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Canonical Momentum for the Lorentz Force

For a conservative force, the work done by the force in moving from point P1 to point P2 is

independent of the path taken:
∫ P2

P1

~F · d~r is invariant,

or more succinctly
∮

~F · d~r = 0 (1.1)

from which by use of Stoke’s theorem we get in differential form

∇× ~F = 0. (1.2)

From basic mechanics we learned that forces which only depend on position and not the velocity of

the particle being worked upon are conservative. Examples of such forces are those from gravitational

and static electric fields. When there are magnetic fields present the Lorentz force can depend on

velocity:
d~p

dt
= ~F = q( ~E + ~v × ~B), (1.3)

and is not always conservative. Taking the curl of the Lorentz force yields:

∇× ~F = ∇× d~p

dt
= q(∇× ~E + ∇× (~v × ~B))

= −q ∂
~B

∂t
+ q

[

( ~B · ∇)~v − (~v · ∇) ~B + (∇ · ~B)~v − (∇ · ~v) ~B
]

= −q ∂
~B

∂t
− q

[

(~v · ∇) ~B
]

= −q
[

∂ ~B

∂t
+
∂ ~B

∂x

dx

dt
+
∂ ~B

∂y

dy

dt
+
∂ ~B

∂z

dz

dt

]

= −q d
~B

dt

= −d
dt

(∇× q ~A). (1.4)

Moving terms to the left side produces

∇× d~p

dt
+
d

dt
(∇× q ~A) = 0, (1.5)

which after reordering the differentiation becomes

∇×
[

d

dt

(

~p+ q ~A
)

]

= 0. (1.6)

1
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If we define a new canonical momentum by

~P = ~p+ q ~A, (1.7)

then the corresponding canonical force

~Fcan =
d~P

dt
(1.8)

is conservative.
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Alternative Derivation of Eq. (CM: 3.75)

In going from Eq. (3.60) to Eq. 3.75 of Conte and MacKay1, I have not been quite rigorous

enough in applying the canonical transformation; hence it was necessary to use a bit of hand waving

to add an extra term of +1 to the dz/ds equation in Eq. (3.75). When we are more careful with

the canonical transformation, we find that the Hamiltonian in Eqs. (3.64 and 3.72) must have an

additional term of +δ.

Eq. (3.60) may be rewritten using the paraxial approximation as

H1(x, x
′, y, y′, t,−U/p0; s) = − q

p0
As −

(

1 +
x

ρ

)

√

(

U

p0c

)2

−
(

mc

p0

)2

− x′2 − y′2.

We would like to transform to a Hamiltonian

H(x, x′, y, y′, z, δ; s) = H1(x, x
′, y, y′, t,−U/p0; s) +

∂F2(t, δ; s)

∂s
,

where F2 is a generating function for the canonical transformation (See Appendix C.) with

z =
∂F2

∂δ
, and − U

p0
=
∂F2

∂t
.

Since

δ =
∆p

p0
=

U2
0

p2
0c

2

∆U

U0
=

1

β2
0

∆U

U0
,

the relation between U
p0

and δ is

U

p0
=
c

β
(1 + β2δ).

A good candidate for the generating function is

F2(t, δ; s) =
U

p0
(t0 − t) − s

β2
0

+ s

=
c

β0
(1 + β2

0δ)(t0 − t) − s

β2
0

+ s

=
c

β0
(1 + β2

0δ)

(

s

v0
− t

)

− s

β2
0

+ s,

since s = v0t0. Evaluating for z then gives

z = s− v0t,

as shown in Eq.(3.63). The additional term missing from Eq. (3.72) is then

∂F2

∂s
= δ + 1.

3
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Thus we see that a more careful treatment leads to the desired answer without the extra hand

waving.

References for Chapter 2

[1] M. Conte and W. W. MacKay, An Introduction to the Physics of Particle Accelerators, World

Scientific, Singapore (1991).
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Matrix Elements: Synchrobetatron Coupling

For a charged particle of charge q in an external electromagnetic field, we may write the rela-

tivistic Hamiltonian as

H(x, Px, y, Py, z, Pz; t) = U =

√

(~P − ~A)2 +m2c4 + qΦ, (3.1)

with vector potential ~A, and electric potential Φ, canonical momentum ~P = ~p+q ~A, and total energy

U . Here the kinetic momentum ~p = γ~βmc. In the usual cylindrical coordinates of accelerator physics

with radius of curvature ρ, the Hamiltonian may be written as

H(x, Px, y, Py, s, Ps; t) = U

= c

√

(Px − qAx)2 + (Py − qAy)2 +

(

Ps − qAs
1 + x/ρ

)2

+m2c2 + qΦ. (3.2)

Recalling that a canonical transformation from variables (~q, ~p) to variables ( ~Q, ~P ) preserves the

Poincaré-Cartan integral invariant

~p · d~q −H dt = ~P · d ~Q−K dt, (3.3)

we can interchange one canonical pair (qj , pj) with the time and energy pair (t,−H) by writing the

invariant as




∑

i6=j
pidqi + (−H)dt



− (−pj)dqj . (3.4)

This transformation gives the new Hamiltonian

H(x, Px, y, Py, t,−U ; s) = −Ps
= −qAs

−
(

1 +
x

ρ

)

√

(

U − qΦ

c

)2

− (mc)2 − (Px − qAx)2 − (Py − qAy)2. (3.5)

If there are no electrostatic fields then we may write Φ = 0; the fields in rf cavities may be obtained

from the time derivative of ~A. Ignoring solenoids for now, with only transverse magnetic guide fields

and the longituindal electric fields of the cavities, then it is sufficient to have only As, so

Ax = 0, Ay = 0, and Φ = 0. (3.6)

For dipoles, quadrupoles and cavities a vector potential of the form

qAs = q

(

1 +
x

ρ

)

( ~A · ŝ)

= −psy

ρ
x− psyK

2
(x2 − y2) + . . .

+
qV

ωrf

∞
∑

j=−∞
δ(s− jL) cos(ωrft+ φ0). (3.7)

5
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is sufficient. Here the circumference is L, and the magnetic guide field paremeter is

K =
1

ρ2
+

q

psy

(

∂B

∂x

)

0

, (3.8)

and psy is the momentum of the synchronous design particle. The effective rf phase as the syn-

chronous particle passes the cavites is φ0, to give a net energy gain per turn of [qV cos(φ0)]. In

Eq. (3.7) the effect of all rf cavities has been lumped at the location s = 0 in the ring.

The time coordinate may be broken up into the time for the synchronous particle to arrive at

the location s plus a deviation ∆t for the particular particle’s arrival time:

t = tsy(s) + ∆t(s) =
2πh

ωrfL
s+ ∆t =

s

βc
+ ∆t. (3.9)

If the beam is held at constant energy, then we may make a canonical transformation of the time

coordinate ∆t to rf phase ϕ given by

ϕ = ωrf∆t. (3.10)

If acceleration is assumed to be adiabatically slow, so that ωrf changes very slowly, and the magnetic

guide fields track the momentum of the synchronous particle, keeping the synchronous particle on a

fixed trajectory, we can allow for an adiabatic energy ramp according to

Usy = U0 +
qV sinφ0

L
s, (3.11)

where the energy gain per turn [qV sinφ0] is much less than the total energy Us. In this case it

might not unreasonable to use ϕ as the longitudinal coordinate, so long as we are prepared to allow

for adiabatic damping of the phase space areas. To convert the time coordinate into an rf phase

angle relative to the phase of the synchronous particle, we can use the generating function

F2(x, px, t,W ; s) =xpx +

[

ωrfW −
(

U0 +
qV sinφ0

L
s

)]

t

− 2πh

L
Ws+

qV πh sinφ0

ωrfL2
s2, (3.12)

to find a new canonical momentum W cooresponding to the phase coordinate. This is what was

used to arrive at Eq. 7.61 of Ref. [1].*

Before proceeding down this path it will behoove us to examine the effect of ramping the energy.

The deviation in energy of another particle of energy U from the synchronous particle may be defined

as

∆U = U − Usy. (3.13)

For the synchronous particle the phase of the rf cavity should be

φsy = φ0 +

∫ tsy

0

ωrf dt

= φ0 +

∫ tsy

0

2πhβc

L
dtsy (3.14)

* In writing § 7.6 of Ref. [1], I was following the formalism of Suzuki[2].
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With changing energy and the velocity dependance of ωrf , calculation of this integral becomes a

problem and ϕ does not appear to be such an attractive candidate for a canonical coordinate.

