
Path Length, Dipole Field and RF Frequency Correction 
 

DIPOLE MODELING 

Finding the correct RF frequency for a storage ring can difficult task but has important 

practical implications. In the design phase, we typically start with an ‘ideal’ magnet 

lattice with a hard-edge model for the dipole magnets. One of the simplest examples for 

path length through the dipoles is the circular arc 
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where L is the straight-line length of the dipole cores and  is the bending angle.  After 

magnetic measurements, the ‘effective’ length of the iron core, Leff, can be used to 

improve the approximation, including fringe field effects: 
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The next level of approximation can be found by numerical integration of magnetic 

measurement data. For gradient dipoles, the equation of motion for the beam trajectory is 
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where ‘z’ is the straight-line coordinate along the magnet and x is perpendicular to z. k  is 

the normalized field gradient, BB / . Note that z is not the same as the local coordinate 

‘s’ which follows the motion of the beam. In the small angle, paraxial approximation, 
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and we arrive at the more common equation for particle motion through 

quadrupoles: kx
dz
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 with the resulting hyperbolic equations of motion.  

 

In practice, once the equation of motion is defined, numerical integration can be used to 

find the k -value in the dipole magnets that yields the correct bending angle, including 

fringe fields. The dipole power supply current is found from magnetic measurements of 

k  vs. I.  The calculated path length provides a good starting point for the rf frequency.  

 

With the dipole k-value loaded into the accelerator model, the optics can be re-matched to 

find the correct quadrupole k -values and power supply currents. The model should also 

use the effective length for the quadrupoles. Although it is difficult to generate a 

numerical model that will produce the correct optics from the start, response matrix 

analysis has proven effective for adjusting the optics to the nominal values.  



 

When the storage ring comes into operation, finding the correct rf frequency remains an 

issue. In SPEAR 3, the rf frequency was increased about 17 kHz above the original 

circular arc estimate (36 dipole magnets with steel length 145 cm) to account for the 

effect of fringe fields and the effect of the non-paraxial beam trajectory. In practice, the 

optimum frequency was found to lie about 16 kHz above the circular arc estimate but 

changes with tunnel temperature.   

 

Experimentally finding the correct rf frequency can be done with the sextupole centering 

technique (measure tune vs. rf frequency for several sextupole k -values) or by analyzing 

the strength of the horizontal corrector magnets. In this section, we will investigate 

projecting the orbit into the dispersion component and optimization of the corrector 

magnet settings in more detail.  

 

MOMENTUM COMPACTION AND DISPERSION 

When the storage ring rf frequency is changed, the electron beam moves horizontally 

onto a dispersion orbit given by 
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where  is the dispersion function and the energy shift dp/p is given by the momentum 

compaction factor 
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Substituting, 
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To estimate the sensitivity, take a storage ring with peak dispersion =0.2 m, =0.001 

and a 500 MHz rf system. If we increase the rf frequency by 1 kHz, the beam energy goes 

up by 0.2% and the beam moves by -400 m at points at points of peak dispersion. Since 

we now have master oscillators controllable to 1 Hz (x=400 nm in this example) and 

accurate orbit correction systems, the question becomes one of finding the correct rf 

frequency for storage ring operation. 

 

RF COMPONENT IN THE ORBIT 

One way to correct the rf frequency is to measure the closed orbit distortion and project it 

onto a known dispersion orbit. In general, the COD contains both a 'betatron' component 

and an 'rf' component: 

 

   x = x + xrf 

where     

   x = total COD 

   x= betatron component 

   xrf = rf component . 

 



To extract the rf component, we project the orbit perturbation onto a measurement of the 

orbit response to a known rf-frequency change, the column vector xrf . The projection 

generates a scalar proportional the required rf-frequency change. Normalizing, 
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Note that if x  =  xrf  then f = 1, i.e. the entire orbit perturbation is due to an rf-frequency 

perturbation. Furthermore, we assume 0 rfxx which is a good (but not perfect!) 

approximation since betatron orbits tend to be oscillatory with the betatron period, and 

the rf-orbit is predominately DC. 

 

To compute the rf frequency shift required to correct the orbit we have 

 

   )( rfrf fff   

 

where frf is the change in frequency used to generate the measured dispersion orbit, xrf. 

The residual betatron component, x = x - f xrf , is corrected with standard methods for 

orbit control. 

 
MATLAB Example – Projection orbit into dispersion vector 

>>edit rf_1 

 

AUGMENTED RESPONSE MATRIX 

An alternative way to correct the rf orbit is to add column vector xrf  to the response 

matrix prior to inversion. The rf-frequency is treated as a ‘corrector’ but care is required 

to find to proper scaling between corrector magnets currents and the master oscillator 

control signal. In effect, weighted least-squares is required to weight the rows of the 

response matrix. 

 

    rfcorrector xRR  :  

   xR
1  

    rfcorrector f :  

 

 

RF COMPONENT IN THE CORRECTORS 

One problem with standard rf-frequency correction methods is that there still may be 

'errors' masked by the horizontal corrector magnets - how effective do corrector magnets 

offset rf frequency errors? Imaging again we increase the rf frequency by 1 kHz. The 

beam energy increases and the orbit moves in a few hundred microns. Can the corrector 

magnets put the beam back on the original orbit? If the response matrix has sufficient 

rank ( the orbit perturbation lies in the column space of R) we can steer the beam through 

the BPMS - but what does the corrector pattern look like and what happens in-between 

the BPMS?  



 

Arguably, if we reduce the average corrector strength then the magnetic flux encircled by 

the beam, and consequently the beam energy, is reduced back toward the original value. 

In practice, this is indeed the case, a corrector pattern with a strong DC-component will 

compensate rf-frequency variations. But the rf-frequency still defines the total path length 

so the compensation is not exact. At best, we can correct the orbit at the BPM locations 

but there will be path length variations between BPM locations to satisfy the path length 

constraint. 

 
MATLAB Example – Correctors required to correct RF orbit 

>>edit rf_2 

 

 Turning the argument around, we can try to adjust the rf-frequency so as to 

minimize the DC-component in the corrector pattern. In a well-aligned storage ring the 

result should be relatively accurate. A straightforward procedure would be turn on the 

horizontal orbit feedback system and adjust the rf-frequency until the DC-component of 

the corrector magnets is zero. Most (if not all) singular values will be required since the 

‘DC-orbit shift’ does not project well into the column space of a typical response matrix.  

 

 A further refinement of this technique was developed at the SLS. As before, each 

feedback cycle calculates the projection coefficient ‘f’ and, if f is of sufficient magnitude, 

removes the rf component (frf ). If f is too small, no rf-correction is made but we don’t 

want the betatron portion of the feedback system to act on the rf-orbit contribution. 

 

      To reject the rf component from the corrector set, the feedback system first calculates 

the incremental corrector pattern each cycle: =R
+
 x. Prior to applying the new 

corrector pattern, new=old+ , however, the feedback algorithm removes components 

of the corrector pattern that act on the rf-orbit perturbation. To remove the rf-component 

from the corrector pattern, we project new into the corrector vector rf required to 

compensate for an rf-frequency perturbation. In practice, rf can be measured by 

changing the rf-frequency, measuring the orbit shift  xrf, and then calculating 

  

  rf=R
+
  xrf.  (corrector pattern required to offset rf-frequency error) 

 

Mathematically, the new corrector pattern with the rf-component removed is 
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By systematically removing the corrector pattern associated with rf-errors the 

functionality of the rf-error and betatron feedback components remain decoupled. 


