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Accelerator Physics: Homework 1 Solutions

1 Basic relativity

(a) (3 points) In one dimension the work done by a force F' acting through a distance dl is
dE = F dl. Show directly that increasing the Lorentz factor of a particle of mass m by
A~ changes the particle’s energy by

AE = Ay mc® (1.1)

where the rest energy of the particle is Ey = mc?. From this it follows that £ = vE.
Use this to show that
E? = p*® + m2ct (1.2)

Solution: Restricting ourselves to one dimension without loss of generality:

dE dp
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di dt 13)
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p=mefy v == v===f (1.4)
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From this E = vF, follows from integration since mc? is constant. To demonstrate the
latter part of this problem,

E =7Ey — E? = 4*E% = v*m?c*

But ) )
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1- 2 1-—-0? 1-p2

We also know that relativistic momentum is p = Bymec, so we have
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(b) (3 points) Show that an infinitesimal increase in energy dF is related to the infinitesimal
increase in momentum dp by
dE d
Ay e (1.8)
L p
where 0 = v/c.
Solution: Using that the differential of the Lorentz invariant, d(E* — p®c?), is zero,

EdE = *pdp
Dividing this equation by E? and using E = cp/ yields:

dE  ,dp
R

(c) (4 points) A unit charge particle of momentum p travels through a constant magnetic
field B, and is bent in a circular arc of radius p. Show that

Bp [T —m] = 3.3357 p [GeV/c] (1.9)

Solution: Here the bending force from the magnetic field must provide the centripetal
force to keep the particle moving in a circle, so

Fp = quB = Feeny =m0’ /p — q¢Bp =mv =p — Bp =p/q

Here we have to be careful about units. SI units for Bp in [T-m]| are [kg m s™2 A~1];
these match the units for p/q if we express p/q in SI units. However, we are expressing
p/q in odd units of [GeV/c]. The unit charge cancels, and we need to divide by ¢ in SI
units to find

Bp[T — m] = 3.3357 x 10~ °p[eV /c] = 3.336p[GeV /c]

2 RHIC energy and current

Gold ions ¥TAu™"" (A=197, Z=79) are injected into the Brookhaven Alternating Gradient
Synchrotron (AGS) with a kinetic energy of 100 MeV /u (i. e. MeV per nucleon). (NOTE:
This was accidentally typo’d in the homework handout as 100 GeV/u.) The
AGS accelerates protons up to a kinetic energy of 22.9 GeV for injection into Relativistic
Heavy Ion Collider (RHIC). The circumference of the AGS is 807.1 m, and the rest mass of
a gold (*TAu™) ion is 183.434 GeV/c?.

(a) (4 points) What is the velocity of the injected gold ions?
Solution:

K 197 0.1 GeV
o= 1 =12 OV g 1704
ing tare = T szt aoy 7

Big = /1= =0.4296

Umj = [inc=1.2879 x 10° ?

(b) (3 points) What is the corresponding kinetic energy for 7 Au*"" ions extracted from
the AGS for RHIC?

Solution:



Assuming the same extraction field in the AGS as for protons, i.e., the same rigidity:

MpC

2
Pp = YPmye = \/ (1 + K"2> — 1 mpe = 23.820 GeV/c
(=79.455 T m)
Dgold = 17 %pp,=1.8341 TeV/c

_ pgold _
(Vﬁ)gold = —MC 9.9988

Mec
= 1.6598 TeV (or 8.4256 GeV/u)

2
K = (’Y—l)Mc2=[ (pg°1d) +1—1] Mc?

(c) (3 points) Why does the beam current increase although the circulating charge stays

3

constant during acceleration?

Solution: Current is a measure of rate of charge passing a point per unit time,
[=dQ/dt. As the particles accelerate, they pass a reference point more quickly, and
the total beam current goes up.

Basic collision kinematics

(2) (3 points) Show that the total energy for a head-on collision of two particles, each with

center of mass energy vemmc?, is equal to the total energy of a fixed-target collision,
where one particle is at rest and the other has energy vaceqmc?, where

Yoixed = 27c2m -1 (3'1)

Solution: It is most convenient to do this type of problem using Mandelstam variables,
in particular the Mandelstam variable s:

5= (p1+ p2)? (32)

where p; o are the Lorentz four-momenta of the interacting particles:

p=(—E,py,py;p2)T = (—ymc?, pa, by, p2) " (3.3)

and the total center of mass energy is given by 4/s. It is easy to see that in the
head-on collision scenario, the momenta are equal and opposite, so the total energy
Vs = 2y;mmc?. In the case where one particle carries all the momentum, s is somewhat
more complicated:

s = pi -+ 2p1ps + ps = mict 4 2pyps + mict (3.4)
All momentum components of the rest particle are zero, so p1ps = Yaxeamc® and

s = mc?(2mc? + 29axeamc?) = 2m2c* (1 + Yeixed) (3.5)

Comparison to the colliding beam s = 4v2 m?c* immediately gives Vaxea = 272, — 1.