This is why Chris Iselin chose to take ζ = −c∆t as the longitudinal coordinate variable in the

MAD program[3]. Of course there are other parameters which are not necessarily constants in

real accelerators. It is quite common to vary the radial position of the closed orbit, as well as

the synchronous phase of the rf – particularly during the phase jump at transition crossing. Pulsed

quadrupoles are frequently used to cause a rapid change in the transition energy at transition during

acceleration.

If we consider a ramp with a constant increase of energy per turn

Usy = U0 +Rs with

R =
qV

L
sinφ0, (3.15)

then the time evolution as a function of path length of the synchronous particles is given by

tsy(s) =

∫ s

0

ds

βc

=

∫ s

0

[

1 −
(

mc2

U0 +Rs′

)2
]1/2

ds′

=
mc2

R

∫

U0+Rs

mc2

U0
mc2

√

1 − ξ−2 dξ, s′ =
ξmc2 − U0

R

= −mc
2

R

∫ mc2

U0+Rs

mc2

U0

√

1 − η2
dη

η2
, ξ =

1

η

=
mc2

R

∫ cos−1
(

mc2

U0+Rs

)

cos−1
(

mc2

U0

)

tan2 θ dθ, η = cos θ

=
mc2

R
[tan θ − θ]

∣

∣

∣

∣

∣

cos−1
(

mc2

U0+Rs

)

cos−1
(

mc2

U0

)

=
mc2

2R





U0 +Rs

mc2

√

1 −
(

mc2

U0 +Rs

)2

− U0

mc2

√

1 −
(

mc2

U0

)2

+ cos−1

(

mc2

U0 +Rs

)

− cos−1

(

mc2

U0

)]

=
mc2

2R

[

βγ − β0γ0 + cos−1

(

1

γ

)

− cos−1

(

1

γ0

)]

(3.16)

Provided that the ramping is sufficiently slow, then acceleration may be treated adiabatically.

At least in the adiabatic case, then we can find the new canoncial coordinate and Hamiltonian

from Eq. (3.12):

−U =
∂F2

∂t
= ωrfW −

(

U0 +
qV sinφ0

L
s

)

(3.17a)

ϕ =
∂F2

∂W
= ωrft−

2πh

L
s (3.17b)
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∂F2

∂s
= −qV sinφ0

L
t− 2πh

L
s+

2πhqV sinφ0

ωrfL2
s

= −qV sinφ0

L

[

2πh

ωrfL
s+ ∆t

]

− 2πh

L
s+

2πhqV sinφ0

ωrfL2
s

= −qV sinφ0

L

ϕ

ωrf
− 2πh

L
s

= −qV sinφ0

L

ϕ

ωrf
− s

orf
(3.17c)

Ignoring the vertical coordinate and momentum the new Hamiltonian is

H1(x, px, ϕ,W ; s) = H +
∂F2

∂s

=
psy

ρ
x+

psyK

2
x2 +

qV

ωrf

∞
∑

j=−∞
δ(s− jL) cos

(

φ0 + ϕ+
s

orf

)

−
(

1 +
x

ρ

)[

(Usy − ωrfW )2 −m2c4

c2
− p2

x

]1/2

− qV sinφ0

L

ϕ

ωrf
− s

orf

=
psy

ρ
x+

psyK

2
x2 +

qV

ωrf

∞
∑

j=−∞
δ(s− jL) cos

(

φ0 + ϕ+
s

orf

)

−
(

1 +
x

ρ

)[

p2
sy − 2ωrfUsy

c2
W +

ω2
rf

c2
W 2 − p2

x

]1/2

− qV sinφ0

L

ϕ

ωrf
− s

orf

' psy

ρ
x+

psyK

2
x2 +

qV

ωrf

∞
∑

j=−∞
δ(s− jL) cos

(

φ0 + ϕ+
s

orf

)

− psy

(

1 +
x

ρ

)

[

1 − ωrfUsy

p2
syc

2
W +

(

ω2
rf

2p2
syc

2
− 1

8

4U2
syω

2
rf

p4
syc

4

)

W 2 − 1

2

p2
x

p2
sy

]

− qV sinφ0

L

ϕ

ωrf
− s

orf

' psy







−1 +
K

2
x2 +

qV

ωrfpsy

∞
∑

j=−∞
δ(s− jL) cos

(

φ0 + ϕ+
s

orf

)

+

(

1 +
x

ρ

)[

ωrfUsy

p2
syc

2
W +

m2ω2
rf

2p4
sy

W 2 +
1

2

p2
x

p2
sy

]

− qV sinφ0

Lpsy

ϕ

ωrf
− s

orf

}

' psy







−1 +
K

2
x2 +

qV

ωrfpsy

∞
∑

j=−∞
δ(s− jL) cos

(

φ0 + ϕ+
s

orf

)

+

(

1 +
x

ρ

)

[

1

orf

W

psy
+

1

γ2orf
2

(

W

psy

)2

+
1

2

(

px
psy

)2
]

− qV sinφ0

Lpsy

ϕ

ωrf
− s

orf







(3.18)

This is essentially the same as Eq. (7.61) of Ref. [1] where the longitudinal variables are

ϕ = ωrf ∆t, and (3.19a)

W = −∆U

ωrf
, (3.19b)
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L is the circumference, and for magnets with transverse fields and no horizontal-vertical coupling

K =
1

ρ2
+
q

p

(

∂B

∂x

)

0

. (3.20)

If we want to calculate matrices for the basic magnetic elements, i. e., normal quads and dipoles,

then the summation drops out, since δ(s − jL) = 0 and V = 0 away from the rf cavities. Then

keeping only terms to second order in the canonical variables we have

H1 ' −ps +
psK

2
x2 +

p2
x

2ps

+

(

Usyωrf

psyc2
− 2πh

L

)

W +
m2ω2

rf

2p3
sy

W 2 +
Usyωrf

ρpsyc2
Wx

' −psy +
psyK

2
x2 +

p2
x

2psy
+
m2ω2

rf

2p3
sy

W 2 +
Usyωrf

ρpsyc2
Wx, (3.21)

since the two terms in the coefficient of W cancel. We may rescale the Hamiltonian by 1/psy getting

H1.5 ' −1 +
K

2
x2 +

1

2
wx

2 +
1

γ2orf
2w

2
φ +

1

ρorf
wφx, (3.22)

with the new canonical momenta

wx =
px
psy

, and (3.23a)

wφ =
W

psy
= − ∆U

ωrfpsy
.

= −
βγmc3

γmc2

2πhβc
L

∆p

psy

= −orf
∆p

psy
, (3.23b)

where orf = L/2πh. In this case with ϕ and wφ as canonically conjugate the longitudinal emittance

would have units of length (meters), just like the horizontal and vertical planes. (Of course this

should be obvious since all three emittances would come from the common Hamiltonian H1.5.) In

the paraxial approximation, we obviously have wx ' x′.

3.1 Quadrupole Matrix

For a normal quadrupole the last term in Eq. (3.22) vanishes, and we have

H1.5 ' −1 +
k

2
x2 +

1

2
wx

2 +
1

γ2orf
2w

2
φ, (3.24)

with

k =
q

psy

(

∂B

∂x

)

0

. (3.25)



10 Supplementary Notes for Accelerator Physics

Evaluating for the equations of motion, produces

dx

ds
=

∂H1.5

∂wx
= wx (3.26a)

dwx
ds

= −∂H1.5

∂x
= −kx (3.26b)

dϕ

ds
=

∂H1.5

∂wφ
=

1

γ2orf
2 wφ (3.26c)

dwφ
ds

= −∂H1.5

∂ϕ
= 0 (3.26d)

So the infinitesimal matrix of integration should look like

I + G ds =









1 ds 0 0
−k ds 1 0 0

0 0 1 ds
γ2orf

2

0 0 0 1









(3.27)

which has the corresponding generator matrix

G ds =









0 1√
k

0 0

−
√
k 0 0 0

0 0 0 1
γ2orf

2
√
k

0 0 0 0









√
k ds (3.28)

Integration leads to the quadrupole transfer matrix

M =









cos(
√
kl) 1√

k
sin(

√
kl) 0 0

−
√
k sin(

√
kl) cos(

√
kl) 0 0

0 0 1 l
γ2orf

2

0 0 0 1









. (3.29)

3.2 Drift Matrix

For a drift k = 0 and Eq. (3.27) becomes

I + G ds =









1 ds 0 0
0 1 0 0
0 0 1 ds

γ2orf
2

0 0 0 1









, (3.30)

and leads to the full matrix

M =









1 l 0 0
0 1 0 0
0 0 1 l

γ2orf
2

0 0 0 1









. (3.31)
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3.3 Sector Bend Matrix

K =
1

ρ2
+

1

ρ2

ρ

B0

(

∂B

∂x

)

0

=
1 − n

ρ2
(3.32)

where n is the field index.

