
Least Squares Fitting 
 

Least-squares fitting is common in experimental physics, engineering, and the social 

sciences. The typical application is where there are more constraints than variables 

leading to 'tall' rectangular matrices (m>n). Examples from accelerator physics include 

orbit control (more BPMS than correctors) and response matrix analysis (more 

measurements in the response matrix than variables).  

 

The simplest linear least-squares problem can be cast in the form  

 

 Ax=b  

 

where we look to minimize the error between the two column vectors Ax and b. The 

matrix A is called the design matrix. It is based on a linear model for the system. Column 

vector x contains variables in the model and column vector b contains the results of 

experimental measurement. In most cases, when m>n (more rows than columns) Ax does 

not exactly equal b, ie, b does not lie in the column space of A. The system of equations 

is inconsistent. The job of least-squares is to find an ‘average’ solution vector x  that 

solves the system with minimum error. This section outlines the mathematics and 

geometrical interpretation behind linear least squares. After investigating projection of 

vectors into lower-dimensional subspaces, least-squares is applied to orbit correction in 

accelerators. 

 

VECTOR PROJECTION 

We introduce least squares by way projecting a vector onto a line. From vector calculus 

we know the inner or 'dot' product of two vectors a and b is 

 

 ba  = a
T
b = a1b1 + a2b2 + … + anbn = |a||b|cos  

 

where  is the angle at the vertex the two vectors. If the vertex angle is 90 degrees, the 

vectors are orthogonal and the inner product is zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 1 – projection of b onto a 



 

Referring to figure 1, the projection or perpendicular line from vector b onto the line a 

lies at point p. Geometrically, the point p is the closest point on line a to vector b. Point p 

represents the 'least-squares solution' for the 1-dimemsional projection of vector b into 

line a. The length of vector b – p is the error. 

 

Defining x  as the scalar coefficient that tells us how far to move along a, we have  

 

 p= x  a 

 

Since the line between b and a is perpendicular to a,  

 

    aaxb   

so 

    axba   0 axbaT  
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In words, the formula reads  

 

 'take the inner product of a with b and normalize to a
2
'.  

 

The projection point p lies along a at location 
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Re-writing this expression as  
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isolates the projection matrix, P = aa
T
/a

T
a. In other words, to project vector b onto the 

line a, multiply ‘b’ by the projection matrix to find point p=Pb. Projection matrices have 

important symmetry properties and satisfy P
n
=P – the projection of a projection remains 

constant. 

 

Note that numerator of the projection operator contains the outer product of the vector ‘a’ 

with itself. The outer product plays a role in determining how closely correlated the 

components of one vector are with another. 

 



The denominator contains the inner product of a with itself. The inner provides a means 

to measure how parallel two vectors are ( ntdisplacemeforcework  ). 

 
MATLAB Example – Projection of a vector onto a line 

>>edit lsq_1 

 

MULTI-VARIABLE LEAST SQUARES 

     We now turn to the multi-variable case. The projection operator looks the same but in 

the formulas the column vector 'a' is replaced with a matrix 'A' with multiple columns. In 

this case, we project b into the column space of A rather than onto a simple line. The goal 

is again to find x  so as to minimize the geometric error E = |A x  – b|
2
 where now x  is a 

column vector instead of a single number. The quantity A x  is a linear combination of the 

column vectors of A with coefficients x 1, x 2, … x n. Analogous to the single-parameter 

case, the least-squares solution is the point p=A x  closest to point b in the column space 

of A. The error vector b-A x is perpendicular to that space (left null space).  

 

The over-constrained case contains redundant information. If the measurements are not 

consistent or contain errors, least-squares performs an averaging process that minimizes 

the mean-square error in the estimate of x. If b is a vector of consistent, error-free 

measurements, the least-squares solution provides the exact value of x. In the less 

common under-constrained case, multiple solutions are possible but a solution can be 

constructed that minimizes the quadradic norm of x using the pseudoinverse. 

 

There are several ways to look at the multi-variable least-squares problem. In each case a 

square coefficient matrix A
T
A must be constructed to generate a set of normal equations 

prior to inversion. If the columns of A are linearly independent then A
T
A is invertible and 

a unique solution exists for x . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 2 –multivariable projection 

 



1) Algebraic solution – produce a square matrix and invert 

 A x  = b 

 

 A
T
A x  = A

T
b   (normal equations for system Ax=b) 

 

 x  = (A
T
A)

-1
A

T
b 

 

The matrices A
T
A and (A

T
A)

-1 
have far-reaching implications in linear algebra. 

 

2) Calculus solution – find the minimum error 

 E
2
 = |A x  – b|

2 

 

 dE
2
/x = 2A

T
Ax – 2A

T
b = 0 

 

 A
T
Ax = A

T
b  

 

 x  = (A
T
A)

-1
A

T
b 

 

3) Perpendicularity- Error vector must be perpendicular to every column vector in A 

 a1
T
(b – A x ) =  0 

  … 

 an
T
(b – A x ) = 0 

 

or 

 A
T
(b – A x ) = 0 

or 

 A
T
A x  = A

T
b 

 

 x  = (A
T
A)

-1
A

T
b 

  

4) Vector subspaces – Vectors perpendicular to column space lie in left null space 

    i.e., the error vector b – A x  must be in the null space of A
T
 

 A
T
(b – A x ) = 0 

 

 A
T
A x  = A

T
b 

 

 x  = (A
T
A)

-1
A

T
b 

 

 

 

 

 



MULTI-VARIABLE PROJECTION MATRICES 

In the language of linear algebra, if b is not in the column space of A then Ax=b cannot 

be solved exactly since Ax can never leave the column space. The solution is to make the 

error vector Ax-b small, i.e., choose the closest point to b in the column space. This point 

is the projection of b into the column space of A. 