The Mandelstam variable s is used so often at accelerator facilities that we commonly
refer to the center of mass energy available in collisions at each facility by saying, for




example, “/s=250 GeV”, which is the center of mass energy for top-energy polarized
proton collisions at RHIC.

Consider a charged pion decaying into a muon plus an antineutrino:
w =g T, (3.6)
(ﬁ
4 L) &:% xf#
} ¥ @“%,%" Bp
| —
Piom at rest Pion in lab

-
Use M,+ = 140MeV /c?, m, = 106MeV /c?, and m; = 0.

(b) (3 points) In the rest system of the pion, what are the energies and momenta of the
muon and antineutrino?
Solution: This is simply cranking through the kinematics before plugging in numbers:

0 = p,+p,
myc® = E. + E;

By = ple=pie=/(E})? - (mye?)?

2 *\2 *2 * 212
(mgc® — E”) = E.,"—(m,c)
E? — 2E m,c? + (mec?)® = E;Q — (m}c?)?
2E;m.c® = (m+m)c*
..
E; = —/——*%c=110.1 MeV
2my
p, = —p,=E, =m.c— E, =2987MeV/c

(¢) (4 points) For a moving pion with total energy U, = yM,c? find an expression for the
direction, 6, of the muon relative to the pion in the lab in terms of the angle ¢}, in the
in the pion’s rest system.

Solution: Assume the pion is moving along the z-axis, and that the collision takes
place in the zz-plane. (A rotation about the z-axis will not make a difference.) In the
pion’s rest system, the muon will have the proper 4-velocity:

E/c
* * H/e* 1
ot = Pr _ | pisingg
myC 0 MyC
* *
pj,cos b},



Boosting to the lab system we find

with (

Ug

tand,

O

v 00 98 Eife
0 1.0 0 p),sinf}, 1
0 01 0 0 MyC
v3 0 0 ~ py, cos by,
V1—~72
p,sind},
myC
BE; +pjc cosb,
My C
ug 1 pyc sindy
u, BE;, + pj.c cos by,
1 sin 6,

v ﬁ(E;/p;jc) + cos 0,

i, (1 sin 0}, ) g (1 sin 6, )
tan — = tan —
v B(E}/p}c) + cos 6%, v 3.68680 + cos by,

You can also take other ratios of u,, u,, and u to find other trig functions of ¢,, but the
approach to find the tangent (or cotangent) is easiest since the u, and u, components
immediately fall out of the Lorentz transformation.

Magnetic Mirror

A=A(y2)
8
P
/ )
f." @

(a) (2 points) An electron moves through a magnetic field with vector potential A = A(y, z).
Find an additional invariant of motion from the independence of A from z. Write an
explicit expression for p, using this invariant. .

Solution: The Hamiltonian for particle motion in an a vector potential A(y, z) is

H= \/mzc2 + (ﬁ— Sff(y, z))2

Since this does not depend on z, the momentum p, is invariant:

i
Dz = Az

=0 — p, = constant



(b) (2 points) Consider a magnet with mid-plane symmetry, H = é,H (y) at z = 0, shown
above, with A = A(y, z) inside the magnet and A = 0 outside the magnet. Consider an
electron entering the magnet in the midplane 2 = 0 with mechanical momentum

P = €xpy + éypy = p(é;cosf + &, sinh) (4.1)

which enters the magnet, turns around in the magnet, and comes back out.
Solution: This was a free two points; there was accidentally no question here!

(c) (2 points) Show that the trajectory of the electron remains in the z = 0 plane.
Solution: The Lorentz force is

d—) — U — U —
dt c

since £ = 0 here and B = Moﬁ . The acceleration is thus always perpendicular to the
magnetic field [/, and so is always in the z = 0 plane. Since the particle’s initial velocity
includes no Z component, the particle always remains in the z = 0 plane.

(d) (2 points) Find the equation of the angle ¢ of the electron’s exit trajectory relative to
é, direction.
Solution: It’s almost trivial to see that ¢ = 6 from symmetry, since A has no z
dependence and the system is therefore reflection symmetric through the (y, z) plane.
This is even easier to see knowing that Lorentz force from a pure magnetic field is
conservative, since it always acts perpendicular to p and therefore does not change the
particle’s speed |p].

(e) (2 points) Find the equation defining the penetration depth 9.y of the electron in the
magnet in terms of A(y, z = 0). You don’t have to solve this equation generally, but do
write down an equation that you could solve numerically for yyax.

Solution: The Hamiltonian is conserved, so the Hamiltonian outside the magnet is
equal to the Hamiltonian at yma... Note that at ymax, the momentum only has one
component, H(Ymax) = Pz, S0 we have

This can be solved for ymax if a form for /T(y, z) is explicitly known.