H1.5 ' −1 +
1 − n

2ρ2
x2 +

1

2
wx

2 +
1

2γ2orf
2 w

2
φ +

1

ρorf
wφx, (3.33)

dx

ds
=

∂H1.5

∂wx
= wx (3.34a)

dwx
ds

= −∂H1.5

∂x
= −1− n

ρ2
x− 1

ρorf
wφ (3.34b)

dϕ

ds
=

∂H1.5

∂wφ
=

1

γ2orf
2 wφ +

1

ρorf
x (3.34a)

dwφ
ds

= −∂H1.5

∂ϕ
= 0 (3.34a)

I + G ds =









1 ds 0 0
− 1−n

ρ2 ds 1 0 − 1
ρorf

ds
1
ρorf

ds 0 1 1
γ2orf

2 ds

0 0 0 1









(3.35)

G =
1

ρ









0 ρ 0 0
− 1−n

ρ 0 0 − 1
orf

1
orf

0 0 ρ

γ2orf
2

0 0 0 0









(3.36a)

G2 =
1

ρ2









−(1 − n) 0 0 − ρ
orf

0 −(1 − n) 0 0
0 ρ

orf
0 0

0 0 0 0









(3.36b)

G3 =
1

ρ3









0 −ρ(1 − n) 0 0
(1−n)2

ρ 0 0 1−n
orf

− 1−n
orf

0 0 − ρ

orf
2

0 0 0 0









(3.36c)

G4 =
1

ρ4









(1 − n)2 0 0 (1−n)ρ
orf

0 (1 − n)2 0 0

0 − (1−n)ρ
orf

0 0
0 0 0 0









= −1 − n

ρ2
G2. (3.36d)

M =

















cos
[√

1 − nθ
] ρ sin[

√
1−nθ]√

1−n 0
ρ(1−cos[

√
1−nθ])

(1−n)orf√
1−n sin[

√
1−nθ]

ρ cos
[√

1 − nθ
]

0
sin[

√
1−nθ]√

1−norf

− sin[
√

1−nθ]√
1−norf

−ρ(1−cos[
√

1−nθ])
(1−n)orf

1 ρ

orf
2

{

θ
γ2 −

√
1−nθ−sin[

√
1−nθ]

(1−n)−3/2

}

0 0 0 1

















(3.37)
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4

Comments on Canonical Coordinates

4.1 Nonparaxial considerations in the transverse plane

The paraxial approximation is generally obtained by dividing the Hamiltonian by the design

momentum p0 and making a small angle approximation. In the scale transformation obtained by

dividing H by p0 the real transverse momenta conjugate to the x and y coordinates are

sx =
px
p0

= sin θx (4.1a)

sy =
py
p0

= sin θy, (4.1b)

where θx and θy are the projections of the trajectory angle with respect to the design orbit. As

stated earlier, the approximation is made for small angles by

sin θj ' tan θj

. Suppose we would still like to transform the transverse momenta to x′ and y′ without the paraxial

approximation. What canonical coordinates could we expect to find. We need to construct a new

F2 function for the canonical transformation. Remember that F2(x, x
′, y, y′; s) is a function of old

coordinates and new momenta with the partial derivatives:

∂F2

∂x
=
px
p0

= x′
√

1 − x′2 − y′2 (4.2a)

∂F2

∂y
=
px
p0

= y′
√

1 − x′2 − y′2 (4.2b)

∂F2

∂x′
= qx (4.2c)

∂F2

∂y′
= qy. (4.2d)

From the first pair of equations we find a good choice for F2 to be

F2(x, x
′, y, y′; s) = (xx′ + yy′)

√

1 − x′2 − y′2. (4.3)

Evaluating the second pair of equations (4.2a&b) gives:

(

qx
qy

)

=
1

√

1 − x′2 − y′2

(

1 − 2x′2 − y′2 −x′y′
−x′y′ 1 − x′2 − 2y′2

)(

x
y

)

. (4.4)

Inverting the matrix and solving for the old coordinates yields

(

x
y

)

=
√

1 − x′2 − y′2
1

D

(

1 − x′2 − 2y′2 x′y′

x′y′ 1 − 2x′2 − y′2

)(

qx
qy

)

, (4.5)

13
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where the determinant

D = (1 − 2x′2 − y′2)(1 − x′2 − 2y′2) − x′2y′2

= [1 − (x′2 + y′2)][1 − 2(x′2 + y′2)]. (4.6)

So the old coordinates in terms of the new ones must be replaced by

x =
(1 − x′2 − 2y′2)qx + x′y′qy

(1 − x′2 − y′2)1/2[1 − 2(x′2 + y′2)]
(4.7a)

y =
x′y′qx + (1 − 2x′2 − y′2)qy

(1 − x′2 − y′2)1/2[1 − 2(x′2 + y′2)]
. (4.7b)

This will create one bloody-awful mess, won’t it?

If we expand qx and qy in power series to 3rd order we obtain

qx = x− 1
2

(

3x′2 + y′2
)

x− x′y′y + · · · (4.8a)

qy = y − 1
2

(

x′2 + 3y′2
)

y − x′y′x+ · · · (4.8b)

So if we are only interested in terms up to second order, the paraxial approximation will probably

work, but if we want to keep terms to third order or higher, then we should use the canonical

momenta px/p0 and py/p0 rather than x′ and y′.

4.2 Longitudinal coordinates variations

There are a several different combinations for the longintudinal canonical variables, for exam-

ple:

(

z , ∆p
p0

)

(4.9a)
(

− c∆t, ∆u
p0c

)

(4.9b)

(φ ,wφ) . (4.9c)

Differentiating the equation

U2 = p2c2 +m2c4, (4.10a)

leads to the relation

du = βc dp, (4.10b)

or on converting to fractional deviations

dp

p0
=

1

β

du

p0c
=

1

β2

du

U0
. (4.11)

Conversion from the pair Eq. (4.9a) to pair Eq. (4.9b) used in the MAD2 program may be accom-

plished by
(

z
∆p
p0

)

=

(−β0c(t− t0)
∆p
p0

)

=

(−β0c∆t)
β−1

0
∆u
p0c

)

=

(

β0 0
0 β−1

0

)(−c∆t
∆u
p0c

)

(4.12)

The usual definition of dispersion gives the particular solution to the inhomogeneous horizontal Hill’s

equation (Eq. 5.77 of Ref. 2) must be modified by a factor of β to agree with the value calculated

by MAD.
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5

Transverse Position Measurement

One of the most common methods for measuring the transverse position of the a bunched beam

is to sense the electric field with capacitive pickups. As the bunch travels down the beam pipe,

image charges move along the inner surface of the pipe. (Here I am of course assuming that the

beam pipe is made of metal.) From Gauss’ law it is easy to see that the total charge moving along

the pipe must be equal but of opposite sign to the charge in the bunch.

C D

BA

Figure. 5.1 Concept of a dual plane beam-button position monitor. The signals from each button
are brought out to the readout electronics via high quality coaxial cables. Here the buttons have
been placed as in a synchrotron light source to keep them out of the band of synchrotron radiation
in the midplane.

One type monitor employs button shaped electrodes to sense the electric field strength at the surface

of the chamber as shown in Fig. (5.1). Buttons are particularly used when the bunches are short as

in electron accelerators. The short length of the electrode can limit the amount of induced charge if

the bunches are longer than the radius of the button.

When the bunches are longer as in hadron accelerators, longer stripline electrodes are frequently

used. Fig. (5.2) shows a shorted stripline monitor with a measured signal from the lower stripline.

An estimate of the charge density on the inner surface of a cylindrical beam pipe of radius b can

be made by treating the bunch as a line of charge of density λ at a distance a from the center of the

pipe. Ignoring the pipe, a second line of image charge (line density: −Rλ) can be placed parallel to

the beam but at a distance A from the origin. We solve for distance A and the ratio R to have an

equipotential surface on a cylinder of radius b. The equation for the potential lines of charge is then

16
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Filter
<20MHz

- - - - --

- - - - --

Scope Splitter

+ ++ +

Raw signal from stripline

Filtered signal
Funky looking
trigger pulse

Figure. 5.2 Concept of a stripline beam position monitor. Induced currents on the wall are picked
up on coaxial cables by using a small gap at the end of the stripline. The capacitive nature of such
a pickup differentiates the bunch current. On the right are measurements of a fully stripped gold
bunch passing through a stripline position monitor after being extracted from the AGS. As can be
seen, there was quite a bit of structure in the bunch. (This was taken early in the commissioning of
the extraction system.)

λ
x

y

θ
b

a
A

-Rλ

Figure. 5.3 Equipotential surface with line of charge density λ at radius a and an image line of charge
of density −Rλ at radius A.

