7-3) 

This energy is called transition energy and it can be very important for many hadron rings. An 
electron storage ring with very low energy electron rings (which is next to impossible to find) 
would have similar problem, which is called transition. 
One can design (and a number of people did build them) a storage ring with negative and zero 
compaction factor. Zero value of compaction value usually spell trouble… But negative one will 
work for any ring and will not have transition energy (so called lattice with imaginary transition 
energy – see (7-3)). 
Symplectic condition implies that the term in the 5-th position is defined:  
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€ 

DT SYk = 0⇒ Yk (s) =

Yk (s)
DTSYk

0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

;    (7-4) 

Thus, all terms in equation (7-1) are defined. Now we will include a short RF cavity, where we 
linearized the voltage  

€ 

MRF =

I 0 0
0 I 0
0 0 Ml

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

;Ml =
1 0
−q 1
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;   q = u ⋅ lRF = −

e
poc

2

∂Vrf

∂t
         (L3-64) 

€ 

Ttotal =
I4x4 0 0

0
0

1 0
−q 1

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⋅

T4x4 0 R
RTS4x4T4x4 1 R56

 0  0  0  0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

T4x4 0 R
RTS4x4T4x4 1 R56

−qRTS4x4T4x4 −q 1− qR56

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  (7-5) 

It may be surprising but there is no easy way of solving this system and finding detailed solution. 
We can use use our perturbation method to find change in the betatron frequencies caused by the 
RF cavity using: 

€ 

δφk =
1
2

˜ Y k
*T (ζ )ΔH(ζ ) ˜ Y k

s

∫ (ζ )dζ;

ΔH55 = qδ s− srf( ); δQk =
q

4π
Yk 5

2  =
q

4π
DT SYk

2

δQk = −
1

4π
e

poc
2

∂Vrf

∂t
DT SYk

2

  (7-6) 

This is probably one of the results you will have hard time finding in the accelerator literature. 
The term 

€ 

DTSYk
2  is actually well know – it is responsible for quantum excitation of the betatron 

oscillation during the process of synchrotron radiation (see next sections). For uncoupled 
transverse motion, vertical dispersion is equal zero and only Qx is affected by an RF placed in 
the straight section with non-zero dispersion: 

€ 

DT SYk

2
= ʹ′ w xDx − wx ʹ′ D x( )2 +

Dx
2

wx
2 ≡

γ xDx
2 + 2αxDx ʹ′ D x + βx ʹ′ D x

2

βx

  (7-7) 

Fortunately, this tune shifts are extremely small. In contrast with transverse motion, longitudinal 
motion without RF is degenerated (zero tune!). We have two root eigen vectors 

€ 

D,  Θ . Knowing 
that synchrotron oscillation are slow, we may try to construct a vector, which can serve as a first 
order approximation: 

€ 

Y3 =

iD /wl

wl

i /wl

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

     (7-8) 

which is symplecticly orthogonal to the transverse vectors. Trying it with the matrix  (7-5) 

€ 

T4 x4 0 R
RTS4x4T4x4 1 R56
−qRTS4x4T4x4 −q 1− qR56

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

⋅

iD /wl

wl

i /wl

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

iD /wl

wl + i(RTS4 x4T4 x4D+ R56) /wl

−qwl − i 1− qR56 − qR
TS4 x4T4 x4D( ) /wl

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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does not deliver a lot of promise. One case, which is easy to handle is when the cavity is installed 
in so-called dispersion free section, i.e. D=0 , R=0. In this case, longitudinal matrix is co,pleterly 
separated from the transverse and  

€ 

Ttotal =
T4 x4 0

0 Tl

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  Tl =

1 R56

−q 1− qR56

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  .   (7-9) 

The motions is stable only when 

€ 

0 < qR56 < 4  and it will give us (using standard Courant-Snyder 
parameterization)  

€ 

cosµl =1− qR56 /2; wl
2 = βl = R56 / 1− 1− qR56 /2( )2 ;α l =

qR56

2 1− 1− qR56 /2( )2
   (7-9) 

What is typical for the majority of the accelerators, that 

€ 

qR56<<1. In this case we can expand the 
equations in (7-9) to find: 

€ 

µl ≅ qR56 ; Qs ≡
qR56

2π
;  wl

2 = β l ≅
R56

q
;α l =

qR56

2
~ µl /2     (7-9’) 

The synchrotron tune is usually very low with typical values of Qs ~ 0.0001 to 0.01. It means 
also that 

€ 

α l ~ πQs<<1 and the form (7-8) for the eigen vector is actually rather good 
approximation. We also can conclude that betatron tunes in (7-6) are proportional to square of 
Qs: 

€ 

 δQk =
q

4π
DTSYk

2
≅
πQs

2

R56

DTSYk
2    (7-10) 

In order to estimate it, we scale it as 

 

€ 

 DTSYk
2

~ Dx
2 /βx;  R56 ~ 2πDx;   δQx ~ Qs

2

2
Dx

βx

,  (7-11) 

i.e. typical change of the betatron tune is bellow 10-4, i.e. is very-very small. Only when 
synchrotron tune are approaching values ~ 1, the synchrotron oscillations become heavily cross-
talking with betatron oscillations. In other cases, the synchrotron oscillations can be considered 
as adiabatically slow as the background for fast betatron oscillations. Hence, the standard 
treatment from the book. 
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Lecture 8. Effects of synchrotron radiation 
 
I. Oscillator 
Before we embark on detail studies of radiation effects on the beams in accelerators, let’s look 
on a very simple model of harmonic oscillator: 

€ 

H =
P 2

2m
+ k x

2

2
or h =

p2

2
+ω 2 x 2

2
; ω =

k
m

    (8-1) 

described by differential equations  

€ 

ʹ′ x =
∂h
∂p

= p; ʹ′ p ≡ ʹ′ ʹ′ x = −
∂h
∂x

= −ω 2x; x = A ⋅ cos(ωt +ϕ); p = −Aω ⋅ sin(ωt +ϕ)

ʹ′ X =
ʹ′ x 
ʹ′ p 

⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ = S ∂h

∂X
=

0 1
−ω 2 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ X; X = Re aYei ωt +ϕ( ); Y =

1/ ω

i ω

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;  I =

a2

2
,ϕ

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (8-2) 

Let’s add a weak friction 

€ 

ε <<ω : 

€ 

p = ʹ′ x ; ʹ′ p = −ω 2x − 2αp; ʹ′ X = D ⋅ X =
0 1
−ω 2 −2α
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ X;

det
λ −1
ω 2 λ + 2α
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = λ λ + 2α( ) +ω 2 = 0; λ = −α ± iω1; ω1 = ω 2 −α 2 ;

x = A ⋅ e−αt ⋅ cos(ω1t); p = −A ⋅ e−αt α ⋅ cos(ω1t) + sin(ω1t)( );

X = ReaYeλt + iϕ = a ⋅ e−αt ReYeiω1t ; Y =
1/ λ

i λ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;

  (8-3) 

which make a very small change to the frequency of the oscillations, but make free oscillations 
slowly decaying. NOTE that damping decrement 

€ 

α  is only a half of that of simple decay: 

€ 

ʹ′ p = −2αp → p = poe
−2αt . 

This is the result of oscillations, where, time-averaged, only half energy is in the kinetic energy 

€ 

p2 /2 , which decays. The potential energy decays only through its coupling to the kinetic energy 
via oscillations. The action of the oscillator, I, which represent the area of the phase space, 
decays with the simple decay rate towards zero: 

€ 

ʹ′ I =
a2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
ʹ′
= −2αI; I = Ioe

−2αt ,    (8-4) 

while the oscillator phase does not stationary point or any decay. 
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Fig. 1 Poincaré plot of trajectories of normal and damped oscillator in dimensionless coordinates 

x/a; x’/ωa. 

NOTE the second fact, that trace of matrix 

€ 

D =
0 1
−ω 2 −2α
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  gives the damping rate of the 

oscillator phase space volume. Let’s add a random noise to the equations: 
 

€ 

ʹ′ x = p + δx(t); ʹ′ p = −ω 2x − 2αp + δ ʹ′ x (t); ʹ′ X =
0 1
−ω 2 −2α
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ⋅ X +

δx(t)
δ ʹ′ x (t)
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;

δx(t) = 0;   δx(t) = 0.

 (8-5) 

where 

€ 

δx(t),δ ʹ′ x (t)  are “sudden” and randomly distributed in time and amplitude jumps.  
 
One can easily calculate change in the amplitude an phase of the oscillator caused by a random 
kick: 
 

€ 

δ aeiϕ( ) = −ie−iω1tY *T ⋅ S ⋅
δx
δ ʹ′ x 
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ;

δa + iaδϕ ≅ −ie−i ω1t +ϕ( )Y *T ⋅ S ⋅ δ ʹ′ x / ω − iδx ω( )

δa = 0; δδϕ = 0; δI = aδa + δa2 /2; δI =
δa2

2
=
δ ʹ′ x 2 /ω +ω δx 2

2

  (8-6) 

Thus, the only one thing is well determined – the average change of the action, I. Adding 
damping term (8-4) to (8-6) we have:  

€ 

I ʹ′ = −2α I + D /2; D = δ ʹ′ x 2 /ω +ω δx 2 ;   (8-7) 

with stationary solution for average action (emittance) and RMS amplitude of the ensemble of 
oscillators: 
 

€ 

I =
D
4α
, i.e. ε = a2 =

D
2α

=
δ ʹ′ x 2 /ω +ω δx 2

2α
,   (8-8) 
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where ε is called emittance – phase space area occupied divided by π - of the ensemble of 
oscillators (

€ 

ε2 = x 2 ʹ′ x 2 − x ʹ′ x 2). 

 
Fig. 2 Poincaré plot of trajectories of normal and damped oscillator with random kicks (in 

dimensionless coordinates x/a; x’/ωa).  
 

Figure 2 shows Poincaré plot of few hundreds of such an oscillators starting from the same initial 
conditions (1,0) and going around for few damping times. Overall, a large ensemble of 
oscillators (or equivalently distribution of (x,p) for one oscillator in very long time – via Ergodic 
theorem, see http://en.wikipedia.org/wiki/Ergodic_theory) is described by distribution function. 
Because (I,ϕ) is Canonical pair, it is natural to use them as independent variables for the 
distribution function, f(I,ϕ,t). Few facts are apparent: the phases of oscillators walk randomly and 
because phase is cyclic function it is distributed evenly in the interval {-π, π}. Thus, there is no 
dependence on ϕ:

€ 

∂f
∂ϕ

= 0.  Finding distribution function of the action, f(I,t), requires solution of 

Fokker-Plank equation (read your favorite stat-mech book or  see Appendix H)):  

€ 

∂f
∂t

+
∂
∂I

f dI
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −
1
2
∂
∂I

δI2 ∂f
∂I

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 .    (8-9) 

We are interested in stationary solution, 

€ 

∂f
∂t

= 0, 

€ 

d
dI

f dI
dt
−
1
2
δI2 df

dI
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0  

€ 

δI2 = 2I δI   ⇒ 2αf + δI f ʹ′( )I = const → 0

ln ʹ′ f = −
2α
δI

; ⇒ f = a ⋅ e−I / I 0 ; I0 = δI /2α
   (8-10) 

Remembering that 

€ 

I =
ʹ′ x 2ω +ωδx 2

2
, it gives us just a trivial Gaussian distribution for the 

oscillators  

€ 

f (x, ʹ′ x ) =
1
2πε

e
−

a 2

2ε =
1
2πε

exp x 2ω + ʹ′ x 2 /ω
2ε

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

1
2πσ x

e
−

x 2

2σ x
2 1
2πσ x '

e
−

x' 2

2σ x '
2

σ x = ε /ω ;σ x ' = ε ⋅ω

   (8-11) 
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where we normalize it as  

€ 

f (x, ʹ′ x )dxd ʹ′ x =1∫∫ .  

Conclusions are easy to remember: Position independent diffusion in the presence of linear 
damping results in stationary Gaussian distribution of the oscillator’s amplitudes, positions and 
velocities. Phases of individual oscillators become random. Naturally, this process takes few 
damping times Td=1/α, if initial distribution deviates from the stationary.  
 
II. Synchrotron radiation 

 
 
Fig. 3. Synchrotron radiation is a fan of well-directed radiation with vertical opening ~ 1/γ. 
Radiation at a certain point of curved trajectory directed along momentum of the particle and is 
confined within ~1/γ opening angle in both horizontal and vertical directions. 
 