5 The Lorentz Group

(a) (4 points) For the Lorentz boost

0100 0010 0001

. |l1000 loooo o000
E=&l o000 | ™| 1000 |+%] 000 0 (5.1)

0000 0000 1000

and rotation matrix

000 0 0 0 00 00 0 0

- loo0oo0 o 1o o o1 oo =10
5=l o001 |0 o0 00| %01 0 o (5.2)

001 0 0 -1 0 0 00 0 0




given in class, show that
(€SP =-e§ (fRP=¢K for Ve=¢* where || = (5.3)
and, more generally,

@S =-aSa? @RP=aKl|a?® for Va=a" (5.4)

Solution: A standard solution is to write everything out and multiply, which certainly
works, especially when assisted by Mathematica and the knowledge that the product of
two antisymmetric matrices is symmetric, and the product of an antisymmetric matrix
and a symmetric matrix is antisymmetric. Then, for example,

0 0 0 0 0 0 0 0
e |0 0 —a; a e |0 —at—ai  asas a,as
w =10 a; 0 —as| — (@s)” = 0 a9a3 —a? — a? a1as9
0 —az a3 O 0 aias a1as —ai — d?
0 0 0 0
(@3)? _ 0 ) 0 ., ai(a? + a3 + a3) —az(czz% + g% + Z%)
0 —ai(ai + a3+ a3) 0 as(a? + a3 + a3)
0 ag(a?+ai+a2) —az(a?+ a3+ ad) 0
= —a S|a)?

An alternative solution: Rotate the coordinate system to an appropriate set of coordi-
nates, for example:

M=aS5=|aR* S R

This effectively aligns @ along the S; axis. Diagonalize S;: S; = A™'D;A where D is
diagonal. Now D} = —D; (eigenvalues of S; are -1), so

M?® =@ (B™*D,B)’ = |@’B~'D3B = —|@*B~'D; B = —|d|2M

where B = A- R. A similar derivation where D3 = D; follows for the boost.

(b) (4 points) Use these results to show that

3§ @8 (Qg )2 .
e =1+ il sin || — e (cos|@]| — 1) (5.5)
and )
3 iR . (\BK "
N QN ( q2) <cosh1ﬁ| - 1) (5.6)
|61 18|
Solution:

(c) (2 points) Are S and/or K symplectic?

Solution: Both $ and K have zero eigenvalues, so neither can have a unit determinant,
and neither can be symplectic. No multiplicaion required!



Accelerator Physics: Homework 2 Solutions

1 Gaussian luminosity (Lee 1.7(b), p. 27)

The total counting rate of a physical interaction at a single collision point is given by R = Lo,
where o is the cross-section of the interaction and the luminosity £ (in units of cm™2 s71)

is a measure of the interaction probability per unit area and time. When two accelerator

bunches with relativistic velocities § collide head-on,

L=2fN1 N, / o1(z,y, 81) p2(T, y, 82) dz dy ds d(Bct) (1.1)

where s; = s + Bct, so = s — PBct, f is the collision frequency, N; and N, are the number
of particles in each bunch, and p; and p, are the normalized distribution functions for both
bunches.

(a) (5 points) Using a Gaussian bunch distribution,

1 372 y2 82
_ AN A 1.2
oo Y:5) = B iTagngras O | T30 202 207 (2

where 0, 0y, and o, are the rms horizontal, vertical, and longitudinal beam sizes, show
that the luminosity for two bunches with identical distributions is

r— JSN:1 N,

droLoy

Solution: Direct substitution of the Caussian bunch distributions into the luminosity
integral gives

_ 2f N1 Ny z2 y2 (3% -+ Sg)
L= o [ o | G T s 09

or, using 8y = s + fct and so = s — fct,

[NV, / z? / > / s / (Bet)?
L = 3020207 exp —U% dx | exp o2 dy -| exp g ds | exp >

2
(1.5)
Each integral is a straightforward Gaussian integral of the form

/exp {—g} s = i (16)

and substitution gives the desired result

NN2
L= I

(1.7)

drogoy,

(1.3) .

d(Bct)



If you don’t feel like looking up the integral of the Gaussian given in (1.6), it is easy to
derive with an old trick. Call this integral I. Then

I? = //exp [%;—ﬂ dz dy = //exp [;—ﬂ pdpdf (1.8)

where we have converted to polar coordinates. Taking X = p?/0? and dX = 2p dp/o?,
and integrating the angle coordinate over 27, gives I? = o271 and [ = o/7.

(b) (5 points) Show that if two bunches collide with a vertical offset of Ay, the luminosity
is reduced by a factor of exp(—Ay?/402). '
Solution: Substituting ¢ — z + b/2 in p; and £ — = — b/2 in py changes the dx
Gaussian integral: ‘

[oo|- 2] i = [oo] xS Eu,

2
202

2 2
—  exp [—%}/exp [—%] dx (1.9)

Hence luminosity is reduced by a factor of exp[—b?/4c2]. This quadratic dependence of
luminosity on offset is used during “vernier scans” of luminosity vs. transverse beam
position to measure the transverse beam sizes o, and o,.