V =
λ

2πε0

[

ln
(

√

(x− a)2 + y2
)

−R ln
(

√

(x−A)2 + y2
)]

+ V0. (5.1)

Rearranging terms produces

2πε0
λ

(V − V0) =
1

2
ln

(x− a)2 + y2

[(x−A)2 + y2]R
. (5.2)

After exponentiating, we may define

α = e
4πε0

λ (V−V0) =
(x − a)2 + y2

[(x−A)2 + y2]R
. (5.3)

In order to have a cylindrical equipotential surface, we must have a quadratic equation, so R = 1,

and

(x − a)2 + y2 = α[(x −A)2 + y2].
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C3

C2

C1

C4
1θ

θ2

Figure. 5.4 Definition of angles of integration for stripline “C4”.

Since the potential at (x, y) = (b, 0) must be the same as at (x, y) = (0, b), we can write

α =
(b− a)2

(A− b)2
=
a2 + b2

A2 + b2
. (5.4)

Solving for A gives the nontrivial answer

A =
b2

a
.

(The other root is A = a which just cancels the charge at x = a.) Transforming to polar coordinates

(x = r cos θ, y = r sin θ) and evaluating the radial component of electric field at r = b gives

Er(r = b, θ) = − λ

2πε0

[

b2 − a2

b(b2 + a2 − 2ab cos θ)

]

. (5.5)

Since the field is zero inside the conductor, the surface on the inner wall of the beam pipe must be

σ(θ) = ε0E⊥ = − λ

2π

[

b2 − a2

b(b2 + a2 − 2ab cosθ)

]

. (5.6)

Now the charge per length on a stripline subtending the arc from θ1 to θ2 (See Fig. (5.4).) obtained

by integrating

dq

dz
= − λ

2π

∫ θ2

θ1

[

b2 − a2

b(b2 + a2 − 2ab cos θ)

]

dθ

=
λ

π
tan−1

[(

b+ a

b− a

)

tan
θ

2

]∣

∣

∣

∣

θ2

θ1

. (5.7)

For the opposite plate we can reverse the sign of a. The voltage induced across the coaxial

cables will be proportional to the dq/dz on the stripline. To go further requires either a lot more

algebra or invocation of a symbolic calculator such as MAPLE3. To first order in x/b we get

V1 − V2

V1 + V2
= 4

sin α
2

α

x

b
+O

(

x3

b3

)

+O
(

xy2

b3

)

. (5.8)

where α = θ2 − θ1, and we have replaced a by x. A somewhat more linear formula comes from

ln
V1

V2
= 8

sin α
2

α

x

b
+O

(

x3

b3

)

+O
(

xy2

b3

)

. (5.9)
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As an example, assume that the striplines subtend an angle of α = 70◦ (θ1 = −35◦, θ2 = 35◦)

and a radius for the striplines of b = 56.5 mm, then we get to first order from Eq. (5.8): Fig. (5.5)

shows typical signals from the four plates of a dual plane stripline with above dimensions.

C1

C2

C3

C4

C3

C2

C1

C4

Figure. 5.5 Filtered signals from all four striplines of a two plane position monitor. The relative sizes
of the voltages show that the beam was slightly down and to the right as indicated in the picture
on the right. The positions were calculated using Eq. (5.9).

The accuracy of relative position measurements in a circular accelerator with a stripline monitor

can be better than 10 µm when the signals are averaged over several turns.
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6

Schottky Signals

6.1 Coherent frequency spectra of bunched beams

6.1.1 A single Gaussian bunch

A Gaussian bunch of total charge q passing a pickup at location s will have a longitudinal profile

dQ(s, t) =
q√

2πσs
e

−(s−vt)2

2σs ds, (6.1)

where σs is the rms width of the distribution. The distribution of current passing the pickup is then

i(t) =
dQ

dt
= v

dQ

ds

=
qv√
2πσs

e
−(s−vt)2

2σs

=
q√

2πσt
e

−(t−t0)2

2σt , (6.2)

where t0 = s/v. For the following discussion, we will place the pickup at s = 0, so t0 = 0. The

harmonic content of the signal may be found from the Fourier transform† of the current:

ı̂(ω) =
q√

2πσt

∫ ∞

−∞
e−jωt e

− t2

2σ2
t dt,

=
q√

2πσt
e−

σ2
t

ω2

2

∫ ∞

−∞
e
−

(t+jσ2
t

ω)2

2σ2
t dt,

= q e−
σ2

t
ω2

2 . (6.3)

So we find that the Fourier transform of a Gaussian distribution is again Gaussian with an rms width

of σω = 1/σt. In the limit of an infinitesimally short bunch the Gaussian distribution becomes

i(t) = lim
σt→0

q√
2πσt

e−
t2

2σt = q δ(t), (6.4)

and the spectral content becomes flat

ı̂(ω) = q

∫ ∞

−∞
e−jωt δ(t) dt = q. (6.5)

† Here I have used the engineering convention of j =
√
−1 to minimize confusion with the current

i.

20
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6.1.2 Circulating bunches

The bunched beam current in a circular accelerator of circumference L with Np equally spaced

bunches may be approximated by

i(t) =

∞
∑

n=−∞

Np
∑

m=1

∫ ∞

−∞
Qm(t′) δ

(

t− t′ − nmL

Npv

)

dt′, (6.6)

where Qm(t′) = dqm/dt
′ is the longitudinal profile of charge in the mth bunch. The frequency

spectrum may be obtained from the Fourier transform of the current:

ı̂(ω) =

Np
∑

m=1

∞
∑

n=−∞

∫ ∞

−∞

∫ ∞

−∞
e−jωtQm(t′) δ

(

t− t′ − nmL

Npv

)

dt′ dt,

=

Np
∑

m=1

∞
∑

n=−∞
Q̂m(ω) exp

(

−j nmL
Npv

ω

)

. (6.7)

When the bunches are identical this becomes:

ı̂(ω) = Q̂(ω)
∞
∑

n=−∞
exp

(

−j nL
Npv

ω

)

=
Q(ω)

Npωs

∞
∑

n=−∞
δ (ω − nNpωs) (6.8)

with ωo = 2πv/L being the angular revolution frequency.

If we approximate the bunch shape by a delta function, then the spectrum will have a “comb”-

shape as shown in Fig. (6.1).

i(  )ω

2π
τ

i(t)

t

τ

ω
Figure. 6.1 The left plot shows the current distribution for equal δ-function bunches of charge
Qm(t′) = qδ(t′)) and spacing τ = L/Npv. The right plot shows the corresponding Fourier transform.

If we now allow a gap in the number of bunches so that only Nb bunches are placed with the

same spacing leaving Np−Nb holes in the bunch train, we should expect to see additional harmonics

of the revolution lines between those of Eq. (6.8). Consider Nb bunches of equal charge q and width

σ placed in Np equally spaced buckets:

i(t) =

∞
∑

n=−∞

Nb
∑

m=1

∫ ∞

−∞

∫ ∞

−∞
e−jωt

q√
2πσ

e−
t′2

2σ2 δ

(

t− t′ − nm

Np
τs

)

dt′dt. (6.8)
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Figure. 6.2 Relative frequency of equal Gaussian bunches with 106.6 ns spacing between bunches.

The frequency spectrum is then

ı̂(ω) = qe−
σ2ω2

2

∞
∑

n=−∞

Nb
∑

m=1

∫ ∞

−∞
e−jωt δ

(

t− nm

Np
τs

)

dt

= qe−
σ2ω2

2

∞
∑

n=−∞

Nb
∑

m=1

e
−j nmωτs

Np

= qe−
σ2ω2

2

∞
∑

n=−∞
e
−j nωτs

Np
1 − e

−j nNbωτs
Np

1 − e
−j nωτs

Np

= qe−
σ2ω2

2

∞
∑

n=−∞
e
−j nωτs

Np
e
−j nmωτs

2Np

e
−j nωτs

2Np

2j

(

e
j

nNbωτs
2Np − e

−j nNbωτs
2Np

)

2j
(

e
j nωτs

2Np − e
−j nωτs

2Np

)

= qe−
σ2ω2

2

∞
∑

n=−∞

sin
(

nNbωτs

2Np

)

sin
(

nωτs

2Np

) e
−j n(Nb+1)ωτs

2Np

The modulation factor, called the enhancement function, is

En(ω) =
sin
(

nNbτs

2Np
ω
)

sin
(

nτs

2Np
ω
) . (6.9)

From this we see that having an irregular pattern of bunches will produce more closely spaced lines

separated by the revolution frequency (1/τs) which is smaller than the typical bunch frequency

(Np/τs). Other enhancement factors can be calculated for bunches of differing intensity or with

more gaps between bunch trains.
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Figure. (6.3) Plot of the enhancement function times the envelope exp(−σ2ω2/2) for Np = 120,
Nb = 110, τs = 12.7 µs. The envelope function is plotted to guide the eye. The enlargement on the
right shows the ripple caused by the gap of 10 missing bunches at a frequency of 78 kHz.