Detailed description of synchrotron radiation can be found in your favorite E&M book 
(Jackson?). Some additional material about the synchrotron radiation is in the handout. Here we 
will need only few specific features of synchrotron radiation, which we will use without 
derivations. We will also assume that a) our particles are ultra-relativistic, γ >> 1; b) losses for 
synchrotron radiation per turn are a small potion of the particle’ energy, i.e. we can treat it as a 
perturbation which introduces some damping, while not affecting tunes of the particle (remember 
for the oscillator it is ~ (α/ω)2). For ultra-relativistic particles E and pc become essentially 
indistinguishable:  

€ 

E = pc / 1− γ−2 ≅ pc(1−1/2γ 2) = pc + o(γ−2), 
hence we will use them this way. 
 One of the most critical feature for the damping of the transverse of the synchrotron 
radiation that it is local and is confined within a solid angle ~1/γ2 around the direction of the 
particle MECHANICAL momentum. In other words, the loss of the particle momentum is 
proportional to the total energy loss of the particle with recoil directed against the direction of the 
momentum: 
  

  

€ 

 
ʹ′ p 

p
= −

1
p

dprad

ds
⋅
 p 
p
≅ −

1
E

dErad

ds
⋅
 
τ +
 n ⋅ ʹ′ x +

 
b ⋅ ʹ′ y ( ) + O ʹ′ x 2, ʹ′ y 2,γ−2( )   (8-12) 

1/!
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Synchrotron radiation has a white spectrum, which growth as ω1/3 at low frequencies as ω < ωc 
and falls exponentially at high frequencies ω > ωc The critical frequency, ωc =2πc/λ c divides 
radiated energy by halves: the half ω > ωc  and the other half at ω > ωc . Critical wavelength of λ 

cis ~ R//γ3 and  

€ 

ωc =
2
3
γ 3
c
ρ

, 

where ρ is the radius of curvature. Hence, the most of the radiation happens in the bending 
magnets. Total radiated power of synchrotron radiation is (Z is the number of unit charges in the 
particle – Z=1 for all elementary particles, but ions): 

  

€ 

dErad

dt
=

2
3

e2Z 2γ 2

m2c 3

 
E − [

 
β ×
 
B ]( )

2
−
 
β ⋅
 
E ( )

2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
;
 
β =
 v /c .   (8-13) 

One should note that synchrotron radiation caused by acceleration along the direction of the 
momentum is energy independent and very weak (to the level that it can be ignored in practical 
cases). At the same time, acceleration normal to the direction of the motion (bending) causes 
radiation proportional to the square of the particles energy. It is also worth mentioning that 
radiation power is inverse proportional to the particles mass squared, thus a proton will radiate 
~4 106 less power from the same bending magnet compared with an electron or positron with the 
same γ. For the particles with the same energy there is additional factor 4 106. As the result of 
such dramatic dependence is that synchrotron radiation does not play any significant role in the 
hadron accelerators (even in 7 TeV LHC damping time is about 13 hours for protons with 
γ~7,000  !), but extremely important for lepton storage rings.  
Returning to s as independent coordinate we can write: 
 

  

€ 

 
ʹ′ p 

p
≅ −

1
E

dErad

ds
⋅
 
τ +
 n ⋅ ʹ′ x +

 
b ⋅ ʹ′ y ( ) + O ʹ′ x 2, ʹ′ y 2,γ−2( )

I =
1
Eo

dErad

ds
=
2
3

e2Z 2E 2

m4c 8
 
E − [

 
β ×
 
B ]( )

2
−
 
β ⋅
 
E ( )

2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
1+ Kx( )

  (8-14) 

 
The average energy loss for synchrotron radiation is restored by an RF cavity. By design, the RF 
cavity boosts only longitudinal momentum of the particles (along s), while leaving transverse 
momenta unchanged. This feature complete the circuit, which is important for understanding of 
the radiation damping. 
 

 
Fig. 4. Particle loses parts of its vertical momentum during radiation process. RF cavity restores 
(in average) only longitudinal component of the loss momentum. As the result, transverse 
momentum is damped. 
 

py

s
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Before we go into full fledged calculations, lets look at a simple picture of what’s happening in 
the vertical plane in a ring without transverse coupling (i.e. majority of the ring’s designs). As 
shown in Fig. 2, the radiation reduces transverse component of the particle’s momentum and  

€ 

ʹ′ p y
po

= −
1
E

dErad

ds
⋅ ʹ′ y ; α =

1
2E

dErad

ds C

y ≅ aβy cos ψy +ϕ( ) ⋅ e−α⋅s
  (8-15) 

where we neglected effect of the distribution of the radiation along the circumference of the 
machine replacing it by an average damping. Thus, we can conclude that the vertical betatron 
oscillations in the storage wing will damp e-fold when particle radiated twice its energy.  
 In a storage ring with separated functions (no gradients in the bending magnets) and 
rectangular magnets (too many details…- i.e. (1+Kx) term in (1-14) is canceled by the straight 
edges of the bending magnet) – total radiated power does not depend on the horizontal position, 
x. In this case, picture shown in Fig. 4 is applicable directly to the horizontal betatron oscillations 
as well: i.e. the horizontal betatron oscillations in the storage wing will damp e-fold when 
particle radiated twice its energy. Surprisingly it is almost true for most of modern synchrotron 
radiation sources. 
 What about synchrotron (energy) oscillations – they will damp too in the above scenario. 
Equations of synchrotron motion for radiating ultra-relativistic particle are: 

€ 

dδ
dn

= −ΔErad (δ) + eZ ⋅Vrf sin(ωrf to − τ /c)

dτ
dn

= −αcC
δ
Eo

;
  (8-16) 

with condition of an equilibrium particle of 

€ 

eZ ⋅Vrf sinϕ0 = ΔErad (0), where

€ 

ϕ0 =ωrf t0  is the 
equilibrium phase necessary for RF to compensate for average radiation energy loss. Expanding 
radiation about the design energy and sin about the equilibrium phase, we get for linear motion: 

€ 

dδ
dn

= −
2ΔErad

Eo

δ −
eZ ⋅Vrf cos(ϕo)

c
τ; dτ
dn

= −αcC
δ
Eo

; α // =
ΔErad

Eo

;   (1-17) 

 
This, longitudinal oscillations have twice the damping rate (it is because of the γ2 dependence of 
the intensity of the radiation). 
How to handle situation in a general case? We fist should expand our linear equations by adding 
radiation term to our Hamiltonian equations (simplified for γ >> 1): 

 

€ 

˜ h = P1
2 + P3

2

2po

+ F x 2

2
+ Nxy + G y 2

2
+ L xP3 − yP1( ) +

        δ
2

2po

⋅
m2c 2

po
2 + U τ 2

2
+ gx xδ + gy yδ + fx xτ + fy yτ

;   (5-46’)  
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€ 

F
po

= −K ⋅ e
Eo

By −
e
Eo

∂By

∂x
+
1
2
eBs

Eo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
−
e
Eo

∂Ex

∂x
− 2K eEx

Eo

;

G
po

=
e
Eo

∂Bx

∂y
+
1
2
eBs
Eo

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
−
e
Eo

∂Ey

∂y

2N
po

=
e
Eo

∂Bx

∂x
−
e
Eo

∂By

∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + K ⋅

e
Eo

Bx −
e
Eo

∂Ex

∂y
+
∂Ey

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2K

eEy

Eo

;  (5-47’)  

€ 

L
po

=κ +
e

2poc
Bs;         

U
po

=
e
poc

2
∂Es

∂t
;gx = −K c

vo

; gy = 0;

fx =
e
c
∂By

∂ct
+
e
vo

∂Ex

∂ct
; fy = −

e
c
∂Bx

∂ct
+
e
vo

∂Ey

∂ct
.

 

 
We should focus on additional linear terms. Let’s expand the radiation power in (8-14): 

  

€ 

I = Io(1+ cx ⋅ x + cy ⋅ y + c1P1 + c3P3 + cτ ⋅ τ + 2δ /E0);

Io =
2
3

e2Z 2E 2

m4c 8
 
E − [

 
β ×
 
B ]( )

2
−
 
β ⋅
 
E ( )

2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ eo

  (8-18) 

with  

€ 

cx = K −
2e
KEo

∂
∂x

Ex + By( ) +
e2Bs

2

KEo
2 ; cy = −

2e
KEo

∂
∂y

Ex + By( ) − e
2BsEs

KEo
2 ;

c1 =
2eEs

KEo

;c3 =
2eBs

KEo

;cτ =
2e
KEo

∂
∂t

Ex + By( )
 

Second equation of (8-14) shell be modified using generalized momenta 

€ 

 
 

€ 

px = po ʹ′ x = P1 − Lpoy; py = po ʹ′ y = P3 + Lpox;
dP1
ds

= −
∂h
∂x

− Io ⋅ P1 − Lpoy( ); dP3
ds

= −
∂h
∂y

− Io ⋅ P3 + Lpox( );
 

Overall, the equations of the motion become: 
 

€ 

d
ds
X =D ⋅ X;D = (SH − Io(s) ⋅G);G =

0 0 0 0 0 0
0 1 −Lpo 0 0 0
0 0 0 0 0 0
Lpo 0 0 1 0 0
0 0 0 0 0 0
cx c1 cy c3 cτ 2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

.  (8-19) 

First, the trace of the new D matrix is no longer zero, which means that determinants of the 
transport matrices are no longer unit: 

€ 

detM( s1 s2( ) = exp Trace D s( )( )ds
s1

s2

∫
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= exp 4 Io(s)d

s1

s2

∫ s
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
= λi

1

6

∏ = λ *i λi( )
1

3

∏  (8-20) 
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The above formula is known as a theorem of sums of the decrements in storage rings: i.e. the 
sum of the decrements of all three eigen modes (oscillations: 2 betatron and one synchrotron) is 
equal to four times relative loss of energy into synchrotron radiation. This is the rate with which 
6D phase space volume shrinks. Surprisingly, it is not very hard to make one of the mode (usally 
horizontal or synchrtoron, which are strongly coupled) to experience anti-damping caused by 
synchrotron radiation, i.e. to have exponential growth.  
Finally, how we can calculate decrements (increments?) of the eigen modes: we will use our 
parameterization 

€ 

X = ˜ U ⋅ A; ˜ ʹ′ U = SH ˜ U ; ʹ′ X = (SH − Io(s) ⋅G) ˜ U ⋅ A;
ʹ′ A = −Io(s) ˜ U −1G ˜ U { } ⋅ A

   (8-21) 

Averaging figure bracket will give us diagonal matrix (not-diagonal terms will vanish because 
they do oscillate) with real and imaginary part (damping of anti-damping) of the correction to out 
tunes. Expessed in the terms of the eigen vectors, diagonal terms are: 

€ 

gi = −Io(s) ⋅Yi
*T (s)SG(s)Yi(s)     (8-22) 

For a typical plane uncoupled storage ring (L=0), vertical damping is completely decouples and 
is as we discussed above. Sum of the dimensionless decrements (i.e. divided by Io) for horizontal 
betatron and synchrotron oscillations is equal 3.  
We should not that for a fixed storage ring where B ~ E, the total loss on synchrotron radiation is 
proportional γ4 

One should now just use 

€ 

Ys =

D
ʹ′ D 

iατ

1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 to calculate what will be the decrement of the synchrotron 

oscillations for a case with DC magnetic fields (i.e, no coupling with y, no time dependence, 
Bs=0, zero electric fields) and: Do it as a homework problem. Average it over the 
circumference of the machine. Keep expression analytical. Also give the expression for 
decrement of the horizontal betatron oscillations using theorem about the sum of the 
decrements. 
 
Finally, let’s discuss what stops beam oscillations to decay completely? It is quantum 
fluctuations of the radiation process, i.e. the fact that charged particles radiate energy by limps. It 
is definitely and directly excites synchrotron oscillations. Let’s calculate first the noise in the 
energy for a simple case of the magnetic field:  

  

€ 

Δδ 2 ʹ′ = Dδ = ʹ′ N ph ΔE ph =
55
24 3

e2cK 3γ 7  (8-23) 

From our oscillator studies, we now know that RMS energy spread will be  

€ 

σδ
2 = Dδ /α s    (8-24) 

What’s happens with betatron oscillations:  
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One should now just use 

€ 

ΔX =

0
0
0
0
0
Δδ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

; Δ aie
iϕ i( ) =Y *T SΔX = Δδ ⋅Yi

*(5); ΔI =
Δδ 2 ⋅ Yi

*(5)

2
 to calculate 

what will be the decrement of the synchrotron oscillations. Thus, emittances of the beam will be  

€ 

εi = Dδ Yi
*(5)

2
/α i    (8-25) 

 
 
Buy-buy linear stuff… 
 
This lecture concluded the theme of using Hamiltonian and eigen vectors approach, similar to 
that in Kolmensky book, for solving a number of standard accelerator problems.  
Finally, Appendix J shows one of many possible way to expand accelerator Hamiltonian 
analytically using Mathematica.   
 