2 EM similarity to Lorentz group

Consider an invariant equation of motion of a charged particle in a constant electromagnetic

fleld: , v
du® d e

e, ‘
= _Fl.yf )= D] = —F! 2.1
me——="F-u' =D [D]=_—73F (2.1)

where [u] is a 4-vector, and which has the general solution
[u] = eP?[ug) (2.2)

(a) (4 points) Write matrix [D]. Identify the similarity of [D] with the generator of the
Lorentz group, and find the analogy between boost, rotations, and components of the
electromagnetic field.

Solution: F¥ is given in explicit form in the lecture notes. The explicit form for [D]
is then:
o E, E, E,

P _ ¢ | B 0 B, -B,

mc? mc2 Ey ’_Bz 0 Bm

E, B, -B; 0

(2.3)

since we are working in a Euclidian metric (1, —1, —1, —1) metric (Appendix equation
A-21). The electric fleld components are equivalent to a boost, while the magnetic field
components are equivalent to a rotation. This agrees with intuition, since electric field
forces are along the direction of motion, while magnetic field forces are perpendicular
to the direction of motion.

(b) (6 points) Write the explicit expression for M = eP® in the case of a pure constant

electric field (B = 0) and pure constant magnetic field (£ = 0).



Solution: The case of a pure constant electric field is just like a boost, with the relation
(apologies for the strange mixed notation):

e = € ==
D|=—F D] = — .
D)= -SBR D)= -2;B8 (2.4
for the B = 0 and £ = 0 cases respectively. Then
B
MB=0)=el =1+ EE o E| (EK> ( B 1) 2.5)
B B —’i THE [E]Q O e (

2
BS e = (BS) € 3
D : _
ME=0)=e"=1+ E sin C2]B\ + P (cos CQ[B[ 1) (2.6)

3 Cos-theta magnet

(NEED)(10 points) Show that current distributed in a thin cylindrical shell with a strength

I
1(0) = =2 cos(nb) (3.1)
nmw
will produce a pure 2n-multipole distribution inside the cylinder.

Solution: One can rescale I = Iy/(nr), so this problem is equivalent to proving that
1(8) = I} cos(nb) (3.2)

produces a pure 2n-multipole distribution inside the cylinder. In class we proved this for -
n = 1, where a cos(f) dependence of current gave a pure 2-multipole (dipole) field; there
is no higher-order field component. One can extend that analysis, writing the general field
from a single wire perpendicular to the complex plane as
I

By(w,2) + iBal)) = 5o (3.3)
where Z = x + 1y are coordinates in the complex plane and Z; is the coordinate of the
wire. Integration of these current sources over the circumference of the cylinder for the given -
distribution then gives the desired result.

An elegant proof using a result called the Beth current sheet theorem was demonstrated
by Richard Beth at Brookhaven in the late 1960s when considering how to build compact
superconducting magnets as discussed in class. This result is shown in equations (8) and
(22-24).

4 Quadrupole gradient, inductance (Lee 1.12, p. 29)
From Maxwell, V x B=0ina current-free region, and the magnetic field can be derived
from a magnetic potential ®,, with B = -V &,,.

(a) (2 points) For a quadrupole field with B, = Kz, B, = Kz, show that the magnetic
potential is ®,, = —Kxzz+ ¢ where c is a constant. We can choose a gauge where ¢ = 0.




Solution: The magnetic potential equation gives B, = —0®,,/0z and B, = —0®,,/0z.
We have been given B, = Kz and B, = Kz so we can integrate each to immediately
find that

¢=-Kzz+c (4.1)

so the shape of an equipotential surface is a hyperbola.

(b) (5 points) Equipotential curves are therefore rz =constant. The pole shape of a
quadrupole is therefore a hyperbolic curve described by zz = a?/2 where a is the
radius of the quadrupole. The magnitude of the field at the surface of the pole is
Bpoletip = Ka. To avoid magnetic field saturation in the (typically iron) pole tip, the
pole tip field in a quadrupole is normally designed to be less than 0.9 Tesla, and the
achievable gradient is K = Bpe tip/a. Show that the gradient field is

K =2ugNI/a? (4.2)

where NI is the number of ampere-turns per pole.

x,y) = a(707,.707)
;

4

Solution:
Apply Ampere’s law, but now recognize that

B
/ Bds= %5 — dy4 (4.3)
A

if the integral is in the gap OR. in the iron. Thus

7{ Hds = f BdS _ N - (B — D 4) /1o (4.4)
1o tr

since I points down in the right side conductor in the figure above, u, =~ oo in the iron
and u, = 1 in the gap. Using the result from the previous section then

(12
bp=-04=-K7 (4.5)

then it follows that
(4.6)




5 Dipole edge focusing (Lee 2.2.2, p. 73)

Trajectory

(10 points) Sector dipoles are bent so the end
faces of the magnet are perpendicular to the design particle entry and exit angles. When a
particle enters a sector dipole of bending radius p at an angle § with respect to the design
trajectory, it experiences some focusing. This phenomenon is usually referred to as edge
focusing. Here we use the convention that § > 0 if the particle is closer to the center of
the bending radius. Show that the transport matrices through the dipole for horizontal and
vertical motion of the particle are

1 0 1 0

P P

The edge effect with § > 0 produces horizontal defocusing and vertical focusing.