6.2 Momentum spread

So far we have assumed that the particles are all oscillating at the same frequency. In fact

any real beam has a nonzero momentum spread, and unless we have an isochronous ring, there will

be a spread in the revolution frequencies of the individual particles. In the case of beams bunched

by rf cavities, there will be synchrotron oscillations with each individual particle having a varying

revolution period.

6.2.3 Longitudinal Schottky spectrum of an unbunched beam

The current of the mth particle can be written as

im(t) = qfm

∞
∑

n=−∞
ejn[ωmt+ψm]

= qfm

[

1 + 2
∞
∑

n=1

cos[n(ωmt+ ψm)]

]

(6.10)

where fm = ωm/2π and ψm are the respective revolution frequency and phase of the particle.

Averaging overN particles in the beam the rms frequency spread of the nth revolution harmonic

of the synchronous particle’s frequency fs will be the absolute value of

harmonic bandwidth = nσf = nfs |ηtr|
σp
p
, (6.11)

where we recall that the phase slip factor was defined in Ref. [2] as

ηtr =
1

γ2
− 1

γtr
2
. (6.12)

The total average current for a large number of particles is

〈i〉 =

N
∑

i=1

im(t) = Nq〈f〉 = Nqfs, (6.13)
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which is just the dc component of the current. The rms component of current may be found from

σ2
i =

〈

(i− 〈i〉)2
〉

=

〈[

N
∑

m=1

qfm

(

1 + 2

∞
∑

n=1

cos(nωmt+ ψm)

)

−Nqfs

]2〉

= 2q2f2
sN. (6.14)

So the rms current component is then

σi = qfs
√

2N, (6.15)

which is independent of harmonic number. The bandwidth is however proportional to the number

n of the revolution harmonic as given by Eq. (6.11) and indicated in Fig. (6.4).
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Figure. 6.4 Plot of first six revolution harmonics. (I have exaggerated the momentum spread so that
the widths can be seen.) Note that the area under each peak (i.e., peak times width) is constant.

6.2.4 Synchrotron oscillations of a single particle

For simplicity, consider only a single particle which is now undergoing a small synchrotron

oscillation. This modulates the arrival time at the detector as

t→ t+ a sin(Ωst+ ψ), (6.16)

where a (� τs) and ψ are respectively the amplitude and phase of modulation. The current seen by

the detector on the nth-turn is then

in =
∞
∑

n=−∞
q δ (t− n [τs + a sin(Ωsnτs + ψ)])

' q

τs

∞
∑

n=−∞
ejnωs[τs+a sin(nΩsτs+ψ)], (6.17)

where we have made use of the identity

∞
∑

−∞
δ(t− nτ) =

1

τ

∞
∑

−∞
ej

n2πt
τ . (6.18)
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Recalling another identity

ejz sin θ =
∞
∑

m=−∞
Jm(z) ejθ, (6.19)

we may now write

in = q

∞
∑

n=−∞
e−jnωsτs

∞
∑

m=−∞
Jm(nωsa) e

−jm(nωsτs+ψ). (6.20)

Now each revolution harmonic gets split into a sequence of synchrotron satellites of relative height

Jm(a) for the mth satellite. Since Jm(nωsa) decreases with increasing m only the nearest lines are

important. As a rule of thumb, lines with m>∼n 2aωs are negligible1.

Figure. 6.5 Longitudinal spectrum showing synchrotron sidebands of a high order revolution line in
RHIC. The pickup was a small Schottky cavity with a resonant frequency near 2 GHz. The signal
was mixed down to the lower range of the spectrum analyzer. The peak in the middle is a revolution
line of infinitesimal width, although the spike as measured does not go to infinity due to the finite
bandwidth of the analyzer. The characteristic shape of the sidebands, as having a sharp edge away
from the revolution line with a sloping fall towards the revolution line, is due to the fact that the
synchrotron frequency is a maximum at the center of the bucket, where the particle distribution also
peaks, and then falls off toward the edge of the bucket.

6.3 Transverse Schottky spectra

6.3.5 Transverse spectrum of an unbunched beam

Again we first consider a single particle with a betatron oscillation in one plane. Here we must

use a transverse pickup which is sensitive to the amplitude am of the oscillation. The measured

signal is then proportional to the dipole oscillation signal

dm = am(t)im(t), (6.21)
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for the mth particle. We immediately see that the signal is proportional to both the amplitude

of oscillation and to the current of the bunch, so in addition to the effect of betatron oscillations,

transverse spectra may also exhibit aspects of the longitudinal spectra. For the betatron oscillation

we have

am(t) = am cos(qmωmt+ ψm), (6.22)

where qm is the fractional part of the betatron tune, and ωm/2π and ψm are respectively the

particle’s revolution frequency and betatron-phase offset. Eq. (6.21) now becomes

dm(t) = am cos(qmωmt+ ψm) qfm

∞
∑

n=−∞
ejnωmt

=
qamfm

2

(

ej(qmωmt+ψm) + e−j(qmωmt+ψm)
)

∞
∑

n=−∞
ejnωmt

=
qamfm

2

∞
∑

n=−∞

(

ej[(n+qm)ωmt+ψm] + ej[(n−qm)ωmt−ψm]
)

=
qamfm

2

∞
∑

n=−∞

(

ej[(n+qm)ωmt+ψm] + e−j[(n+qm)ωmt+ψm]
)

= qamfm

∞
∑

n=−∞
cos[(n+ qm)ωmt+ ψm]. (6.23)

So the spectrum will have lines spaced like the revolution harmonics but offset by an amount qmfm.

Since we cannot tell the difference between negative and positive frequencies, the negative frequencies

fold over to give lines at (n± qm)fm as shown in Fig. (6.6).

0f 0f2 0f3 0f 0f

md
0f

0f

0 4 5

(1+q  )m

-(-1+qm)

Figure. 6.7 Spectrum of betatron lines. The dashed lines are folded over from negative frequencies
by plotting the absolute value |(n+ q)fs|. Here I have plotted lines for q < 0.5.

Summing over N particles we get the total average transverse signal

〈d〉 = 0, (6.24)

with the rms spread

σd =
√

〈(dm − 〈dm〉)2〉 = qfs σa

√

N

2
, (6.25)
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where σa is the rms betatron amplitude. The Schottky power in each sideband is proportional to

σ2
d and is again independent of the revolution harmonic number n.

Comparing Eqs. (6.15 & 6.25) we see that the rms betatron amplitude may be obtained from

σa =
2σd
σi

. (6.26)

If the detectors are very well calibrated, then this can be used to obtain the transverse emittance.

The momentum spread and betatron tune spread contribute to give a nonzero width to the

betatron line. If the betatron tune spread is only due to chromaticity, then

σq = |(n+ q)ηtr +Qξ| σp
p
, (6.27)

where Q is the total betatron tune (including integer part) and ξ is the chromaticity

ξ =
p

Q

dQ

dp
. (6.28)

Other contributions to the betatron tune spread which are not chromatic should be added in quadra-

ture with Eq. (6.27), since they would be independent of the momentum oscillation.

For large values of n, the fractional part of the tune becomes negligible and the width of the

band is

σq ' |nηtr +Qξ| σp
p
, (6.29)

We now see that the widths of the upper and lower sidebands are different since n can be either

positive or negative. Whether the upper is narrower or wider depends on the signs of ηtr, n, and ξ.

6.3.6 Transverse spectrum of a single bunch

As alluded to in the previous section, the transverse oscillation in Eq. (6.21) is modulated by

the bunch current, so we should expect to see the additional structure of the longitudinal spectra

superimposed on the betatron lines of the previous section.

Due to a lack of time, I will defer the development of this section to the future. There is

probably more in this chapter than we will cover in class anyway. I recommend Boussard’s article1

for more information. I have added a few pictures of Schottky measurements from RHIC showing

the betatron sidebands.

Figure. 6.8 Transverse Schottky spectrum from RHIC. The middle rounded bump is generated by
the synchrotron sidebands which were not resolved by the bandwidth of the scope. The lower bumps
to either side are the betatron sidebands. Unfortunately, the program used to plot this did not label
the axes in physical units. The width of horizontal scale is about the revolution frequency, 78 kHz.
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Figure. 6.9 Simultaneous Schottky signals measured for horizontal and vertical transverse motion in
both the RHIC rings.