The other lectures of our course had been more ad-hock and a subset of then and selected home 
works is collected in the separate PDF file. 
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Appendix A: 4-D metric of special relativity 
 

“Tensors are mathematical objects - you'll appreciate their beauty by using them” 
 
4-scalars, 4 vectors, 4- tensors. (closely follows [Landau]) 
 
 An event is fully described by coordinates in 4D-space (time and 3D-space), i.e., by a 4 
vector: 

  X
i = (x0 ,x1, x2 ,x3 ) ≡ (x0 ,  r ) ; x0 = ct; x1 = x; x 2 = y; x3 = z .   (A-1) 

Consider a non-degenerated transformation in 4D space  
ʹ′ X = ʹ′ X (X ) ;      (A-2) 

ʹ′ x i = ʹ′ x i (x0, x1,x 2, x3 ); i = 0,1,2,3 ;    (A-3) 
 and allowing the inverse transformation 

X = X ( ʹ′ X )
xi = x i( ʹ′ x 0 , ʹ′ x 1, ʹ′ x 2 , ʹ′ x 3 ); i = 0,1,2,3

    (A-4) 

Jacobian matrices describe the local deformations of the 4D space: 
∂ ʹ′ x i

∂x j ;
∂x j

∂ ʹ′ x i ;       (A-5) 

 and are orthogonal to each other 
∂ ʹ′ x i

∂x j ⋅
∂x j

∂ ʹ′ x k
j =0

j =3

∑ =
∂ ʹ′ x i

∂x j ⋅
∂x j

∂ ʹ′ x k =
∂ ʹ′ x i

∂ ʹ′ x k = δ k
i ;   (A-6) 

Here, we start with the convention to "silently" summate the repeated indexes: 

aibi ≡ aibi
i= 0

i= 3

∑ .      (A-7) 

 A 4-scalar is defined as any scalar function that preserves its value while undergoing 
Lorentz transformation (including rotations in 3D space):  

f ( ʹ′ X ) = f (X); ∀ ʹ′ X = L⊗X      (A-8) 
 Contravariant 4-vector Ai = (A0,A1,A2,A3)  is defined as an object for which the 
transformation rule is the same as for the 4D-space vector: 

d ʹ′ x i =
∂ ʹ′ x i

∂x j dx j      (A-9) 

i.e., 

ʹ′ A i =
∂ ʹ′ x i

∂x j A j ;      (A-10) 

or explicitly 

ʹ′ A i =
∂ ʹ′ x i

∂x0
A0 +

∂ ʹ′ x i

∂x1
A1 +

∂ ʹ′ x i

∂x2
A2 +

∂ ʹ′ x i

∂x3
A3 ;     (A-11) 
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 Covariant 4-vector Ai = (A0,A1,A2 ,A3 )  is defined as an object for which the 
transformation rule is 

ʹ′ A i =
∂x j

∂ ʹ′ x i Aj ;      (A-12) 

i.e., the inverse transformation is used for covariant components.  
 Contravariant F jl  and Covariant Gjl  4-tensors of rank 2 are similarly defined : 

ʹ′ F ik =
∂ ʹ′ x i

∂x j
∂ ʹ′ x k

∂xl F jl ; ʹ′ G ik =
∂x j

∂ ʹ′ x i
∂xl

∂ ʹ′ x k G jl ;     (A-13) 

Mixed tensors with co- and contra- variant indexes are transformed by mixed rules: 

ʹ′ F i
k =

∂ ʹ′ x i

∂x j
∂xl

∂ ʹ′ x k F j
l ; ʹ′ G i

k =
∂x j

∂ ʹ′ x i
∂ ʹ′ x k

∂xl Gj
l .     (A-14) 

 Tensors of higher rank alsoare defined in this way. Thus, a tensor of rank n has 4n 
components: 4-scalar - n=0, 40=1 component; 4-vector - n=1, 41=4 components; a tensor of rank 
2 - n=2, 42=16 components; and so on. Some components may be dependent ones. For example, 
symmetric- and asymmetric-tensors of rank 2 are defined as Sik = Ski; Aik = −Aki . A symmetric 
tensor has 10 independent components: four diagonal terms Sii , and six Si, k≠i = Sk≠ i,i  non-
diagonal terms. An asymmetric tensor has six independent components: Ai,k≠ i = −Ak ≠i,i , while all 
diagonal terms are zero Aii = −Aii ≡ 0 . Any tensor of second rank can be expanded in 
symmetric- and asymmetric-parts: 

Fik =
1
2
Fik + F ki( )+ 12 Fik − Fki( ).     (A-15) 

The scalar product of two vectors is defined as the product of the co- and contra-variant vectors: 
A ⋅B = AiB

i ;       (A-16) 
It is the invariant of transformations: 

ʹ′ A i ʹ′ B i =
∂x j

∂ ʹ′ x i
∂ ʹ′ x i

∂xk AjB
k =

∂x j

∂x k AjB
k = δ k

j Aj B
k = AkB

k ;   (A-17) 

where 

δ k
j =

1; j = k
0; j ≠ k
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

     (A-18) 

is the unit tensor. Note that the trace of any tensor is a trivial 4-scalar .  
Trace(F) = Fi

i ≡ F0
0 + F11 + F2

2 + F3
3 = ʹ′ F i

i ;   (A-19) 
The metrics (or norm that must be a 4-scalar) defines the geometry of the 4-space. The 
traditional (geometric) way is to define it as ds 2 = dxidxi . We calculated the 4-scalar defining 
interval between events.  
An infinitesimal interval defines the norm of our "flat" space-time in special relativity: 

ds 2 = dx02 − dx12 − dx 22 − dx32 = dx0
2 − dx1

2 − dx2
2 − dx3

2 ;   (A-20) 
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and the diagonal metric tensor gik : 
ds 2 = gikdx

idx k = gikdxidxk ; 
gik = g

ik; g00 = 1;g11 = −1;g22 = −1;g33 = −1;     (A-21) 

in which all non-diagonal term are zero ;gi≠ k = 0 . The metric (A-21) is a consequence of the 
Euclidean space- frame. In general, it suffices that gik  must be symmetric gik = gki . . Note that 
the contraction of the metric tensor yield the unit tensor gijg

jk = δ i
k . Comparing (A-21) and (A-

20) we conclude that  
xi = gik xk ; xi = gikx

k ;     (A-22) 

i.e., the metric tensor gik  raises indexes and gik  lowers them, transforming the co- and contra-
variant components 

F......i ...
...k ....... = gkjF.... j .i...

.......... = gkjgilF.... j ....
........l ..;etc.      (A-23) 

For 4-vectors, the lowering or rising indexes change the sign of spatial components. There is no 
distinction between co- and contra- variants; they can be switched without any consequences. 
Convention defines them as follows : 

  

Ai = (A0,
 
A ) = (A0,A1,A2,A3)

Ai = (A0, −
 
A ) = (A0, −A1, −A2 ,−A3 )

;     (A-24) 

  A ⋅B = Ai ⋅ Bi = A0B0 −
 
A ⋅
 
B  

 The gkj , gil , gi
k ≡ δ i

k  tensors are special As they are identical in all inertial frames 
(coordinate systems). This is apparent for δ i

k :  

ʹ′ δ j
i =

∂x k

∂ ʹ′ x j
∂ ʹ′ x i

∂xl δ l
k =

∂xk

∂ ʹ′ x j
∂ ʹ′ x i

∂x k =
∂ ʹ′ x i

∂ ʹ′ x j = δ j
i ;     (A-25) 

while gik  invariance is obvious from the invariance of the interval (A-20). Hence, it is better to 
say that the preservation of gik  determines an allowable group of transformations in the 4D-
space - the Lorentz group (see Appendix B). There is one more special tensor: the totally 
asymmetric 4-tensor of rank 4: eiklm . Its components change sign when any if indexes are 
interchanged:  

eiklm = −ekilm = −eilkm = −eikml .    (A-26) 
 meaning that the components with repeated indexes are zero: e ..i .. k.. = 0; i = k;  and only non-zero 
components are permutations of {0,1,2,3} .  
 
 
By convention 

e0123 =1;      (A-27) 
So that e1023 = −1 . The tensor eiklm  also is invariant of Lorentz transformation that is directly 

related to the determinant of the Jacobian matrix of Lorentz transformations J = det ∂ ʹ′ x 
∂x

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

. As 

will be discussed in next lecture J = 1 . 
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ʹ′ e iklm =
∂ ʹ′ x i

∂x j
∂ ʹ′ x k

∂xn
∂ ʹ′ x l

∂x p
∂ ʹ′ x m

∂x q e jnpq = det ∂ ʹ′ x 
∂x
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
e jnpqδ j

iδ n
kδ p

l δ q
m = eiklm;    (A-28) 

In the best courses on linear algebra, the above equation is used as the definition of the matrix 
determinant. For details, see Section 3.4 (pp. 132-134) and section 4.1 in G. Arfken’s 
“Mathematical Methods for Physicists” (where Eq. 4.2 is equivalent to 
aj
ian

kap
l aq

me jnpq = det a[ ]e jnpqδ j
iδ n

kδ p
l δ q

m ). As mentioned in Landau (footnote in §6), the invariance of 
a totally asymmetric tensor of rank equal to the dimension of the space with respect to rotations 
is the general rule. This is very easy to prove for 2D space . The 2D totally asymmetric tensor of 

rank 2 iseik =
0 1
−1 0
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 has transformations of 

ʹ′ e ik =
∂ ʹ′ x i

∂x j
∂ ʹ′ x k

∂xn e jn =
∂ ʹ′ x i

∂x1
∂ ʹ′ x k

∂x2
e12 +

∂ ʹ′ x i

∂x2
∂ ʹ′ x k

∂x1
e21 =

∂ ʹ′ x i

∂x1
∂ ʹ′ x k

∂x2
−
∂ ʹ′ x i

∂x 2
∂ ʹ′ x k

∂x1
= det

∂ ʹ′ x i

∂x1
∂ ʹ′ x i

∂x2
∂ ʹ′ x k

∂x1
∂ ʹ′ x k

∂x2

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

;

 (A-29) 
Therefore: 

ʹ′ e ii = det

∂ ʹ′ x i

∂x1
∂ ʹ′ x i

∂x 2
∂ ʹ′ x i

∂x1
∂ ʹ′ x i

∂x 2

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

= 0 = eii ; ʹ′ e 12 = det

∂ ʹ′ x 1

∂x1
∂ ʹ′ x 1

∂x 2
∂ ʹ′ x 2

∂x1
∂ ʹ′ x 2

∂x 2

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

= 1 = e12 ; ʹ′ e 21 = det

∂ ʹ′ x 2

∂x1
∂ ʹ′ x 2

∂x2
∂ ʹ′ x 1

∂x1
∂ ʹ′ x 1

∂x2

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

= −1 = e21;

 (A-30) 

for rotations when det
∂ ʹ′ x 
∂x

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 1 . Finally, convolution of absolutely asymmetric tensor of rank n 

is equal n! - a number of permutations. In particular, eiklmeiklm = 4! = 24.  
 Tensors of any rank can be real tensors or pseudo-tensors, i.e., scalars and pseudo-
scalars, vectors and pseudo-vectors, and so forth. They follow the same rules for rotations, but 
have different properties with respect to the sign inversions of coordinates: special 
transformations that cannot be reduced to rotations. An example of these transformations is the 
inversion of 3D coordinates signs.  
The totally asymmetric tensor eiklm  is pseudo-tensor - it does not change sign when the space or 
time coordinates are inverted: e0123 =1;  (it is the same as for 3D version of it, 

  e
αβγ ;

 
C =
 
A ×
 
B ⇒ Cα = eαβγ AβBγ , e123 =1; ). Recall that the vector product in 3D space is a 

pseudo-vector. Under reflection   
 
A → −

 
A ;
 
B → −

 
B ;
 
C ⇒

 
C !  