Solution:
the effect of the edge focusing in the horizontal plane. The difference between the standard
reference trajectory and a reference trajectory with incident angle ¢ is that particles with
position —z relative to the reference orbit enter the magnet earlier, and so see more bending;
particles with position +z relative to the reference orbit enter the magnet later, and so see
less bending. The overall effect is to bend particles with various offsets away from each other,
or defocus.

To calculate Az’, we can integrate the extra field B, over the extra distance ztand to

find

Ny = By tand z = tan o x {5.2)
p P

In the vertical plane, the naive conclusion is that there is no effect, but Maxwell’s equations
require that there is a fringe field that decays beyond the edge of the magnet, and this fringe
field changes strength as one moves away from the magnet opening. Using a similar integral,

Ay = g/ B, ds (5.3)
p fringe

and assuming the fringe field decays linearly

B, = By (1 — /1) (5.4)

The above figure shows the B field directions and



for 0 < s < [, Maxwell’s equations give B, = —£222 ¢, This can be integrated over the
path length for a particle with a vertically offset reference trajectory in the fringe field to

find: )
Ay — g_/cosé <_boslln5 y) dom _ (tan5> y (5.5)
P Jo P




Accelerator Physics: Homework 5

Due date: Tuesday, January 22, 2008

1. Coupling non-linear resonance

Consider an uncoupled linear motion in a storage ring, parameterized by

x =12 w (s)cos(, () +@,); y=+2L,w (s) cos(tpy(s) + (py), (1)
in the presence of additional non-linear term in the Hamiltonian
H,, =a(s)x"y". 2)

All coefficients above are periodical with the ring circumference, C, except the betatron
phases

Y, (s+C) =y, (s5)+270, .
Here: n, m, k, | are integer numbers.
(a) (5 points) write slow equation of motion for the action-angle variables;

(b) (5 points) consider resonant conditions nQ, + mQ, = k+6Q; |60 <<1,i.e.a sum
resonance, and find the expression for the resonant term in the Hamiltonian and
the slow equations of motion;

(c) (5 points) consider resonant conditions nQ, —mQ, =[+6Q; [00|<<1lie.a
difference resonance, and find the expression for the resonant term in the
Hamiltonian and the slow equations of motion;

(d) (10 points) show that in the resonance approximation |6Q| <<1, we have
additional invariants of motion: n/ —ml = inv for the sum resonance and
nl, +ml_=inv for the difference resonance. Derive your conclusions on what
resonance can be more dangerous from a perspective of continuous growth of the
amplitudes (i.e. possibility to loose a beam at the walls of vacuum chamber)?

(e) (5 points) qualitatively answer the question if this term in the Hamiltonian can
drive other NQ + MQ =K + 0Q; N =n;M = m in the first order of perturbation
theory?



Solution:

(a) after transition to the phase-action variables, we have only non-linear part of the
Hamiltonian (2) is remaining, which we should express through new variables

Hy =a(s)x"y" = a(s)\/inwx"(s) cos” (i, (s) + <;0x)\/271.mw "(s) cos’"( (s) + (py)
H,, = p(s)lx"/zlym/zcos”(q)x)cosm(q&y); p(s) = a(s)2" 2w "(s)w," (s); p(s+C) = p(s);
by =V D+ @ 9, (s+C) =0, (s)+ 270,

with trivial equation of motion:

ddi% = 2 Ps)12'12 cos' (9, )cos” (9, )

d(;O oH m nom n m

d_sy = T’X"L = Ep(s)lley 27" cos (¢,)cos (qby);

CjiI; - _07:[71\’: = np(s)IX%Iy% cos"‘l(qu)sin(q)x)cos’"(q)y);
dIy aHNL .

—L =M = pp(s) 212 cos”(qu)sin((]ﬁy)COSm_l(fpy);

(b,d) nQ, +mQ, =k+ 00; |6Q| <<1, we need to expand cos() via exponents to see the
oscillating terms:

n
. . n _ poo
cos"(¢,)=2" (e”’" + e"¢*) =27 E Che"2000x,

Cosm(¢y)=2m( 9 oo »¢‘.) —om EC, i(m- 2,)¢‘_

n m

Hyy =270 p(s)1,"*1,"" E r{C,’jexp{((n—2k)¢x+(m‘21)¢y)}

=0 j=0
Each term in the double sum oscillates with its own frequency: the
(n=2k)$, + (m-2j)¢, advances by 2{(n-2k)Q, + (m-2j)Q,}. Thus, the phase in
the resonant term corresponding to our conditions (k=0, j=0), advances by only