Figure. 6.10 Waterfall plot of transverse Schottky spectra of gold beam in RHIC during an energy
ramp. Time increases from the top to the bottom, and individual Schottky spectra measurements
are plotted horizontally. The thin straight line moving to the left (from upper right to lower left) is a
revolution line. The next broad lines to either side are betatron sidebands. At the lower right there
is just a hint of the next higher revolution line, with one of its corresponding betatron sideband lines.
Notice how the betatron sidebands are filamenting as beam is slowly lost. The other two faint lines
moving to the right are interference artifacts, probably from some signal leaking into the mixer.
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Figure. 6.11 Transverse Schottky waterfall plot during another ramp showing a revolution line in the
center with two betatron sidebands. One can see that one sideband is broadening which indicates an
increase in chromaticity. Again the beam was lost before the end of the ramp. (At the top you can
see two revolution lines at the two edges. I’m not sure why the lines shift by half a revolution line
spacing about a sixth of the way down. Presumably the reference frequency to the mixer jumped. I
must investigate this. Perhaps it might be related to the phase jump at transition?) The horizontal
lines (bands) in the top half show that there was a lot of broad spectrum power in the beam which
is quite common, particularly before and just after transition.

References for Chapter 6

[1] D. Boussard, “Schottky Noise and Beam Transfer Function Diagnostics”, CERN Accelerator

School Fifth Advanced Accelerator Physics Course, CERN 95-06, vol. II p749 (1993).

[2] M. Conte and W. W. MacKay, An Introduction to the Physics of Particle Accelerators, World

Scientific, Singapore (1991).
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Leapfrog Integration of Equations of Motion

When we write simulation codes to integrate a system of equations of motion like

dφ

dt
= αW (7.1a)

dW

dt
= −βφ, (7.1b)

where α and β are constants, things sometimes go awry. An obvious way to solve this without

computers is to write a second order differential equation:

d2φ

dt2
+ αβ φ = 0, (7.2)

with solutions which are sine-like or exponential depending on the sign of αβ. For the case of

ω2 = αβ > 0 we have

φ(t) = φ0 cos[ω(t− t0)],

which is periodic so that a particle traces out an ellipse in the (φ,W )-phase space.

We frequently resort to integrating by stepping through a pair of difference equations. A simple

naive approach may run into problems. First I will demonstrate the incorrect method with what

might appear at first to be a reasonable choice of difference equations:

φn+1 = φn + αWn ∆t (7.3a)

Wn+1 = Wn − βφn∆t, (7.3b)

Writing them in matrix form we have

(

φn+1

Wn+1

)

=

(

1 α∆t
−β∆t 1

)(

φn
Wn

)

= M

(

φn
Wn

)

, (7.4)

where the

det(M) = 1 + αβ∆t2 6= 1 (7.5)

unless either α or β are zero. For ω2 = αβ > 0 this would give results with the particle proceeding

to larger amplitudes in phase space instead of tracing out an ellipse. The resulting integration is

nonsymplectic.
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φ

Wα ∆t = 0.1
β ∆t = 0.05

200 steps

φ

Wα ∆t = 0.1
β ∆t = 0.05
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Figure. (7.1) The plot on the left shows how the improper method causes a blowup of the oscillation,
whereas the plot on the right was tracked with the leap-frog method.

2
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21

1
Figure. 7.2 By integrating the variables so that the time steps hop over each other, we can obtain a
symplectic result.

If instead we consider Eqs. (7.1) as modeling the longitudinal motion in a circular ring with a

single rf cavity, then a convenient time step would correspond to one turn with a long drift followed

by a small thin-lens-type energy kick:

(

φn+ 1
2

Wn+1

)

=

(

1 0
−β∆t 1

)(

1 α∆t
0 1

)(

φn− 1
2

Wn

)

=

(

1 α∆t
−β∆t 1 − αβ∆t

)(

φn− 1
2

Wn

)

= M

(

φn− 1
2

Wn

)

,

with

det(M) = 1. (7.7)

This type of two-step integration where one variable is integrated (φn− 1
2
→ φn+ 1

2
) and then the

other is integrated (Wn → Wn+1) is referred to as leap-frog integration, since the time steps for the

two variables are interleaved as indicated by Fig. (7.2).

References for Chapter 7

[1] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Adam Hilger,

Bristol (1988).
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Example of Coupled Bunch Instability

During one ramp of polarized protons in Yellow ring of RHIC, only one of the two 28 MHz

cavities for acceleration was being powered. The tuner for the other cavity was detuned to a

fixed frequency away from the proper frequency. As the beam was accelerated from 24.3 GeV

at injection to 100 GeV at storage the revolution frequency shifts from frf,i = 28.1297 MHz to

frf,f = 28.1494 MHz. The normal harmonic number for the 28 MHz cavities is h = 360. At one

point in the ramp, the 358th harmonic of the revolution frequency crossed the resonant frequency of

the unpowered cavity initiating the multibunch instability shown in Fig. (8.1).

Figure. 8.1 Coupled bunch instability in the RHIC Yellow ring during acceleration of polarized
protons. The 56 traces are the 55 bunches (plus one empty bucket) taken on one turn during
acceleration. The populate every sixth rf bucket starting from bucket 1 up to bucket 331. There is
a gap of 5 bunches (buckets 332-360) to leave room for the rise time of the abort kickers.

The bunched beam drives TM010 oscillations in the unpowered cavity. Each bunch will see the

wake of previous bunches and gain (loose) a little energy from (to) the cavity depending on the

relative phase of the wake oscillation when the bunch crosses the gap. As a result there is a slight

beating of frequencies of the two cavities as indicated in Fig. (8.2).
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Figure. 8.2 Conceptual beating of the frequencies of the two cavities: [sin(2πhx) sin(2πh′x)]. Here
the harmonic numbers h = 20 [sin(2πhx)] and h′ = 18 [0.5 sin(2πh′x)] were used rather than 360
and 358, so that the individual cycles could be seen for the individual cavities.

Figure. 8.3 This shows the 55 bunches later in the acceleration ramp after the oscillations have
Landau damped.
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Luminosity as Calculated from Machine Parameters

9.1 Introduction

The luminosity rate of interactions, at time t, between two colliding beams may be easily

understood by treating one beam as a target, with number density ρ2(~X2, t), and the other as an

incident beam, whose flux density is vρ1(~X1, t), where

v = |~v1 − ~v2| (9.1)

is the relative velocity.† The coordinates X2 and X1 are points in the six dimensional phase space

(x, x′, y, y′, s, δ). The interaction rate may then be written as

dN

dt
=

∫

σ(~X2, ~X1) ρ2(~X2, t) |~v1 − ~v2| ρ1(~X1, t) d
6X2 d

6X1, (9.2)

where σ is the cross section for single particle interactions.

Of course, for the actual rate seen by an experiment one must fold in the detector acceptance

and efficiency for a desired reaction by integrating the differential cross section times acceptance and

efficiency over the the phase space of final particles.

For most high energy collisions the probability of interaction is extremely small, unless the

particles are very close, e. g.,

|~x1 − ~x2|<∼10−15m. (9.3)

This is much less than the size of a typical beam (>∼10−6m). It is therefore reasonable to approximate

the cross section by

σ(~X2, ~X1) ' σ(~p2, ~p1) δ
3(~x1 − ~x2). (9.4)

If the beams are almost monoenergetic, σ may be factored outside the integral and replaced by the

total cross section, so that

dN

dt
' |~v1 − ~v2|σ(~p2, ~p1)

∫

ρ2(~x, t) ρ1(~x, t) d
3x. (9.5)

If the bunch shape does not change appreciably while the opposing bunches overlap, then the

time dependence of the ith densities may be written as

ρi(~x, t) = ρi(~x − ~vit),

† For relativistic colliding beams this relative velocity is the difference of the two velocities

v ' |c − (−c)| = 2c as calculated in the between the two beams. Perhaps the best way to think of

this is that an observer in the rest system of the collision point sees the bunches pass through each

other at twice the effective speed as a single bunch.
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and the total number of interactions from one bunch crossing is

N = |~v1 − ~v2|σ
∫

ρ2(~x − ~v2t) ρ1(~x − ~v1t) d
3x dt. (9.6)

When there areNb equally spaced bunches per beam in a circular collider whose revolution frequency

is f0, the interaction rate per interaction region is

dN

dt
= |~v1 − ~v2| f0Nbσ

∫

ρ2(~x− ~v2t) ρ1(~x− ~v1t) d
3x dt. (9.7)

The ratio of interaction rate to total cross section is called the instantaneous luminosity

L = |~v1 − ~v2| f0Nb
∫

ρ2(~x− ~v2t) ρ1(~x− ~v1t) d
3x dt, (9.8)

which for high energy collisions in the center of mass system becomes

L = 2cf0Nb

∫

ρ2(x, y, z − ct) ρ1(x, y, z + ct) d3x dt, (9.9)

where beam-2 moves in the +z direction. The total or integrated luminosity refers to the instanta-

neous luminosity integrated over the time of the experiment.