 We can represent six components of an asymmetric tensor by two 3D-vectors;  

  

(Aik) =
 p ,  a ( )=

0 px py pz

− px 0 −az ay

− py az 0 −ax

−pz −ay ax 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;(Aik ) = −
 p ,  a ( ) .   (A-31) 
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The time-space components of this tensor change sign under the reflection of coordinates, while 
purely spatial components do not. Hence,   

 p  is a real (polar) 3 -D vector , and   
 a  is 3D pseudo-

vector (axial) vector. 
A*ik = eiklmAlm        (A-32) 

is called the dual tensor to asymmetric tensor Aik , and vice versa. The convolution of dual 
tensors is pseudo-scalar ps = A*ikAik . Similarly, eiklmAm  is a tensor of rank 3 dual to 4 vector Ai . 
 

Differential operators 
 Next consider differential operators 

∂
∂ ʹ′ x i =

∂x k

∂ ʹ′ x i
∂
∂xk ;      (A-32) 

that follow the transformation rule for covariant vectors. Therefore, the differentiation with 
respect to a contravariant component is a covariant vector operator and vice versa! Accordingly, 
we can now express standard differential operators: 

4-gradient:   
  
∂ i ≡

∂
∂xi

=
∂
∂x0

,−
 
∇ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; ∂ i =

∂
∂xi

=
∂
∂x0

,
 
∇ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ;   

 (A-33) 

4-divergence    
  
∂ i Ai = ∂ iA

i =
∂A0

∂x0
+
 
∇ 
 
A ;    

 (A-34) 

4-Laplacian (De-Lamberdian): ❏
  

€ 

 = ∂ i∂i =
∂ 2

∂x 02 −
 
∇ 2 .     

 (A-35) 
 Using differential operators allows us to construct 4-vectors and 4-tensors from 4-scalars. 
For example: 

xi = ∂ i(s2 ) .       (A-36) 

Other example is the phase of an oscillator: 
  
exp i ωt −

 
k  r ( )[ ];ϕ =ωt −

 
k  r ; ω = kc . The phase is 4-

scalar; it does not depend on the system of observation. It is very important, but not an obvious 
fact! Imagine a sine wave propagating in space and a detector that registers when the wave 
intensity is zero. Zero value of wave amplitude is the event and does not depend on the system of 
observation. Similarly, we can detect any chosen phase. Therefore, the phase is 4-scalar and 

  k
i = ∂ iϕ = (ω / c,

 
k )       (A-37) 

is a 4-wave-vector undergoing standard transformation. Thus, we readily assessed the 
transformation of frequency and wave-vector from one system to the other, called the Doppler 
shift: 

  ω = γ ( ʹ′ ω + c
 
β ʹ′ 
 
k );
 
k / / = γ ( ʹ′ 

 
k / / +

 
β ʹ′ ω / c);

 
k ⊥ = ʹ′ 

 
k ⊥ .      (A-38) 

then simply applying Lorentz transformations we found as last time: 
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∂ ʹ′ x i

∂x j =

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

; ∂xi

∂ ʹ′ x j =

γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

    (A-39) 

 
4-velocity, 4-acceleration 
Another way to create new 4-vectors is to differentiate a vector as a function of the scalar 
function, for example, the interval. Unsurprisingly, 3D velocity transformation rules do not 
satisfy simple 4-D vector transformation rules; to differentiate over time that is not 4-scalar will 
be meaningless.  4-velocity is defined as derivative of the coordinate 4-vector xi  over the 
interval s : 

ui = dx
i

ds
;       (A-40) 

and ,with simple way to connect it to 3D velocity 
  
dxi = c,  v ( )dt;ds = cdt 1 − v2

c2
= cdt / γ  we 

obtain : 

  u
i = γ 1,  v / c( );       (A-41) 

that follows all rules of transformation. The first interesting result is that 4-velocity is dimension-
less and has unit 4-length: 

uiui =1        (A-42) 
which is evident by taking into account that ds 2 = dxidxi ≡ u

iuids
2 . Thus, it follows directly that 

4-velocity and 4-acceleration 

wi =
dui

ds
      (A-43) 

are orthogonal to each other: 

uiwi =
d(uiui)
2ds

= 0 .      (A-44) 

What is more amazing is that simply multiplying 4-velocity by the constant mc  yields the 4-
momentum: 

  mcui = γmc,γm v ( ) = E / c,  p ( )     (A-45) 
, furthermore, gives the simple rules to calculate energy and momentum of particles in arbitrary 
frame (beware of definition of g here!): 

  E = γ ( ʹ′ E + c
 
β 
 p );  p / / = γ (  ʹ′ p / / +

 
β ʹ′ E / c);  p ⊥ =

 
ʹ′ p ⊥ .     (A-46) 

 
Integrals and their relations 
 Transformation rules are needed for elements of hyper-surfaces and for the generalization 
of Gauss and Stokes theorems. Those who studied have external differential forms in advances 
math courses will find it trivial, but for those who have not they may not be easy to follow. We 
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will use all necessary relations during the course when we need them. Here is a simple list:  
 
1. The integral along the 4-D trajectory has an element of integration dxi  i.e,. similar to   d

 r  
for the 3D case. 
 
2. An element of the 2D surface in 4D space is defined by two 4-vectors dxk, d ʹ′ x k  and an 

element of the surface is the 2-tensor df ik = dxidx 'k −dxkdx' i . A dual tensor df *ik =
1
2
eiklmdf lm ;  is 

normal to the surface tensor: df ikdf
*ik = 0 . It is similar to 3D case when the surface vector 

df α =
1
2
eαβγ f αβ ; α,β = 1,2,3  is perpendicular to the surface. 

 
3. An element of the 3D surface (hyper-surface or 3D manifold) in 4D space is defined by 
three 4-vectors dxk, d ʹ′ x k ,d ʹ′ ʹ′ x k  and the three tensor element and dual vector of the 3D surface are 

dSikl = det
dxi d ʹ′ x i d ʹ′ ʹ′ x i

dx k d ʹ′ x k d ʹ′ ʹ′ x k

dxl d ʹ′ x l d ʹ′ ʹ′ x l

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

= enklmdSn ;dSi =
−1
6

eiklmdSklm .  (A-47) 

Its time component is equal to the elementary 3D-volume dSo = dxdydz . 
 
4. The easiest case is that of a 4D-space volume created by four 4-vectors: 
dxi

(1);dx j
(2 );dxk

(3);dxl
(4)  which is a scalar  

dΩ = eiklmdxi
1dxj

2dxk
3dxl

4  => dΩ = dx0dx1dx2dx3 = cdtdV ;  

 
5. The rules for generalization of the Gauss and Stokes theorems ( actually one general 
Stokes theorem, expressed in differential forms) are similar to those for 3D theorems, but there 
more of them: 

Ai∫ dSi =
∂Ai

∂xi∫ dΩ; Ai∫ dxi =
∂Ai

∂x k∫ dfik ; A
ik∫ df *ik = ∂Aik

∂x k
dSi∫ .   (A-48) 
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Appendix B: Lorentz group 
 http://en.wikipedia.org/wiki/Lorentz_group  
 
Lorentz Group - Matrix representation 
  Jackson’s Classical Electrodynamics, Section 11.7 [Jackson] has an excellent discussion 
of this topic. Here, we will review it briefly with some attention to the underlying mathematics. 
Generic Lorentz transformation involves a boost (a transformation from K to K' moving with 
some velocity   

 
V ) and an arbitrary rotation in 3D space. Matrix representation is well suited to 

describe 4-vectors transformations. The coordinate vector is defined as 

X =

x0

x1

x2

x3

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

;      (B-29) 

and standard scalar product of 4-vectors is defined by (a,b) = ˜ a b , where ˜ a  is the transposed 
vector. The 4-scalar product involves the metric tensor (matrix): 

a ⋅ b ≡ ai ⋅ bi = (a, gb) = (ga, b) = ˜ a gb ;    (B-30) 

g = ˜ g = {gik} ={gik} =

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.    (B-31) 

Lorentz transformations A (or the group of Lorentz transformations1) are linear transformations 
that preserve the interval, or scalar product (B-30): 

ʹ′ X = AX; ʹ′ ˜ X g ʹ′ X = ˜ X ̃  A gAX = ˜ X gX; ⇒ ˜ A gA = g.     (B-33) 
Using standard ratios for matrices  

det( ˜ A gA) = det2 Adet g = detg ⇒ det A = ±1;    (B-34) 
we find that the matrices of Lorentz transformation have det=±1. We will consider only proper 
Lorentz transformations with unit determinants det A = +1.  Improper Lorentz transformations, 
like space- and time-inversions, should be considered as special transformations and added to the 
proper ones.  
 A 4x4 matrix has 16 elements. Equation (B-33) limited number of independent elements 
                                                
1 Group G is defined as a set of elements , with a definition of a product of any two elements of the group; P = A • B ∈G ; 
A,B∈G . The product must satisfy the associative law : A • (B •C) = (A • B)• C;  there is an unit element in the group 
E ∈G;E • A = A • E = A: ∀A ∈G;  and inverse elements: 
∀A∈G;∃B(called A−1) ∈G: A−1A = AA−1 = E.  
Matrices NxN with non-zero determinants are examples of the group. Lorentz transformations are other examples : the product of 
two Lorentz is defined as two consequent Lorentz transformations. Therefore, the product also is a Lorentz transformation whose 
velocity is defined by rules discussed in previous lectures. The associative law is straightforward: unit Lorentz transformation is a 
transformation into the same system. Inverse Lorentz transformation is a transformation with reversed velocity. Add standard 
rotation s, to constitute the Lorentz Group 
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in matrix A of Lorentz transformations. Matrices on both sides are symmetric. Thus, there are 10 
independent conditions on matrix A, leaving six independent elements there. This is unsurprising 
sice rotation in 3D space is represented by 3 angles and a boost is represented by 3 components 
of velocity. Intuitively, then there are six independent rotations: (xy), (yz), (zx), (t, x), (t, y), and 
(t, z). No other combinations of 4D coordinates are possible: C4

2 =
4!
2!2!

= 6 . 

 We next consider the properties of A in standard way, representing A through a generator 
L: 

A = eL ;       (B-35) 
where we use matrix exponent defined as the Taylor expansion: 

€ 

eL ↓def ≡
Ln

n!n= 0

∞

∑ ; L0 = I; I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;     (B-36) 

where I is the unit matrix. Using (B-35) and g2 = I  we find how to compose the inverse matrix 
for A: 

˜ A gA = g ⇒ A−1 = g ˜ A g;     (B-37) 
which, in combination with  

˜ A = transpose(eL) =
˜ L n

n!n =0

∞

∑ = e ˜ L ; egUg =
(gUg)n

n!n= 0

∞

∑ = g U n

n!n= 0

∞

∑ g;   (B-38) 

gives  
A−1 = g˜ A g = eg ˜ L g .     (B-39) 

 We can that matrix exponent has similar properties as the regular exponent, i.e. eUe−U = I  
by explicitly using Taylor expansion to collect the powers of U: 

eUe−U =
Un

n!n=0

∞

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ (−1)k U

k

k!k=0

∞

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = (−1) k U

n+ k

n!k!
=

k =0,n= 0

∞

∑ I + cm
m=1

∞

∑ Um;    (B-40) 

and the well-known expansion of (1-x)m. Our goal is to show that all cm are zero: 

(1 − x)m = (−1)n m!
n!(m − n)!n= 0

m

∑ xn ⇒ m!cm =
(−1)nm !
n!(m − n)!n= 0

m

∑ = (1 −1)m = 0 .  (B-41) 

Now (B-39) can be rewritten  

  

€ 

A−1 = g ˜ A g = eg ˜ L g = e−L ⇒ g ˜ L g = −L;⇒ gL


= −gL     (B-42) 
Hence, gL  is an asymmetric matrix and has six independent elements as expected: 

gL =

0 L01 L02 L03
−L01 0 −L12 −L13
−L02 L12 0 −L23
−L03 L13 L23 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;L = g(gL) =

0 L01 L02 L03
L01 0 L12 L13
L02 −L12 0 L23
L03 −L13 −L23 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

.   (B-43) 
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 Each independent element represents an irreducible (fundamental) element of the Lorentz 
group or rotations and boosts, as discussed above. The six components of the L can be 
considered as six components of 3-vectors in the form ("-" is a convention): 

  L = −
 
ω 
 
S −
 
ς 
 

K ;A = e−
 
ω 
 
S −
 
ς 
 

K ;      (B-44) 
with  

  

€ 

 
S = ˆ e x

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e y

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e z

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;  (B-45) 

  

 
K = ˆ e x

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e y

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

+ ˆ e z

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;    (B-46) 

where   
 
ω 
 
S  represents the orthogonal group of rotations in 3D space (O3

+ ), and   
 
ς 
 

K  represents the 
boosts caused by transformation into a moving system. It is easy to check that these matrices 
satisfy commutation rules of 

[Si , Sk ] = eiklSl ;[Si ,Kk] = eiklKl ;[Ki ,Kk ] = −eiklSl ; [A,B] ≡ AB − BA;   (B-47) 

where eikl  is the totally asymmetric 3D-tensor. You should be familiar with 3D rotation   e−
 
ω 
 
S  by 

  
 
ω : the direction of   

 
ω  is the axis of rotation and the value of   

 
ω  is the angle of rotation.  