2760 << 1, i.e. it is a resonant terms. The term opposite to in (k=n, j=n) does the
same thing, it advances by —2x8Q. One thing is easy C'=1

Hmm — 21—(n+m)p(s)lxn/21'm/2 COS(}’Z¢X + m¢y)

Yy



% — OHy, - 2214"“”),0(5)1)(%‘11}% cos(nqu + m(])y)

ds o, 2
d n m
% _ OZ—ITNL - %21‘(”+'”)p(s)1x51y5" cos(nd)x + md)y);
‘;I; - _% -—_n- 21-("+"”p(s)lxgly% sin(n(/)x +me, );;
d[ n m
d_; - _% =—m 2" p(s)1,21,> sin(ng, + m, ).
y
Hence,
d(ml, - nl,) .
—d =0 =>m1x—nly=lnv,
s

(c,d) — the only difference in the change of the sign in front of y-phase:
Hdlf - 21—(n+m)p(s)1xn/21ym/2Cos(n(px _ n¢y)

% = aSITM = g21‘(’”’”),r)(s)lxg‘llynz1 cos(nqu - m¢y)

dczy _ 0’%% _ %2“"”") p(s)1,21, 2" cos(ng, - mg )
‘gsx . ﬁgg 270 p(s)1 21 2 sin(ng, - mg, )
% _ _% = +m- 27" p(s)1 21 2 sin(ng, - mé).

a,’(ml)C + nly)
ds

(e) the answer on the question is easy — at difference resonance both amplitudes can
not grow above some limit imposed by initial conditiona;

=0 =ml +nl, =inv

iny iny
[ s—: [ =—;,
m n

while at the they both can (in principle) grow infinitely:

n .
I = ;(1y + znv).



2. Twisted quadrupole

(a) (20 points) Find 4x4 matrix of twisted quadrupole, i.e. a quadrupole whose poles
have torsion. The transverse Hamiltonian of this magnet is:
2 2 2 2
T+ -
h=— 5 >+ K, r oy
(b) (5 points) Identify when motion in both x and y direction is stable, i.e. there are
no growing solutions?

+ K(ynx - x:ry)

Solution: We should use classification all magnetic element done in the conclusion to
Lecture 4:

2 _ 2
f=a:&a=—f+%;2L;W=(f49 +20(f +g)+n’ (L4-10)

f-g=K;n=0;L=x; N=a+h, a=-k"; b2=K]2;

In our case:
A =\—<K1+K2);)\,2=XK1—K2;

It means that there are two cases (iv and v in out classification:

I) when both eigen values are imaginary, i.e. the conditions we needed to find in the

(b) part of the problem
K, >-Kk* A =ik’ +K, =i,

2, [ .
K <k A, =ik =K, =-iw,

which means -«? < K, <k?; K| <k*, focusing should not be too strong for rotation to
give strong focusing effect. In this case one can use very long quadrupole of this type
without worrying about beam stability. I hope one of you will use such devise in your
accelerator.

The matrix is from the same lecture eq (IV-1):

M, = Jz{(lcoswls + DSIHCOIS)(Dz + 60221) - (ICOS(U2S + Dsmwzs)(D2 + wlzl)}
1@ w, w,

We did not asked you to open the brackets — do it using one of tools which guarantee

correctness of multiplications.

ID) if |K,|>x* you have both cos, sin and cosh and sinh term, that later of which are
growing exponentially at large distances:

M,,= % Icosw,s + pi®s (D2 - a)22I) —|Icoshw,s+D Sinh@,s (D2 + wlzl) (V-1)
W, +w, , w,

#



Accelerator Physics: Homework 6

Due date: Wednesday, January 21, 2008

Problem 1. Sextupole terms
Consider a linear oscillator

21
= _ ; = ! = — 2 I ] ,
X =, - cos(ws+ @); 7, = x' =2l sin(ws + )

x = Acos(ws+@); 7, =x"=-wAsin(ws + @),
in the presence of quadratic non-linear term (sextupole term) in the Hamiltonian:

2 2 3
JU X X
h="x4+0’—+K,—
2 3

(a) (20 points) Find first perturbation order terms in I, .

(b) (5 points) Show that far from resonances, there is no average growth in the
actions and there is no tune dependence on the actions.

(c) (25 points) Write second order perturbation term for ¢ and calculate the tune shift
proportional to the action and to the second order of Ko.

Suggestions: (a) note that w = const, (b) you may use Canonical pair (I ,(p) or use

reduced equation of motion derived by Dr.Pozdeyev in his lecture for (A,¢). Both
methods will give you the same result.