If the bunch densities change shape in the overlap region, then the simplification of Eq. 9.5 is

invalid and the luminosity must be calculated from

L = 2cf0Nb

∫

ρ2(x, y, z, t) ρ1(x, y, z, t) d
3x dt. (9.10)

If the beams cross where the transverse beta-functions both have minima, then the minima of the

beta-functions should not be smaller than the bunch length, otherwise too much of the overlap region

has a lower density, and the peak luminosity is degraded. The beta-function about an interaction

point goes like

β(s) = β? +
s2

β∗ , (9.11)

with the minimum value of β∗ at the interaction point (s = 0). For bunches of length lb, the overlap

occurs between s = ±lb/2. If lb = β? the longitudinal centers of the bunches cross at s = 0 where

β = β? and the opposite ends of the bunches cross where β = 1.25β?.

9.2 Gaussian beam distributions

For one transverse horizontal degree of freedom the Courant-Snyder invariant is

Wx = (xβ x′β )

(

γx αx
αx βx

)(

xβ
x′β

)

= γx2
β + 2αxβx

′
β + βx′

2
β , (9.12)

where βx, αx, and γx = (1 + α2
x)/βx are the Twiss parameters for betatron motion, and xβ and x′β

are the transverse betatron coordinate and angle in a paraxial phase space. A Gaussian distribution

of particles undergoing betatron oscillations for this degree of freedom may be written as

fβ(xβ , x
′
β) =

Nz
2πε

e−
1
2Wx/εx , (9.13)
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where N is the number of particles and πεx is the rms horizontal emittance.

Similarly for the longitudinal motion we may write an invariant

Wz = ( z δ )

(

γz αz
αz βz

)(

z
δ

)

= γzz
2 + 2αzzδ + βzδ

2, (9.14)

The corresponding longitudinal distribution function for a Gaussian bunch is

fz(z, δ) =
N

2πεz
e−

1
2Wz/εz , (9.15)

where z = s−vt and δ = ∆p/p are respectively the longitudinal and fractional momentum deviations

of a particle from the design particle when it passes the coordinate s.

The total transverse coordinates are the sum of the betatron coordinates and the effect of

dispersion:

X =

(

x
x′

)

=

(

xβ
x′β

)

+

(

0 ηx
0 η′x

)(

z
δ

)

, (9.16)

where ηx and η′x are the horizontal closed-orbit dispersion functions. Since the Jacobian of the trans-

formation from coordinates (xβ , x
′
β , z, δ) to (x, x′, z, δ) is one, we may write a combined distribution

function as

f(x, x′, z, δ) =
N

(2π)2εxεz
e−

1
2 [(X−DZ)TΞβ(X−DZ)+ZTΞzZ], (9.17)

with the definitions:

X =

(

x
x′

)

, Z =

(

z
δ

)

, D =

(

0 ηx
0 η′x

)

, (9.18)

Ξβ =
1

εx

(

γx αx
αx βx

)

, and Ξz =
1

εz

(

γz αz
αz βz

)

. (9.19)

Rearranging terms in the distribution and adding in a similar distribution function for uncoupled

vertical betatron motion yields the equation

f(x, x′, y, y′, z, δ) =
N

(2π)3εxεyεz
e−

1
2 X̂TΞX̂, (9.20)

where

X̂ =















x
x′

y
y′

z
δ















, and (9.21)

Ξ =





















γx

εx
αx

εx
0 0 0 −γxηx+αxη

′

x

εx
αx

εx

βx

εx
0 0 0 −αxηx+βxη

′

x

εx

0 0
γy

εy

αy

εy
0 0

0 0
αy

εy

βy

εy
0 0

0 0 0 0 γz

εz
αz

εz

−γxηx+αxη
′

x

εx
−αxηx+βxη

′

x

εx
0 0 αz

εz

βz

εz
+ H

εx





















, (9.22)
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with the function H = γxη
2
x + 2αxηxη

′
x + βxη

′2
x. The function H is sometimes mistakenly called the

dispersion invariant since it is constant through regions of the lattice with no bends (i. e., straight

sections). It is however not an invariant inside bends and will in general be different from one bend

free region to the next. With a bit of algebra one can show that

det(Ξ) =
1

ε2xε
2
yε

2
z

. (9.23)

The beam sigma matrix (Σ) or variance matrix for the distribution is just the inverse of Ξ:

Σ =

















βxεx + η2
xσ

2
δ −αxεx + ηxη

′
xσ

2
δ 0 0 −ηxαzεz ηxσ

2
δ

−αxεx + ηxη
′
xσ

2
δ γxεx + η′

2
xσ

2
δ 0 0 −η′xαzεz η′xσ

2
δ

0 0 βyεy −αyεy 0 0
0 0 −αyεy γyεy 0 0

−ηxαzεz −η′xαzεz 0 0 βzεz −αzεz
ηxσ

2
δ η′xσ

2
δ 0 0 −αzεz σ2

δ

















, (9.24)

where σ2
δ = γzεz. Moreover if we consider coupling in all three dimensions, the beam sigma matrix

may be written as the usual symmetric variance matrix for a Gaussian distribution:

Σ =

















σ2
x σxx′ σxy σxy′ σxz σxδ

σxx′ σ2
x′ σx′y σx′y′ σx′z σx′δ

σxy σx′y σ2
y σyy′ σyz σyδ

σxy′ σx′y′ σyy′ σ2
y′ σy′z σy′δ

σxz σx′z σyz σy′z σ2
z σzδ

σxδ σx′δ σyδ σy′δ σzδ σ2
δ

















, (9.25)

which has 21 free parameters. The general Gaussian distribution is then given by

f(x, x′, y, y′, z, δ) =
N
√

|Ξ|
(2π)3

e−
1
2 X̂TΞX̂, (9.26)

where Ξ = Σ−1.

The distribution given by Eq. 9.26 has a simple hyperelliptical shape. For a long beam passing

through minimum of the beta-function, it should have a dog-bone shape. So far we have described

the particle distribution relative to a longitudinal position s, where the z coordinate is a time-like

coordinate specifying how far the particle in question is in advance of the design particle. In order

to evaluate the overlap integral of two colliding beams, we need to specify the density function in

terms of (x, x′, y, y′, s, δ; t), rather than (x, x′, y, y′, z, δ; s). For a particle of velocity v, the relation

between s, z, and t is z = vt− s, and the required transformation between coordinates is defined by

X̂(x, x′, y, y′, z, δ; t) = M−1 X(x, x′, y, y′, s, δ; t), (9.27)

i. e.,














x
x′

y
y′

z
δ















=















1 −s 0 0 0 0
0 1 0 0 0 0
0 0 1 −s 0 0
0 0 0 1 0 0
0 0 0 0 1 −βs

γ2

0 0 0 0 0 1





























x
x′

y
y′

vt− s
δ















=

















x− x′s
x′

y − y′s
y′

vt−
(

1 + βδ
γ2

)

s

δ

















(9.28)
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where β = v/c and γ =
√

1 − β2 are the usual Lorentz parameters. Substituting Eq. 9.28 into

Eq. 9.26 gives

f(x, x′, y, y′, s, δ; t) =
N
√

|Ξ|
(2π)3

e−
1
2X

T(M−1)TΞM−1
X, (9.29)

which will now have the correct dog-bone shape at the waist. For high energy bunched beams the
βδ
γ2 � 1 and may be ignored. (For RHIC βδ

γ2
<∼10−7.) Integrating Eq. 9.29 over the momentum-like

coordinates yields the particle density per volume as a function of spatial coordinate and time:

ρ(x, y, s; t) =
N
√

|Ξ|
(2π)3

∫∫∫

e−
1
2X

T(M−1)TΞM−1
X dx′ dy′ dδ. (9.30)

Let us now consider the limited case of a crossing point located in a straight section with no

dispersion or horizontal-vertical coupling; here Ξ of Eq. 9.22 becomes block-diagonal:

Ξ =





















γx

εx
αx

εx
0 0 0 0

αx

εx

βx

εx
0 0 0 0

0 0
γy

εy

αy

εy
0 0

0 0
αy

εy

βy

εy
0 0

0 0 0 0 γz

εz
αz

εz

0 0 0 0 αz

εz

βz

εz





















. (9.31)

With this form, the integration of Eq. 9.30 is fairly simple and gives:

ρ(x, y, s; t) =
Ne

− x2

2εx(β∗

x−2α∗

xs+γ∗

xs2) e
− y2

2εy (β∗

y−2α∗

ys+γ∗

y s2) e
− (vt−s)2

2εzβ∗

z

√

(2π)3(β∗
x − 2α∗

xs+ γ∗xs
2)(β∗

y − 2α∗
ys+ γ∗ys

2)β∗
z εxεyεz

, (9.32)

where the superscript “∗”’s refer to the value at the design crossing point where s = 0. It is

worthwhile noting that the expressions of transverse Twiss parameters in parentheses are just the

evolution of the transverse β-functions along s:

βx(s) = β∗
x − 2α∗

xs+ γ∗xs
2, and βy(s) = β∗

y − 2α∗
ys+ γ∗ys

2. (9.33)

For two colliding bunches the densities may be written as

ρ1(x, y, s; t) =
N1e

− x2

2εx1βx1(s) e
− y2

2εy1βy1(s) e
− (s−vt)2

2εz1β∗

z1

√

(2π)3εx1εy1εz1βx1(s)βy1(s)β∗
z1

, (9.34)

with the s-axis taken along the trajectory of beam-1 and

ρ2(x, y, s; t) =
N2e

− (x−hx−θxs)2

2εx2βx2(s) e
− (y−hy−θys)2

2εy2βy2(s) e
− (s+vt+∆)2

2εz2β∗

z2

√

(2π)3εx2εy2εz2βx2(s)βy2(s)β∗
z2

, (9.35)



Luminosity as Calculated from Machine Parameters 39
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Figure. 9.1 Geometry of errors at the beam’s crossing point.

the trajectory of beam-2 being offset at s = 0 by hx in the x-direction and hy in the y-direction. (See

Fig. 9.1.) Using a small angle approximation, the slopes of the second beam’s trajectory in the x

and y directions are respectively θx and θy relative to the first beam’s trajectory. The parameter ∆

accounts for a mistiming of the bunch crossing; the bunches then cross at s = ∆/2 from the design

interaction point. The luminosity of this bunch crossing may be found by integrating the overlap of

the two densities:

L = 2v

∫∫∫∫

ρ1(x, y, s; t)ρ2(x, y, s; t) dx dy ds dt. (9.36)

Integrating the x-dependent exponentials over x yields

∫ ∞

−∞
e
− (x−hx−θxs)2

2εx1βx1(s) e
− x2

2εx2βx2(s) dx =

√

2πεx1εx2βx1(s)βx2(s)

εx1βx1(s) + εx2βx2(s)
e
− (hx+θxs)2

2[εx1βx1(s)+εx2βx2(s)] . (9.37)

A similar integral occurs for the y-dimension. The integral of the t-dependent exponentials is

∫ ∞

−∞
e
− (s−vt)2

2εz1β∗

z1 e
− (s+vt+∆)2

2εz2β∗

z2 v dt =

√

2πεz1εz2β∗
z1β

∗
z2

εz1β∗
z1 + εz2β∗

z2

e
− (2s+∆)2

2(εz1β∗

z1
+εz2β∗

z2
) . (9.38)

Using these results Eq. 9.36 becomes

L =

∫ ∞

−∞

2N1N2 e
− (hx+θxs)2

2[εx1βx1(s)+εx2βx2(s)] e
− (hy+θys)2

2[εy1βy1(s)+εy2βy2(s)] e
− (2s+∆)2

2(εz1β∗

z1
+εz2β∗

z2
)

√

(2π)3[εx1βx1(s) + εx2βx2(s)][εy1βy1(s) + εy2βy2(s)][εz1β∗
z1 + εz2β∗

z2]
ds, (9.39)

for a single crossing of two bunches.

For the special case where the colliding beams are collinear with identical beam sizes and shapes

at the interaction point, and having 2σz<∼β∗
x, 2σz<∼β∗

y , and ∆ = 0, the previous integral simplifies to

L =
N1N2

4πσxσy
. (9.40)

The average instantaneous luminosity for Nb crossing bunches per revolution with N1 and N2 par-

ticles per bunch respectively for the opposing beams is then

L =
f0NbN1N2

4πσxσy
. (9.41)
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When the beams are round with εrms = εrms
x = εrms

y and β∗ = β∗
x = β∗

y and of equal current, then

L =
f0NbN

2γ

4πβ∗εrms
. (9.42)

In a more realistic situation the different bunches may have random intensities, so that the

product NbN1N2 must be replaced by a sum of the products of the colliding bunches’ intensities,

i. e.,

NbN1N2 → ΣNb
j=1N1jN2j . (9.43)

9.3 Estimation of luminosities in RHIC

Table I lists the RHIC design parameters for both protons and gold ions. The results of several

simulated scans are shown in Figures 9.2 to 9.9 for both protons and gold ions.

Table I: RHIC parameters

Parameter Protons Gold Ions
βxmin 1.0m 1.0m
βymin 1.0m 1.0m
εNx95% 20µm 10µm
εNy95% 20µm 10µm

σz 0.075m 0.2m
N1 1 × 1011 1 × 109

N2 1 × 1011 1 × 109

Nb 55 55
frev 78.25kHz 78.25kHz
γ 260 108
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Figure 9.2 Luminosity versus bunch length for

proton beams at various β∗ values.
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Figure 9.3 Longitudinal scan of luminosity for

protons with β∗ = 1m.

Fig. 9.2 shows the variation of the luminosity with bunch length for β∗ values from 1 to 10 m.

Here I have assumed that the beams are round and of the same size

β∗
x1 = β∗

y1 = β∗
x2 = β∗

y2 and ε∗x1 = ε∗y1 = ε∗x2 = ε∗y2. (9.44)

This demonstrates the usual rule of thumb that the bunch length should be no larger than the value

of β∗
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Fig. 9.5 shows the effect of misalignment of the waist of the the beam. Here I have assumed

that the horizontal and vertical waists of both beams are displaced by the same amount but in

opposite directions for both rings. This shows that to peak up luminosity, we should measure the

optics carefully around the interaction regions. A scan of luminosity versus each waist should be

made at some time to ensure that the optics are placing all four waists within about 10 cm of the

interaction point.

The pair of beam position monitors (BPM) in each interaction region are separated by about

16.6 m. The beam pipe aperture through the DX and D0 magnets limit the maximum crossing angle

to about 1 mr. The alignment of the beams from the BPM’s should be better than 200µm, so that

we should be able to dead reckon the crossing angle very well, θx,y ≤ 6µr. Figs. 9.6 and 9.7 show that

there is very little degradation of luminosity for crossing angles up to several hundred microradians.

Clearly the longer bunches of the gold beams are a bit more sensitive to crossing angle.

The rf system can easily phase the beams to cross at the required location within a couple of

centimeters. Figs. 9.3 and 9.9 show that a ∆/2 = 20cm longitudinal shift of the IP has a marginal

effect for both gold and proton beams

Since the BPM system should align the crossing point to a few hundred microns, we should be

able to set the beam to collide with at least 30% of the peak luminosity. Even if we miss the crossing

point by 0.5 mm, we can perform a two dimensional scan in 100µm steps to get quite close to the

peak. Then a finer transverse scan can be performed to reach the peak.
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Figure 9.4 Scan of hx for proton beams at

250 GeV with β∗ = 1m. (The dot spacing is

20µm.)
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Figure 9.5 Longitudinal scan of beam waists for

protons at 250 GeV (β∗ = 1m).
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Figure 9.6 Scan of θx for proton beams at

250 GeV with β∗ = 1m.
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Figure 9.7 Scan of θx for Gold ion beams at

100 GeV/amu with β∗ = 1m and 55 bunches of

109 ions per bunch.
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Figure 9.8 Scan of hx for Gold ion beams at

100 GeV/amu with β∗ = 1m and 55 bunches of

109 ions per bunch. (The dot spacing is 20µm.)
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Figure 9.9 Longitudinal scan for Gold ion

beams at 100 GeV/amu with β∗ = 1m and

55 bunches of 109 ions per bunch.
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Figure 9.10 Scan of hx for Gold ion beams at

100 GeV/amu with β∗ = 1, 2, 3, 5, and 10 m

and 6 bunches of 109 ions per bunch. (The dot

spacing is 20µm.)
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Figure 9.11 Longitudinal scan for Gold ion

beams at 100 GeV/amu with β∗ = 1, 2, 3, 5,

and 10 m and 6 bunches of 109 ions per bunch.
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Figure 9.12 Scan of θx for Gold ion beams at

100 GeV/amu with β∗ = 1, 2, 3, 5, and 10 m

and 6 bunches of 109 ions per bunch.