For the arbitrary unit vector ˆ e   

  ( ˆ e 
 
S )3 = − ˆ e 

 
S ; ( ˆ e 

 
K )3 = ˆ e 

 
K .     (B-48) 

Therefore,   
 
S  "behaves" as an imaginary "i" and we should expect sin and cos to be generated by 

exp(..  
 
S .); exp(..  

 
K .) should generate hyperbolic functions sinh and cosh. It is left for your 

homework to show, in particular, that boost transformation is: 

  A(
 
β =
 
V / c) = e−

 
β 
 

K tanh −1 β .     (B-49) 
Finally, all fully relativistic phenomena naturally have six independent parameters. For example, 
electromagnetic fields are described by two 3D vectors: the vector of the electric field and that of 
the magnetic field, or in equivalent form of an asymmetric 4-tensor of an electromagnetic field 
with six components. Not surprisingly, they carry the basic structure of the 4D space into 
something observable. 
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Appendix C: The Vlasov equation for an ensemble of particles. 
 
CONSIDERING A LARGE NUMBER OF PARTICLES IN THE PHASE SPACE (Q,P) ALLOWS US TO 
INTRODUCE THE DISTRIBUTION FUNCTION: 

€ 

f = f (X,t),  X = (Q,P) : dNp = f (X,t)dX 2n ≡ f (X,t)dV2n .   (C-1) 

The Vlasov equation makes the following assumptions: 
The local interaction of the particles in a small volume dV2n is negligible compared with their 

interaction with the rest of the ensemble; 
The system is Hamiltonian, i.e., dissipation is absent; and, 
The consequence of (1) is that we can neglect scattering processes between the particles. This 

feature is important, otherwise we could not state that the number of particles in the phase-
space volume remains constant. 

A sub-ensemble of particles in the small volume dV2n satisfies the conditions we used earlier for 
deriving Liouville’s theorem. Let’ us draw the boundary of the infinitesimal phase-space volume 
around the particles. Because the phase space trajectories do not cross, the particles cannot 
escape from the volume. The crossing of trajectories contradicts Hamiltonian mechanics, where 
particles having the same position and momentum at the same time do not have equal position 
and momenta in the following moment (scattering violates this condition). Therefore, phase 
density along the trajectory stays constant: 
I. The number of the particles dNp is constant; 
II. The volume dV2n is constant. 

Thus,     

€ 

f = f (X(t), t) =
dNp

dV2n
= const ,   

 (C-2) 
when X(t) is the trajectory satisfying the equation of motion. From here, we get the famous! 
Vlasov equation: 

€ 

d
dz

f (X(t), t) = 0→∂f
∂t

+
∂f
∂X

dX
dt

= 0.     (C-3) 

where t is the independent variable, i.e., in our case it can be t=s!  
Now we employ the Hamiltonian equations to obtain the matrix form: 

€ 

∂f
∂s

+
∂f
∂X

S ∂H
∂X

= 0      (C-4) 

or , the more traditional open form  

€ 

∂f
∂t

+
∂H
∂Pi

∂f
∂Qi

−
∂H
∂Qi

∂f
∂Pi

= 0.     (C-5) 

The most widely spread form of this equation for 3-D is 

  

∂f
∂t
+
∂H
∂
 
P 
∂f
∂
 r 
−
∂H
∂
 r 
∂f
∂
 
P 
= 0.      (C-3D) 

This equation is the most useful tool for studying collective effects in accelerator physics 
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Appendix D: Recap of Lecture 2 
 

Here we recap what we already discussed in Lecture: the Accelerator Hamiltonian.  
å 
Expressing the Reference particle and its trajectory   

€ 

 r o t( )as the function of s:  

  

€ 

s(t) = d r o(t)
ti

t

∫ =
 v o(t)

ti

t

∫ dt

     

 (L2-1)

 

€ 

ʹ′ f =
df
ds

; ʹ′ ʹ′ f =
d2 f
ds2 ...... ˙ f =

df
dt

; ˙ ̇ f =
d2 f
dt 2 .    (L2-4) 

The Frenet-Serret coordinate system or natural coordinate system:  
 
 
 
 
 
 

 
Three contra-variant coordinates: 

€ 

q1 = x; q2 = s,  q3 = y    

€ 

 r =  r o(s) + x ⋅  n (s) + y ⋅
 
b (s) .    (L2-

5) 
The Hamiltonian of a charged particle in an EM field  

€ 

H = c
1+ Kx( )−2 P2 −

e
c
A2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +κx P3 −

e
c
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy P1 −

e
c
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+ P1 −
e
c
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+ P3 −
e
c
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+ m2c 2
+ eϕ

 (L2-15) 

Now, we  change the independent variable to s, 

€ 

 q1,P1{ },  q3,P3{ },  −t,H{ }  + least-action 
principle:

 gives  

€ 

ʹ′ x =
dx
ds

=
∂h*

∂P1

; dP1

ds
= −

∂h*

∂x
;                ʹ′ y =

dy
ds

=
∂h*

∂P3

; dP3

ds
= −

∂h*

∂y

ʹ′ t =
dt
ds

=
∂h*

∂Pt

≡ −
∂h*

∂H
;  dPt

ds
= −

∂h*

∂t
→

dH
ds

=
∂h*

∂t

  (L2-18) 

€ 

h* = − 1+ Kx( )
H − eϕ( )2

c 2
−m2c 2 − P1 −

e
c
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− P3 −
e
c
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+

e
c
A2 +κx P3 −

e
c
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy P1 −

e
c
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

   (L2-19) 

Components of 4-vector potential can be arranged in a form of unique Taylor series: 

  

! 

ˆ e 3 =
! 
b 

  

! 

ˆ e 2 =
! 
" 

  

! 

ˆ e 1 =
! 
n   

! 

! 
" =

d
! 
r o(s)
ds

=
! 
r o#

! 
n = $

! 
r o##
! 
r o##

! 
b =
! 
n %
! 
" [ ]! 

e123 =1
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€ 

A1 =
1
2

∂x
k

n.k= 0

∞

∑ ∂y
n Bs ro

x k

k!
yn+1

(n +1)!
; A3 = −

1
2

∂x
k

n.k= 0

∞

∑ ∂y
n Bs ro

x k+1

(k +1)!
yn

n!

A2 = ∂x
n−1 1+ Kx( )By +κxBs( )ro

x n

n!
−∂y

n−1 1+ Kx( )Bx −κyBs( )ro
y n

n!
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ n=1

∞

∑ +

    + 1
2

∂x
n−1∂y

k 1+ Kx( )By +κxBs( )ro
x n

n!
yk

k!
−∂x

n∂y
k−1 1+ Kx( )Bx −κyBs( )ro

x n

n!
yk

k!
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ n.k=1

∞

∑ ;

ϕ =ϕo s,t( ) − ∂x
n−1

n=1

∞

∑ Ex ro

xn

n!
− ∂y

n−1

n=1

∞

∑ Ey ro

yn

n!
−

1
2

∂x
n−1∂y

k Ex ro + ∂x
n∂y

k−1Ey ro( )
n.k=1

∞

∑ xn

n!
yk

k!
;

 (L2-22) 

where, 

€ 

f ro; f( )ro-  f is taken 

€ 

x = 0;  y = 0, but in arbitrary t. 

€ 

f ref ; f( )ref    

€ 

 r =  r o(s) , 

€ 

t = to(s).  
The equilibrium particle at the reference trajectory  

  

€ 

 r =  r o(s);  t = to(s); H = Ho(s) = Eo(s) +ϕo(s,to(s)),   (L2-23) 

€ 

K s( ) ≡ 1
ρ s( )

= −
e
poc

By ref
+
Eo

poc
Ex ref

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ .

€ 

Bx ref =
Eo

poc
Ey ref

,   (L2-26-27)  

€ 

dto(s)
ds

= −
∂h*

dH ref

=
1

vo(s)
; 

€ 

dEo(s)
ds

= −e∂ϕ
∂s ref

≡ eE2(s,to(s)) .  (L2-28-30) 

Taking the calculation one step further  

€ 

τ = −c(t − to(s)), δ = H − Eo(s) − eϕo(s,t)( ) /c{ },  (L2-31) 
A new Hamiltonian function using up-dated canonical pair (L2-33) is as follows:  

€ 

˜ h = − 1+ Kx( ) po
2 +

2Eo

c
δ −

e
c
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + δ −

e
c
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−  P1 −
e
c

A1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− P3 −
e
c

A3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+

       + e
c

A2 +κx P3 −
e
c

A3
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy P1 −

e
c

A1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

c
vo

δ −
e
c
ϕ // (s,τ )

   (L2-35) 

€ 

ϕ⊥def =ϕ s,x,y,t( ) −ϕo(s,t) ≡ϕ s,x,y,t( ) −ϕ(s,0,0,t)   (L2-36) 
Expanding the Hamiltonian.: 

€ 

P1

po
<<1; P3

po
<<1;  δ

po
<<1; 

The phase-space vector is 

€ 

˜ h = −po + Cν { pi }
pi

i=1,6
∑ =ν

∑
ν =1

Ν

∑ xi
pi

i=1

6

∏ + O(α N +1);   (L2-39) 

€ 

XT = q1 P1 ..... .... qn Pn[ ] = x1 x2 ..... .... x2n−1 x2n[ ],  (L2-46) 
where T stands for “transposed”. Adopting  this notion, the Hamiltonian equations can be written 
as one:  

€ 

dX
ds

= S ⋅ ∂H
∂X

     ⇔ dxi
ds

= Sij ⋅
∂H
∂x j

≡ Sij ⋅
∂H
∂x jj=1

2n

∑    (L2-42) 

The first-order terms in the expansion are zeros by design.  
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Hamiltonian expansion:

€ 

˜ h = P1
2 + P3

2

2po

+ F x 2

2
+ Nxy + G y 2

2
+ L xP3 − yP1( ) +

        δ
2

2po

⋅
m2c 2

po
2 + U τ 2

2
+ gx xδ + gy yδ + fx xτ + fy yτ

;  (L2-46)  

The second-order term is of foremost importance in accelerator physics:  

€ 

h =
1
2

hij xi
i=1

6

∑
i=1

6

∑ x j +O(α 3) ≡ 1
2
XT ⋅H ⋅ X +O(α 3) ;       (L2-45) 

An important and self-evident feature is    

€ 

HT =H 

€ 

dX
ds

=D(s) ⋅ X +O(α 2); D = S ⋅H(s)   (L2-45-1) 

i.e. the equations of motion are just a set of s-dependent linear equations 
 
 
A generator of the symplectic group:

€ 

S2m−1,2m =1= −S2m,2m−1, m =1,...,n ; the other elements are 
zero. S has n diagonal blocks with a 2x2 matrix σ and the rest is the field of zeros: 

€ 

S =

σ 0 .... 0
0 σ .... 0
.... .... .... ....
.... .... .... σ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
2nx2n

; σ =
0 1
−1 0
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥     (L2-43) 

 
Important (self-evident?) features are:  
 

€ 

ST = −S;  S2 = −I; STS = I; S−1 = −S    (!) 
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Appendix E: Matrix functions and Projection operators 
 

An arbitrary matrix M can be reduced to an unique matrix, which in general case has a Jordan 
form: for a matrix with arbitrary height of eigen values the set of eigen values 

€ 

λ1,...,λm{ }  
contains only unique eigen values, i.e. 