Solution: Transformation to action-angle variable give shortened Hamiltonian:

3
h= %#2 cosS(ws+ (p) = alm(cos3¢+ 3COS¢); ¢ =ws+q;
w

3
K, |2,

12\’
COS3(¢)=%( if +ei¢)3 =%(e3i¢ + 3¢ 4 30 +e'3i¢)

Equations of motion are simple:

3
h1=£ 2 cos’(ws + @) = al**(cos 3¢ + 3cos §); ¢ = ws + @;
0"3;1 a; oh o)
"= =Zal'"*(cos3¢ + 3cosg); I'=——L=3al’"*(sin3¢ +sind);
0= eonp s Seoss 1= <30 sn 3 sin)

where all terms do oscillate and average to zero. Integrating first order oscillating term:



G =0+ @ =10+i;
@:%al”zf(cos3¢+ 3cos¢)dt =2La1”2(sin3¢+9sin¢) (2)
»

3/2

I=3ar’” [(sin3¢ +sing)dt = - (cos3¢ + 3cos¢);

Now we need to put the above expression into the r.h.s. of (1) assuming that perturbation
is weak @; I and we can expand the terms ¢, = @, + ¢; I, =1, + I to write in second order
perturbation:

@ = %a 1, +1(cos3(¢, + @) + 3cos(¢, + §)) = %OCIUHZ(COS 3¢, +3cos¢,) +

2, (cos39, + 3c03, ) -, (sin3g, + sing, )7

o

3)
I'= 30:(10 + 7)3/2(5111 3(¢, + @) +sin(¢, + @)) = 3a(10)3/2(sin 3¢, +sing,) +

%a]om(sin 3¢, + 3sing, ) + 3a(L,)""*(3cos 3¢, + cos§, )@

Comparing the terms in (2) and (3) one can see that terms in I’ have products of sin and
cos terms, which give zero average value. Hence, as expected away from the resonances,
particle’s amplitude does not grow.

<I'> =0; ie. <I> = const

In contrast, averaging the first equation in (3) yields non-zero result:
2

, 3a’l, : : : : a’l,
(@)= o (<(cos3¢0+3cos¢o)2>+<(sm3¢o+9s1n¢0)(sm3¢0+s1n¢0)>)= -15 -
K, [2 A 120K, 5K,
Ve T T e
do _ 5K,
l 6 0’

predicting that there will be negative nonlinear frequency (tune) shift with the square of
the amplitude:

5K,
w(a) - w(0) = —E—Zzaf




Accelerator Physics: Midterm Exam Solutions

Friday, January 18 2007

1 Zero Trace Matrix

(10 points) Show that if M is a 2x2 matrix with unit determinant and Tr(M)=0, then
M?=—I. ;
Solution: We can write M generally as

a b a?® + be 0
M:(c ——a) M2:< 0 a2+bc> (1.1)

where det(M) = —a® — bc = 1. The result immediately follows.

2 Multiple FODO Cell Concatenation

(10 points) Consider a FODO cell with phase advance of 2 /n in each plane. Show that the
transport matrix of the concatenation of n of these FODO cells is I.
Solution: The FODO cell is periodic, so its transport matrix can be written in the form

M = I cosp+ Jsinp = I cos(2n/n) 4+ Jsin(27/n) = e*™//n (2.1)
Concatenating n matrices together gives

M™ = e*™ = I cos(2mn) + Jsin(2rn) = I (2.2)

3 FODO Cell Equivalence

L/2

(15 points) Consider a FODO cell with drift lengths L/2 and quadrupole focal lengths + f
as shown on the left. The transport matrix of this FODO lattice, starting with the focusing
quadrupole, was given in class as

Mropo(horizontal) = (é L1/2 ) ( ; (1)> ( (1) L1/2 ) ( _1% (1) )

1_ﬁ_4_2 Z+Z_ ( 1) v
I 3.
~F 1_,_5?

in the horizontal plane.



(a) Show that Mpopo(horizontal) can be written as Mopo(horizontal) — that is, as the

horizontal transport matrix of a single quadrupole of focal length fy between two
straight sections of (possibly different) lengths L1y and Lgg, as shown on the right.
How do (fu, Lim, Lag) relate to (f, L) of the FODO cell?

Solution: The OQO lattice transport matrix can be written as

'

M, — (1 Len L0 L Lig \ _ 1+ %f‘ Lig + Log + ———L”}’jw _
8o 0 1 1/fH 1 0 1 A1 1+I}1_HH

fr
(3.2)
Setting the lower left components of (3.1) and (3.2) equal gives | fg = —2f?/L | which
is negative definite. Setting the lower right components equal gives Ly = ZL or

2f

. (Yes, this is negati\}e since we assumed f > 0 for the horizontal transport

case.) Finding L,y is probably easiest done setting the upper left components equal:

Ll _ , L I

bap T lgap
= Iny = f+§ (33)

(b) Show that the vertical transport matrix of the same FODO cell, Mgopo(vertical) can

4

be written as Moo (vertical) with quadrupole focal length fiy and lengths Ly and Loy .
How do these relate to the horizontal OQO cell parameters found in part (a)?