 

When m > n the least-squares solution for column vector x in Ax = b is given by  

 

 x  = (A
T
A)

-1
A

T
b 

 

Transforming x  by matrix A yields 

 

 p = A x  = {A(A
T
A)

-1
A

T
}b 

 

which in matrix terms expresses the construction of a perpendicular line from vector b 

into the column space of A. The projection operator P is given by 

 

 P =  A(A
T
A)

-1
A

T

AA

AA
T

T

~
 

 

Note the analogy with the single-variable case with projection operator 
aa

aa
T

T

. In both 

cases, p = Pb is the component of b projected into the column space of A.  

 

E = b – Pb is the orthogonal error vector. 

 

Aside: If you want to stretch your imagination, recall the SVD 

factorization yields V, the eigenvectors of A
T
A, which are the axes 

of the error ellipsoid. The singular values are the lengths of the 

corresponding axes.  

 

In orbit control, the projection operator takes orbits into orbits.  

 

  x  = R = R(R
T
R)

-1
R

T
x 

 

 (R
T
R)

-1
R

T
 is a column vector of correctors,  

 

 
MATLAB Example – Projection of a vector into a subspace (least-squares) 

>>edit lsq_2 

 

 

UNDER-CONSTRAINED PROBLEMS  (RIGHT PSEUDOINVERSE) 

Noting that (AA
T
)(A

T
A)

-1
=I we can write Ax=b in the form 

 



 Ax = (AA
T
)(A

T
A)

-1
b 

or 

 x = (A
T
)(A

T
A)

-1
b = A

+
b 

 

where A
+
b is the right pseudoinverse of  matrix A. 

 
MATLAB Example – Underconstrained least-squares (pseudoinverse) 

>>edit lsq_3 

 

WEIGHTED LEAST SQUARES 

When individual measurements carry more or less weight, the individual rows of Ax=b 

can be multiplied by weighting factors. 

 

In matrix form, weighted-least-squares looks like 

 

 W(Ax) = W(b) 

 

where W is a diagonal matrix with the weighting factors on the diagonal. Proceeding as 

before,  

 

 (WA)
T
(WA)x = (WA)

T
Wb 

 x = ((WA)
T
(WA))

-1 
(WA)

T
Wb 

 

When the weighting matrix W is the identity matrix, the equation collapses to the original 

solution x = (A
T
A)

-1
A

T
b. 

 

In orbit correction problems, row weighting can be used to emphasize or de-emphasize 

specific BPMS. Column weighting can be used to emphasize or de-emphasize specific 

corrector magnets. In response matrix analysis the individual BPM readings have 

different noise factors (weights). 

 

 

ORBIT CORRECTION USING LEAST-SQUARES 

Consider the case of orbit correction using more BPMS than corrector magnets. 

x = R or

































































Rx  

x = orbit (BPM)/constraint column vector (mm) 

 = corrector/variable column vector (ampere or mrad) 

R = response matrix (mm/amp or mm/mrad) 

 

 



In this case, there are more variables than constraints (the response matrix R has m>n). 

Using a graphical representation to demonstrate matrix dimensionality, the steps required 

to find a least squares solution are 
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TT   (normal equations) 
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or  

  (R
T
R)

-1
R

T
x 

 

The projection operator predicts the orbit from corrector set : 

 

 x  R(R
T
R)

-1
R

T
x 

 

and the orbit error is 

 

 e= x – x  = (I - R(R
T
R)

-1
R

T
)x 

 

Note that in order to correct the orbit, we reverse the sign of  before applying the 

solution to the accelerator. You will not be the first or last person to get the sign wrong.  

 

 Feynman’s rule:   ‘If the sign is wrong, change it’. 

 

 
MATLAB Example – Least-squares orbit correction 

>>edit lsq_4 

 



RESPONSE MATRIX ANALYSIS EXAMPLE 

Response matrix analysis linearizes an otherwise non-linear problem and iterates to find 

the solution. The linearization process amounts to a Taylor series expansion to first order. 

For a total of l quadrupole strength errors the response matrix expansion is 
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where the measured response matrix R has dimensions m x n and all of {R0, dRo/dkj} are 

calculated numerically. To set up the Ax=b problem, the elements of the coefficient 

matrix A contain numerical derivatives dR
ij
/dkl. The constraint vector b has length m 

times n and contains terms from R-R0. The variable vector x has length l and contains the 

Taylor expansion terms k1,…kl. The matrix mechanics looks like 
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The 'chi-square' fit quality factor is 

 

 

2
mod

2













 


i

el

ij

measure

ij RR


  

 

where i  is the rms measurement error associated with the i
th

 BPM. 

 



 

SVD AND LEAST-SQUARES 

The least-squares solution to Ax=b where m>n is given by 

 

 xlsq= (A
T
A)

 -1
A

T
b 

 

Singular value decomposition of A yields  

 

 A = UWV
T
.  

 

Using the  pseudoinverse,  

 

 A
+
=VW

-1
U

T
 

 

leads to 

 xsvd = A
+
b = VW

-1
U

T
*b 

 

Does xlsq= xsvd for over-constrained problems m > n? 

 

Exercise: analytically substitute the singular value decomposition expressions for A and 

A
T
 to show 

 

 (A
T
A)

 -1
A = VW

-1
U

T
. 

 

Hence, SVD recovers the least-squares solution for an over-constrained system of 

equations. 