€ 

λk ≠ λ j ; ∀  k ≠ j : 

€ 

size[M] = M;  λ1,.....,λm{ }; m ≤ M; det λkI−M[ ] = 0;  
 

€ 

M =UGU−1;  G = Gk
⊕k=1,m
∑ =G1 ⊕ ....⊕Gm ;  size[Gk ]∑ = M   (E-1) 

where ⊕ means direct sum of block-diagonal square matrixes Gk which correspond to the eigen 
vector sub-space adjacent to the eigen value 

€ 

λk . Size of Gk , which we call lk, is equal to the 
multiplicity of the root 

€ 

λk  of the characteristic equation  

€ 

det λI−M[ ] = λ − λk( )lk
k=1,m
∏ . 

In general case, Gk is also a block diagonal matrix comprised of orthogonal sub-spaces 
belonging to the same eigen value 

€ 

Gk = Gk
j

⊕ j=1, pk

∑ =G1
1 ⊕ ....⊕Gm

pk ;  size[Gk
j ]∑ = lk   (E-2) 

where we assume that we sorted the matrixes by increasing size: 

€ 

size[Gk
j+1] ≥ size[Gk

j ], i.e. the  

€ 

nk = size[Gk
pk ] ≤ lk      (E-3) 

is the maximum size of the Jordan matrix belonging to the eigen value 

€ 

λk . General form of the 
Jordan matrix is: 

€ 

Gk
n =

λk 1 0 0
0 λk ... 0
... ... ... ...
0 0 ... λk

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

    (E-4) 

This is obviously includes non-degenerate case when matrix M has M independent eigen values 
and all is just perfectly simple: matrix is reducible to a diagonal one 

€ 

size[M] = M;  λ1,.....,λM{ }; det λkI−M[ ] = 0;  

€ 

M =UGU−1;  G =

λ1 0
0 ...

λM

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

;  U = Y1,Y2,....YM[ ]; M ⋅Yk = λkYk ; k =1,...M  (E-5) 

An arbitrary analytical matrix function of M can be expended into Taylor series and reduced to 
the function of its Jordan matrix G : 

€ 

f M( ) = f i
i=1

∞

∑ M i = f i
i=1

∞

∑ UGU−1( )
i
≡ f i

i=1

∞

∑ U G( )iU−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =U f

i=1

∞

∑ G( )i
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ U−1 =Uf G( )U−1   (E-6) 
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Before embracing complicated things, let’s look at trivial case, when Jordan matrix is diagonal: 

€ 

f G( ) = f i
i=1

∞

∑ G i = f i
i=1

∞

∑
λ1 0
0 ...

λM

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

i

=

f i
i=1

∞

∑ λ1
i 0

0 ...

f i
i=1

∞

∑ λM
i

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

f (λ1) 0
0 ...

f (λM )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

f M( ) =U
f (λ1) 0
0 ...

f (λM )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

U−1

(E-7) 

The last expression can be rewritten as a sum of a product of matrix U containing only specific 
eigen vector (other columns are zero!) with matrix U-1: 

€ 

f M( ) = Y1...Yk ...YM[ ] ⋅
f (λ1) 0
0 ...

f (λM )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

U−1 = f (λk )
k=1

M

∑ 0....Yk ...0[ ]U−1  (E-8) 

Still both eigen vector and U-1 in is very complicated (and generally unknown) functions of M…. 
Hmmmmm! We only need to find a matrix operator, which makes projection onto individual 
eigen vector. Because all eigen values are different, we have a very clever and simple way of 
designing projection operators. Operator  

€ 

Pk
i =
M − λkI
λi − λk

     (E-9) 

has two important properties: it is unit operator for Yi , it is zero operator for Yk and multiply the 
rest of them by a constant: 

€ 

Pk
iYk =

M ⋅Yk − λkI ⋅Yk
λi − λk

=
λk − λk
λi − λk

Yk ≡ 0;

Pk
iYi =

M ⋅Yi − λkI ⋅Yi
λi − λk

=
λi − λk
λi − λk

Yi ≡ Yi;

Pk
iYj =

M ⋅Yj − λkI ⋅Yj

λi − λk
=
λ j − λk
λi − λk

Yj

   (E-10) 

I.e. it project U into a subspace orthogonal to Yk. We should note the most important quality of 
this operator: it comprises of known matrixes: M and unit one. Also, zero operators for two eigen 
vectors commute with each other – being combination of M and I makes it obvious. 
Constructing unit projection operator Yi which is also zero for remaining eigen vectors is straight 
forward from here: it is a product of all M-1 projection operators  

€ 

Punit
i = Pk

i

k≠ i
∏ =

M − λkI
λi − λk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k≠ i
∏ ;

Punit
i Yj = δ j

iYj =
Yi,  j = i
O,  j ≠ i   
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

     (E-11) 

Observation that  
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€ 

Punit
k U = Punit

k Y1...Yk ...YM[ ] = 0....Yk ...0[ ]     (E-12) 
allows us to rewrite eq. (E-8) in the form which is easy to use: 

€ 

f M( ) = f (λk )
k=1

M

∑ 0....Yk ...0[ ]U−1 = f (λk )Punit
k

k=1

M

∑ U ⋅U−1 = f (λk )Punit
k ;

k=1

M

∑  (E-13) 

which with (E-11) give final form of  Sylvester formula (E-for non-degenerated matrixes): 

€ 

f M( ) = f (λk )
M − λiI
λk − λi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i≠k
∏ ;

k=1

M

∑     (E-14) 

One can see that this is a polynomial of power M-1 of matrix M, as we expected from the 
theorem of Jordan and Kelly that matrix is a root of its characteristic equation: 

€ 

g λ( ) = det M − λI[ ]; g M( ) ≡ 0;    (E-15) 
which is polynomial of power M. It means that any polynomial of higher order of matrix M can 
reduced to M-1 order. Equation (E-14) gives specific answer how it can be done for the arbitrary 
series.  
 If matrix M is reducible to diagonal form, where some eigen values have multiplicity, we 
need to sum only by independent eigen values: 

€ 

f M( ) = f (λk )
M − λiI
λk − λi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

λi ≠λk

∏ ;
k=1

m

∑     (E-14-red) 

and it has maximum power of M of m-1. Prove it trivial using the above. 
 Let’s return to most general case of Jordan blocks, i.e. a degenerated case when eigen 
values have non-unit multiplicity. For a general form of the Jordan matrix we can only say that it 
is direct sum of the function of the Jordan blocks: 

€ 

f G( ) = f i
i= 0

∞

∑ G i = f i
i= 0

∞

∑

G1
1 0 0 0
0 ... 0 0
0 0 ... 0
0 0 0 Gm

pm

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

i

=

f i
i= 0

∞

∑ G1
1( )

i
0

0 ...

f i
i= 0

∞

∑ Gm
pm( )

i

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

=

f (G1
1 ) 0

0 ...
f (Gm

pm )

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

== f Gk
j( )

⊕k=1,m,   j=1, pk

∑ = f G1
1( )⊕ ....⊕ f Gm

pm( ); (E-16) 

Function of a Jordan block of size n contains not only the function of corresponding eigen value 
λ, but also its derivatives to (n-1)th order: 

€ 

G =

λ 1 ... 0
0
...

λ

...
...
...

0
...

0 0 ... 1
0 0 ... λ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

; f G( ) =

f (λ) ʹ′ f (λ) /1! ... f (k )(λ) /k! f (n−1)(λ) /(n −1)!
0
...

f (λ)
....

...

...
f (n−2)(λ) /(n − 2)!

...
0 0 ... ʹ′ f (λ) /1!
0 0 ... f (λ)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 (E-17) 
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The prove is attached in Appendix Eq. 17. We are half-way through. 

There is sub-space of eigen vectors   

€ 

Y
k
n  which corresponds to to the eigen value 

€ 

λk  and  the 

block 

€ 

Gk
n : 

  

€ 

Y
k
n ∈ Yk

n,1 ,....,Yk
n,q{ };  q = size Gk

n( )   (E-18) 

€ 

M ⋅Yk
n,1 = λkYk

n,1;   M ⋅Yk
n, l = λkYk

n, l + Yk
n, l−1;  1< l ≤ q  (E-19) 

It is obvious from equation (E-17) that projection operator (E-11) will not be zero operator for 

  

€ 

Y
k
n , and it also will not be unit operator for   

€ 

Y i
n . Now, let’s look on how we can project on 

individual sub-spaces, eigen vectors, including zero-operator for specific sub-spaces. Just step by 
step (from eq. (E-6) and (E-17): 

  

€ 

f M( ) =Uf G( )U−1

Uf G( ) =
f ( i) λk( )
i!i=1

nk −1

∑
k=1

m

∑ 0
λ1
 0

λ2
 ... 0

λk−1
 Ak

i

λk
 ...0... 0

λm


⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

  (E-20) 

  

€ 

Ak
i = B1

i  k .... Bpk
i  k

λk

       

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
;Bn

i  k = 0.....0
i  collumns
   Yk

n,1 Yk
n,qn−1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   (E-21) 

i.e. 

  

€ 

Uf G( ) =
f ( i) λk( )
i!i=1

nk −1

∑
k=1

m

∑ 0
λ1

 0
λ2

 ... 0
λk−1

 ...
1
 ... 0.....0

i  collumns
   Yk

n,1 Yk
n,qn−1

n− th
         

...
pk


⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

λk

               

...0... 0
λm


⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

(E-22) 

From (E-19) we get:  

  

€ 

M − λkI[ ] ⋅Ykk,q = 0;   M − λkI[ ] ⋅Ykn,k = Yk
n,k−1;  1< k ≤ q

U1
n  k = Yk

n,1...Yk
n, l ...Yk

n,q[ ];
M − λkI[ ] ⋅U1

n  k =U2
n  k = 0,Yk

n,1...Yk
n, l ...Yk

n,q−1[ ]
......

M − λkI[ ] j ⋅U1
n  k =U j

n  k = 0..0
j  zeros
 ,Yk

n,1...Yk
n, l ...Yk

n,q− j
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

.....

M − λkI[ ]q ⋅U1
n  k = 0

  (E-23) 

 

  

€ 

Uf G( ) =
f ( i) λk( )
i!

M − λkI[ ]i
i=1

nk −1

∑
k=1

m

∑ 0
λ1

 0
λ2

 ... 0
λk−1

 Uk  1 ... Uk  n

n− th
 Uk  pk

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

λk

             
...0... 0

λm


⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

(E-24) 
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i.e. we collected all eigen vectors belonging to the eigen value 

€ 

λk . Now we need a projection 
non-distorting operator on the sub-space of 

€ 

λk . First, let’s find zero operator for sunspace of 

€ 

λi : 

€ 

Oi = M − λiI[ ]ni ⇒ M − λiI[ ]ni U1
r  i = M − λiI[ ]ni Ykr,1...Ykr, l ...Ykr,q[ ] = 0;

Tk =
Oi

λk − λi( )nii≠k
∏ =

M − λiI
λk − λi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ni

i≠k
∏

(E-25) 

Tk is projection operator of sub-space of 

€ 

λk , but it is not unit one! To correct that we need an 
operator which we crate as follows: 
 

€ 

R =
M − λiI
λk − λi

;  T =M − λkI;  α =αk,i =1/(λk − λi)

RU1 =U1 +αU2                  U1 =U1

.....
RUq−1 =Uq−1 +αUq            Uq−1 = Tq−2U1

RUq =Uq                              Uq = Tq−1U1

 

 

€ 

Q =αT
Uq = RUq = RTq−1U1

Uq−1 = R I +Q( )Uq−1 = RQTq−2U1

Uq−1 = RQUq−1 = RQTq−2U1

.....

U1 = R Q j

j

q−1

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ U1

 

so, we get it: 

€ 

Pk
i =
M − λiI
λk − λi

I+
M − λkI
λi − λk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j

j=1

nk −1

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟     (E-26) 

The final stroke is: 
 

€ 

Pk = Pk
i( )
ni

i≠k
∏ =

M − λiI
λk − λi

I+
M − λkI
λi − λk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j

j=1

nk −1

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

ni

i≠k
∏    (E-27) 

 
and  
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€ 

F M( ) =
M − λiI
λk − λi

I+
M − λkI
λi − λk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j

j=1

nk −1

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

ni
f (i) λk( )
i!