Solution: The transport matrix for the vertical motion replaces f with —f in (3.1).
This gives | fy = fg = —2f%/L, Lyy = f| and }LQV =—f+L/2 | We can observe that

Lig + Log = Liv + Lay = L/2| The two transports are different between horizontal

and vertical , so we cannot replace a pair of quadrupoles in a FODO cell with a single
quadrupole.

Note that in general, any 2D single-plane transport can be modeled by this drift-quad-
drift model, since we have three parameters to fit and three unknowns. The fourth
degree of freedom in the general 2x2 matrix is constrained by symplecticity.

Beta Function At A Walist

(20 points) The transport of the envelope function w(s) from a local minimum of value wq
through a drift space of length s is given by: ‘

(i o= (3 1) (2)

(a) Show that

82 82
w(s) =wi +— or B(s)=Lfo+ = (4.2)
wj 0

Thus the beta function near a waist (or local minimum) in a drift region is quadratic.
Solution: From (4.1), we have

w(s)e' ™ = wo + — (4.3)
Wo



w(s) is by definition real, so we can multiply by the complex conjugate to give

- . 2
2(s) = » 2 sy 2
w(s) = (wo 4+ ) <w0 ” ) Wy + (4.4)
We have defined 3(s) = w?(s) in the notes, so (4.2) follows.

(b) From (4.1), calculate the phase advance Ay as s — oo. This is half of the maximum
phase advance of a field-free region. '
Solution: There are multiple ways to do this. One way is to use the definition of the
phase advance as an integral of the inverse of the beta function:

® ds © ds s\|© w

At = / y / Y tan? (—) . 45
36 B Bl "2 o)

You can also evaluate (4.4) in the limit of s — co:
I - M (4.6)

il P

wi + s%/wg

= E/ﬂ:i as s — 00 (4.7)
S/wo

which gives Ay =2

5 Solenoid Transport Matrix

(25 points) Consider a solenoid of length L with only longitudinal field Bs. The torsion to

decouple the Hamiltonian is
eB

K= ——— 5.1
20 (5.1)
and the resulting Hamiltonian in rotating frame of reference canonical coordinates (x, ;)

and (y,7,) is

2 2 2 2
my+ T il &
Yo k2 y

5 . (5.2)

H(z, 75y, my) =

Find the transport matrix of this solenoid.
Solution: This problem is almost exactly the same as problem 2 of homework set 3, with
the difference of a sign, and a different interpretation of the focusing strength coefficient & or
. The problem is separable, so we can solve each plane independently, and they will have
the same form. The one-dimensional single-plane Hamiltonian can be written as

H(s) = ( o > (53)

(this corrects a typo in the homework 3 solution), so we have

D=S5. H(S) = < _OH é ) Msolenoid = exp[D ’ L] (54)

Comparing to the quadrupole problem, k = x? which is positive definite, so the transport
matrix in each plane of this solenoid in the rotated coordinate system is simply that of a
focusing quadrupole with effective strength k = x? = (e2B2)(4p*c?), or

coskl ~ Snsl )

Msolenoid = < . N (55) i

—ksinkl cosklL



6 Azimuthally Symmetric Optics

(30 points) Consider an azimuthally symmetric ring with orbit radius p = KLO and a field

gradient
e 0B, 9
Y — _nK A
Poc Oz Ny (6 )
where n is known as the field index. The Hamiltonian for transverse motion does not depend

on s, and is given by

T 2 + 72 x? 2
H(z,mp,y,m) = =L + K31 —n)5 +nKi % (62)
(a) Find the one-turn matrices for horizontal and vertical motion.

Solution:

Here the problem is akin to that of the quadrupole again, where the total length of the
quadrupole is the circumference of the accelerator C' = 27p, and the effective quadrupole
strengths are K, = K3(1 — n) and K, = K¢n. This gives the one-turn matrices as

sin |\ |C cos |\ |C sin [X=|0
Ty = [ cos |\, |C + DEE22Y i el 6.3
e | < “elsin[Ae|C cos|Ne|C (6:3)
where A, = Kopv/1 —n, and
sin |\, |C  cos|AlC Ha 4]0
T, =1 M|C+D—F— = v [yl 6.4
Y cos |/ [Ay] ( —| Ayl sin [A,|C cos|/y\y[C’ (6.4) .

where A\, = Ko/n. Note that we regire that 0 <n < 1 for stability in both planes.

(b) Find the horizontal and vertical tunes, v,,, and show that v} + v} = 1.
Solution: The tune is related to the trace of the one-turn matrix:

Tr(T) = 2cos yu = 2 cos(2nv) (6.5)

which immediately gives v, = Kyy/1 —np and p, = Ko+/np. But Ky = 1/p, so we have
vs = V1 —n and g, = /n| From this result it is obvious that 2+ v? = 1.

(c) Find the beta functions of this storage ring.
Solution: Since there is azimuthal symmetry, the beta functions are constant around
the ring. We then have

% T 0 -
ds 27wC 2nC
I/y ,By ﬂy 0\/7_7« /By Ko\/ﬁ ( )