M − λkI[ ]i
i=1

nk −1

∑
i≠k
∏
⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

k=1

m

∑  (E-28) 

----------------------------------------------------------------------------------------------------------------- 
Proof of eq. (E-17): 
 

€ 

G0 =

1 0 0 0
0 1 0 0
0 0 ... 0
0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

;  G1 =

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

G2 =

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

⋅

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=

λ2 λ 1... 0
0 λ2 λ... 0
0 0 ... λ

0 0 0 λ2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

 
Induction: 
 

€ 

Gn ==

λn nλn−1 /1! n(n −1)λn−1 /2! ... ...
0 λn nλn−1 /1! ...
0 0 ... nλn−1 /1!
0 0 0 λn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

G2 =

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

⋅

λn nλn−1 /1! n(n −1)λn−1 /2! ... ...
0 λn nλn−1 /1! ...
0 0 ... nλn−1 /1!
0 0 0 λn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=

λn+1 (n +1)λn /1! (n(n −1) + 2n)λn−1 /2! ... ...
0 λn+1 (n +1)λn /1! ...
0 0 ... (n +1)λn /1!
0 0 0 λn+1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

 

€ 

λn C1
nλn−1 C2

nλn−2 ... Ck
nλn−k Ck+1

n λn−k−1 ..
0 λn C1

nλn−1 ... Ck−1
n λn+1−k Ck

nλn−k

.... .... .... ... ... ... ...
0 0 0 0 0 0 λn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
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€ 

λ 1 0 0
0 λ 1 0
0 0 ... 1
0 0 λ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

⋅

λn C1
nλn−1 C2

nλn−2 ... Ck
nλn−k Ck+1

n λn−k−1 ..
0 λn C1

nλn−1 ... Ck−1
n λn+1−k Ck

nλn−k

.... .... .... ... ... ... ...
0 0 0 0 0 0 λn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=

λn+1 (C1
n +1)λn (C2

n + C1
n )λn−2 ... (Ck

n + Ck−1
n )λn−k+1 (Ck+1

n + Ck
n )λn−k ..

0 λn+1 (C1
n +1)λn ... .... (Ck

n + Ck−1
n )λn−k+1

.... .... .... ... ... ... ...
0 0 0 0 0 0 λn+1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

  
polynomial coefficients: 

€ 

Ck
n+1 = Ck

n + Ck−1
n ; Ck

n = n!/k!/(n − k)! proves the point.  
Hence, we can now calculate a polynomial functions or any function expandable into a Taylor 
series: 

€ 

f G( ) = f n
n= 0

∞

∑ Gn = f n
n= 0

∞

∑
λn C1

nλn−1  ....Ck
nλn−k ... ...

0 ... ....
0 ... λn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

i

=

f nλ
n ...

n= 0

∞

∑ f nCk
nλn−k

n= 0

∞

∑  ....

0 ... ....

0 0 f nλ
n

n= 0

∞

∑

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

 

The final stroke is noting that 

 

€ 

f nCk
nλn−k

n= 0

∞

∑ = fn ⋅
n!λn−k

k!⋅(n − k)!n= 0

∞

∑ =
1
k!

fn ⋅
n!λn−k

(n − k)!n= 0

∞

∑ =
1
k!

fn ⋅ λ
n−k (n − j)

j= 0

k−1

∏
n= 0

∞

∑  

=
1
k!
dk

dλk
fn ⋅ λ

n

n= 0

∞

∑ =
1
k!
dk f
dλk

  #
 

 
Good for HW exercise. 
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Appendix F: Inhomogeneous solution 
 

Even though calculations are tedious, they are also transparent and straightforward. General 
expression for the inhomogeneous equation of 2n ordinary linear differential equations is found 
by a standard trick of variable constants (method developed by Lagrange), i.e. assuming that 

€ 

R =M(s)A(s) : 
 

€ 

dR
ds

= ʹ′ R = D⋅ R + C;  ʹ′ M = DM; 

R = M(s)A(s)⇒ ʹ′ M A + M ʹ′ A = DMA + C
R(0) = 0⇒ Ao = 0

ʹ′ A = M−1(s)C ⇒ A = M−1(z)Cdz
0

s

∫ = e−Dzdz
0

s

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ C

   (F-1) 

with well known result of: 

€ 

R = eDs e−Dzdz
0

s

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ C .     (F-2) 

or 

€ 

R = M4x4 (s) M −1
4x4 (z)dz

0

s

∫
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ⋅ C .   (F-3) 

If you use computer, eq. (F-3) is one to use. For analytical folks, you should go though a tedious 
job is combining all terms together into final form: 

€ 

R(s) =
D− λiI
λk − λi

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

D− λkI
λi − λk

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j

j= 0

nk −1

∑
i≠k
∏
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ k=1

m

∑ D− λkI( )n
n= 0

nk −1

∑ sn

n!
⋅ (−1)p+1 D− λkI( )p
p= 0

nk −1

∑ ⋅C ⋅ sp−q

p − q( )!λk
q+1 −

eλk

λk
p+1

q= 0

p1

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

            (F-4) 
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Appendix G. Canonical variables – one more touch.  
 
It was brought to my attention in the class that there is a possibility to use better notations for 
components of the canonical momenta instead of rather awkward P1 and P3. This is result of my 
exploration of such possibility. I plan to modify my notes appropriately when time permits… 
 
In lecture 2 (Jan 15) we defined our new coordinates in the natural coordinate system defined by 
the reference orbit   

€ 

 r o t( ): 

  

€ 

 r =  r o(s) + x ⋅  n (s) + y ⋅
 
b (s) .    (L2-5) 

€ 

q1 = x; q2 = s,  q3 = y .    (L2-5-1) 
together with the co-variant (Rk) and contra-variant (Rk) components of an arbitrary vector:  

  

€ 

 
R ≡ Rx

 n + Rs
 
τ + Ry

 
b ≡ Rk  a k

k
∑ ≡ Rk

 a 
k
∑

k

Rk =
 
R ⋅  a k; R1 = Rx;R2 = 1+ Kx( )Rs +κ Rx y − Ry x( ); R3 = Ry;

Rk =
 
R ⋅  a k; R1 = Rx −

κy
1+ Kx

Rs; R2 =
Rs

1+ Kx
+κ Rx y − Ry x( );  R3 = Ry +

κx
1+ Kx

Rs;

 (L2-11) 

We finished with three canonical pairs  

€ 

 q1,P1{ },  q3,P3{ },  −t,H{ }        

to emphasize co- and contra-variant nature of the pairs, and finished withthe Hamiltonian:  

€ 

h* = − 1+ Kx( )
H − eϕ( )2

c 2
−m2c 2 − P1 −

e
c
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− P3 −
e
c
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
e
c
A2 +κx P3 −

e
c
A3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy P1 −

e
c
A1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

   (L2-19) 

We quite naturally switch to use of x and y, but continued the use of “the odd” P1 and P3, which 
are actually can be (see line 2 in L2-11) called Px and Py without loss of any generality: 
  

€ 

P1 = Px;                P3 = Py;   (G-1) 

as soon and we keep them capital and recognize that the capital (upper case) P is the notation 
reserved for the canonical momentum, while low case p is the notation reserved for mechanical 
momentum: 

€ 

Px ≡ px +
e
c
Ax;             Py = py +

e
c
Ay;   (G-2) 

with canonical pairs of: 

€ 

 x,Px{ },  y,Py{ },  −t,H{ }       (G-3) 

and the Hamiltonian 
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€ 

h* = − 1+ Kx( )
H − eϕ( )2

c 2
−m2c 2 − Px −

e
c
Ax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

− Py −
e
c
Ay

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
e
c
A2 +κx Py −

e
c
Ay

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy Px −

e
c
Ax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  (G-4) 

 
 
 
There is the danger in these notations, because they look too familiar from Cartesian system, 
while our coordinate system is actually curvilinear. Hence, one should use proper differential 
operators and remember that in general case 

€ 

A2 ≠ As;        ............... Next natural step would be 
switch to 

€ 

−ct,  Po = H /c{ } to make the dimensionality of all three pair the same {distance, 
momentum}. The danger here is to mix Po and po – we did not used it. Another option is to cal it 
Pct, which is awkward. The random choice of δ  in new canonical pair  

€ 

τ = −c(t − to(s)), δPo = H − Eo(s) − eϕo(s,t)( ) /c{ },  (L2-31) 

was unfortunate. Calling it  

€ 

τ = −c(t − to(s)), Pτ = H − Eo(s) − eϕo(s,t)( ) /c{ } ,  (G-5) 

would be a better choice with the Hamiltonian looking much better: 

€ 

˜ h = − 1+ Kx( ) po
2 +

2Eo

c
Pτ −

e
c
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Pτ −

e
c
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−  Px −
e
c

Ax
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− Py −
e
c

Ay
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+

       + e
c

A2 +κx Py −
e
c

Ay
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy Px −

e
c

Ax
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

c
vo

Pτ −
e
c
ϕ // (s,τ )

  (G-6) 

Furthermore, in storage ring literature use of momentum deviation

€ 

ps − po is preferred  to the 
use of the energy deviation. In this case (fro constant energy only!) the longitudinal variable is 
also very similar to the longitudinal displacement of the particle from the reference.  

€ 

l =
vo(s)
c

τ ,      (G-7) 

Non-identical part of the canonical transformation is easy 15:  

€ 

Ω(Pτ ,l) = −Pτ ⋅ l ⋅
c
vo(s)

   (G-8) 

with  
                                                
15 

€ 

dΩ = −qidPi − ˜ P id ˜ q i + ( ʹ′ H −H)dt; qi = −
∂Ω
∂Pi

; ˜ P i = −
∂Ω
∂ ˜ q i

; ʹ′ H = H +
∂Ω
∂t

; 
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€ 

τ ≡ −
∂
∂Pτ

Ω(Pτ ,l) = l ⋅ c
vo(s)

;

Pl = −
∂
∂l
Ω(Pτ ,l) =   Pτ ⋅

c
vo(s)

= H − Eo(s) − eϕo(s,t)( ) /vo(s)

 ˆ h = ˜ h + ∂
∂s
Ω(Pτ ,l) = Pτ l ⋅

c
vo

2
dvo

ds
= l ⋅ Pl

1
vo

dvo

ds
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

   (G-9) 

 
With exception of an additional artificial term, the Hamiltonian becomes may-be a bit more 
appealing:   

€ 

ˆ h = − 1+ Kx( ) po
2 +

2po

c
Pl −

e
vo

ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

vo

c
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

Pl −
e
vo

ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−  Px −
e
c

Ax
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− Py −
e
c

Ay
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+

       + e
c

A2 +κx Py −
e
c

Ay
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy Px −

e
c

Ax
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Pl −

e
c

ˆ ϕ // (s,l) + l ⋅ Pl
1
vo

dvo

ds
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  (G-10) 

 

€ 

ˆ ϕ // (s,l) = E2(s,to(s) + ζ ) − E2 ref( )dζ
0

− l / v o (s)

∫    (G-11) 

There is no much difference in appearance between (G-10) and (G-6). The difference appears as 
soon as we are considering particles with constant energy and can use reduces variables: 
 
With canonical pairs of: 

€ 

 x,π x{ },  y,π y{ },  τ,πτ{ };    πα ≡ Pα / po     (G-12) 

 

€ 

˜ h = − 1+ Kx( ) 1+
2c
vo

πτ −
e

poc
ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + πτ −

e
poc

ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−  π x −
e

poc
Ax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− π y −
e

poc
Ay

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+

       + e
poc

A2 +κx π y −
e

poc
Ay

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy π x −

e
poc

Ax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

c
vo

πτ −
e

poc
ϕ // (s,τ )

  (G-13) 

With canonical pairs of: 

€ 

 x,π x{ },  y,π y{ },  l,π l{ };    πα ≡ Pα / po      (G-14) 

€ 

ˆ h = − 1+ Kx( ) 1+ 2 π l −
e

Eo

ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

vo

c
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

π l −
e

Eo

ϕ⊥

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

−  π x −
e

poc
Ax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

− π y −
e

poc
Ay

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+

       + e
poc

A2 +κx π y −
e

poc
Ay

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −κy π x −

e
poc

Ax

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + π l −

e
poc

ˆ ϕ // (s,l)

  (G-15) 

 
Linearized stuff is similar. With canonical pairs of: 

€ 

 x,Px{ },  y,Py{ },  τ,Pτ{ };    πα ≡ Pα / po  
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€ 

˜ h =
Px

2 + Py
2

2po

+ F x 2

2
+ Nxy + G y 2

2
+ L xPy − yPx( ) +

        Pτ
2

2po

⋅
m2c 2

po
2 + U τ 2

2
+ gx xPτ + gy yPτ + Fx xτ + Fy yτ

;   (-6-16)  

or reduced (po = const!) 

€ 

˜ h =
π x

2 + π y
2

2po

+ f x 2

2
+ nxy + g y 2

2
+ L xπ y − yπ x( ) +

        πτ
2

2
⋅

m2c 2

po
2 + u τ

2

2
+ gx xπτ + gy yπτ + fx xτ + fy yτ

;   (-6-16)  

with 

€ 

f =
F
po

= −K ⋅ e
poc

By −
e
poc

∂By

∂x
+

eBs
2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
−

e
povo

∂Ex

∂x
− 2K eEx

povo
+

meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

;

g =
G
po

=
e
poc

∂Bx

∂y
+

eBs

2poc
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
−

e
povo

∂Ey

∂y
+

meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

;

2n =
2N
po

=
e
poc

∂Bx

∂x
−

e
poc

∂By

∂y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −K ⋅

e
poc

Bx −
e
povo

∂Ex

∂y
+
∂Ey

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2K

eEy

povo
+

meEz

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
meEx

po
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

(G-17)  

€ 

L =κ +
e

2poc
Bs;         u =

U
po

=
e
poc

2
∂Es

∂t
;  gx =

mc( )2
⋅ eEx

po
3 −K c

vo

; gy =
mc( )2

⋅ eEy

po
3 ;

fx = Fx =
e
c
∂By

∂ct
+
e
vo

∂Ex

∂ct
;   fy = Fy = −

e
c
∂Bx

∂ct
+
e
vo

∂Ey

∂ct
.

 

 
With canonical pairs of: 

€ 

 x,Px{ },  y,Py{ },  l,Pl{ };    πα ≡ Pα / po Hamiltonian has additional term 

€ 

l ⋅ Pl
1
vo
dvo
ds

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  for non-reducible case (po ≠ const!). The rest is just boring replacement of 

€ 

l = βoτ,  Pl = Pτ /βo;   βo = vo /c…. Please not that corresponding coefficients in (G-17) will be 
modified. 
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Appendix H. Fokker-Plank Equation  

following §83 from Thermodynamics, Statistical Physics and Kinetics by Rumer and Ryvkin, 
Nauka, RAN, 2001 [Rumer]  

 

1. Particles described by distribution function in the Phase Space   x ={
 r ,
 
P }: 

 

  
f  r ,
 
P ,t( ) ≡ f x, t( ); x ={ r ,

 
P }: f  r ,

 
P ,t( )d∫

 r d
 
P = 1:  

  
⇒ρ

 r ,t( ) = f  r ,
 
P ,t( )d∫

 
P ; n

 
P ,t( ) = f  r ,

 
P ,t( )d∫

 r ; 

 

2. Markov’s chain: no dependence on pre-history of the event=> hypothesis: correlations 
exist only between two consequent events: the probability to "move" from point x  in the phase 
space to y  during time τ  depends only on {x, y, t,τ}: 

 

  dw =W y, x τ,to( )dy; dy = d r yd
 
P y. 

 

 
 

 What probability to move from point x  in the phase space to y  during time t + τ  trough 
an intermediate point z  ? 

 

x

y
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There t  is time for move x⇒ z ; τ  is time for move z⇒ y . Two events are independent and 
total probability is product of two probabilities: x⇒ z  and then z⇒ y : 

 
W y, z τ,to + t( )dyW z, x t,to( )dz  

To find probability W y, x t + τ,to( )  it is sufficient to integrate over all z  : 

 

W y, x t + τ,to( ) = dz∫ W y, z τ,to + t( )dyW z, x t,to( ) .  (H-1) 

 

This is Smolukhovsky equation. Fokker-Plank Equation can be derived derive from (H-1) in 
following form (to = 0): 

 

W y, x t + τ,0( ) = dz∫ W y, z τ,t( )dyW z, x t, 0( ) .  (H-2) 

 
Lets consider an analytical (integral-able) function g(x) , which is limited in all phase space and 
goes to zero with all it derivatives at the infinity (i.e. we use a finite system): 

 

g(x) ⇒ g(x)→ 0; ∂ n g(x)

∂xik
k=1

n

∏
→ 0; x → ∞.  

 
We should keep in mind that g(x)  can be an distribution function and these properties are natural 
for finite system with finite energy:   g(x) when  r > rmax or

 
P > Pmax (Emax ).  Multiplying (H-2) 

by g(y)  and integrating it give us: 

x

y
z

t

!
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g(y)∫ W y, x t + τ,0( )dy = g(y)W y, z τ,t( )dyW z, x t,0( )∫∫ dydz.    (H-3) 

 
g(y)  can be expanded into Taylor series: 

g(y) = g(z) + ∂g
∂zi

yi − zi( ) + 1
2

∂ 2g
∂zi∂zk

yi − zi( ) yk − zk( )+... .. 

(summation is assumed on repeated indexes) 

g(y)∫ W y, x t + τ,0( )dy =

g(z) +
∂g
∂zi

yi − zi( ) +
1
2

∂ 2g
∂zi∂zk

yi − zi( ) yk − zk( )+. ... .
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ W y, z τ,t( )dyW z, x t, 0( )∫∫ dydz.

(H-4) 

 

Taking into account that: 

 
g(z)∫ W y,x τ,t( )dy = g(z); ∫ W y, x τ,t( )dy ≡1;  

g(y)∫ W y, x t + τ,0( )dy − g(z)∫ W z, x t, 0( )dz = g(y)∫ {W y, x t + τ,0( ) −W y, x t,0( )}dy  

 

we can rewrite (H-4) in following from: 

 

g(y)∫
W y, x t + τ,0( ) −W y, x t,0( )

τ
dy −

− ai
(τ ) (y, t) ∂g

∂yi∫ W y, x t,0( )dy

− bik
(τ ) (y, t) ∂ 2g

∂yi∂yk∫ W y, x t,0( )dy−.. ... ..= 0.

 

 

where we introduce following notations: 

€ 

ai
(τ )(y, t) =

1
τ

zi − yi( )∫ W z,y τ,t( )dz;

bik
(τ )(y, t) =

1
τ

zi − yi( )∫ zk − yk( )W z,y τ,t( )dz;
...............................................
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2n-D vector  

€ 

a = ai
(τ ){ }  is an “average speed” particles’ point on the in Poincaré plot in the phase 

space. Integration by parts gives us following: 

€ 

bik
(τ ) is 2n-D tensor representing correlations 

between variations of  i's and k’s components of   x ={
 r ,
 
P } with the tensor’s trace giving RMS 

drift of the point 

€ 

bii
(τ )(y, t) =

1
τ

zi − yi( )∫
2
W z,y τ,t( )dz .  

Integrating by parts (here we use the boundary condition for finite system!): 

ai
(τ ) (y, t) ∂g

∂yi∫ W y, x t,0( )dy =

∂
∂yi
{ai

(τ )(y,t)∫ W y, x t,0( )g(y)}dy − g(y) ∂
∂yi
{ai

(τ )(y, t )∫ W y,x t, 0( )}dy;  

bik
(τ )(y,t) ∂ 2g

∂yi∂yk∫ W y,x t, 0( )dy = ∂
∂yi
{bik

(τ )(y, t) ∂g
∂yk∫ W y, x t,0( )}dy−

−
∂
∂yi
{g(y) ∂

∂yk
[bik

(τ ) (y, t)∫ W y, x t,0( )]}dy + g(y) ∂ 2

∂yi∂yk
{bik

(τ ) (y, t)∫ W y, x t,0( )}dy .
 

 
∂
∂yi

h(y)∫ dyk
k=1,...6
∏ = dyk

k≠ i
∏∫

∂
∂yi

h(y)∫ dyk = dyk
k≠i
∏∫ {h(yk≠ i ,yi = +∞) − h(yk≠ i , yi = −∞)} = 0. 

 

and finally: 

g(y)
∂W y, x t,0( )

∂ t
+
∂
∂yi

ai
(τ ) (y, t)W y, x t,0( )[ ] − 12

∂ 2

∂yi∂yk
bik
(τ ) (y, t)W y, x t,0( )[ ]

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
dy∫ = 0. 

g(y)  is arbitrary function which requires the expression in the brackets to be zero: 

€ 

∂W y,x t,0( )
∂t

+
∂
∂yi

ai
(τ )(y,t)W y,x t,0( )[ ] − 12

∂ 2

∂yi∂yk
bik
(τ )(y, t)W y,x t,0( )[ ] = 0  (H-5) 

This is called mono-molecular kinetic equation of Fokker and plank. What about the distribution 
function? The Fokker Plank equation for the distribution function can be derived from this using 
connection between distribution function  

€ 

f x, t( ) ≡ f  r ,  p ,t( ) and probability 

€ 

W y,x τ,t( ) : deviation 

of the particles density in phase space volume dx during time t is equal to the difference between 
number of particles left this point and arrived into this point: 

 

€ 

f x,t( ) − f x,0( )[ ]dx = dx W x,z t,0( ) f z,0( ) −W z,x t,0( ) f x,0( )[ ]dz∫   (H-6) 

Remembering that 

€ 

W z,x t,0( )dz∫ =1, we get  
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€ 

f x, t( ) = W x,z t,0( ) f z,0( )dz∫     (H-7) 

which shows that  multiplication on 

€ 

W y,x t,0( )  and integrating over the phase space equivalent 

to a propagation in the phase space by (x-z) and in time by t.  
Thus, multiplying (H-5) by 

€ 

f x,0( )  and integrating over x we obtaining Fokker-Plank equation 

for the distribution function:  

€ 

∂f y, t( )
∂t

+
∂
∂yi

ai
(τ )(y, t) f y,t( )[ ] − 12

∂ 2

∂yi∂yk
bik
(τ )(y, t) f y,t( )[ ] = 0   (H-8) 

This equation also can be written as continuity equations in the phase space: 

€ 

∂f y, t( )
∂t

+
∂jk
∂yk

= 0; jk = ak
(τ )(y, t) f y,t( )[ ] − 12

∂ 2

∂yi
bik
(τ )(y,t) f y, t( )[ ].  (H-8’) 

 

This is the final form of the of Fokker-Plank equation, where we just should recognize the terms 
such as motion of the particle and diffusion coefficients D:  

€ 

∂f y, t( )
∂t

+
∂
∂yi

dyi y, t( )
dt

f y, t( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −
1
2

∂ 2

∂yi∂yk
Dik (y, t) f y,t( )[ ] = 0  (H-8’’) 

Finally, nobody told us to use time as independent variable, s is as good! 

€ 

∂f y,s( )
∂s

+
∂
∂yi

dyi y,s( )
ds

f y,s( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −
1
2

∂ 2

∂yi∂yk
Dik (y,s) f y,s( )[ ] = 0   (H-8’’’) 
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Appendix I: Standard perturbation method  
 
In 1958 Bogolyubov and Metropolsky developed general asymptotic perturbation methods in 

the theory of nonlinear oscillators [Bogolyubov]. This methods works till the second order and 
can be used for many analytical studies. 

Mathematics of the method is too involved and interested reader will find it in the English 
translation of the book: Bogolyubov and Yu. A. Mitropolsky, Asymptotic Methods in the Theory 
of Nonlinear Oscillations, Gordon and Breach, New York (1962) 

 
The system under study is fully described by its n-dimensional vector X. In our case it will be 

€ 

XT = ϕ,I[ ]  for one-dimension, 

€ 

XT = ϕ1,I1,ϕ2,I2[ ]  for two dimensions, etc.. 

For a slightly perturbed linear oscillator (with 

€ 

g  to be considered as a small perturbation) 
described by equation of motion:  

€ 

dX
ds

= gF X,s( );   (I-1) 

solution can be written in the first order of perturbation as: 

(I)  

€ 

X = ξ s( ) + g ˜ F (ξ,s);   dξ
ds

= g F(ξ,s) ;   (I-2) 

where following notations are used: 

€ 

F(X,s) =
1
S

F(X = const,s)ds
s

s+S

∫ ; ˜ F = F − F( )ds∫ ;  (I-3) 

Second order looks a bit more elaborate: 

(II)  

  

€ 

X = ξ s( ) + g ˜ F (ξ,s) + g2 ˜ F ∂
∂ξ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ˜ F 

~     ⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
− g2 ∂ ˜ ˜ F 

∂ξ
˜ F (ξ,s)

dξ
ds

= g F(ξ + g ˜ F (ξ,s),s) ≈ g 1+ g ˜ F ∂
∂ξ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ F(ξ,s)

;   (I-2) 

 
This method works beautifully and in many cases allows to find finite analytical formulae. There 
is no systematic approach to extend this method beyond second order perturbation. Lie algebraic 
theoretical and numerical tools should be used in such cases. 
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Appendix J: Arbitrary order Hamiltonian expansion with Mathematica  
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