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Abstrat. UAL (Uni�ed Aelerator Libraries)[4℄ is an a-elerator simulation environment whose purpose is to homog-enize diverse simulation odes. This doument is availableat http://www.ual.bnl.gov, where it an be expeted to beupdated oasionally. Its initial purpose has been to serve asinstrutions for the 2005 USPAS (U.S. Partile AeleratorShool) ourse held in Ithaa. As suh, some of the material,suh as �lenames, �lename extensions, tutorials, and XMLtools, are speialized unneessarily to what happened to bein use for this ourse. The doument is intended to servealso as a UAL Physis User's Guide for the UAL environ-ment. Some of the other douments and user guides referredto are available at the same web site. The MAD8 manual isespeially important sine, to the extent possible, geometry,terminology and de�nitions of UAL are adopted from thatsoure. Some orretion algorithms, suh as orbit smoothingand loal deoupling are doumented in the TEAPOT manual.This text omplements the UAL User Guide,[5℄ whih,though now largely outdated, desribes muh of the motiva-tion, organization and evolution of UAL. The main ways inwhih the User Guide is outdated are that the user interfaehas been migrated from PERL to C++ and a graphial userinterfae is now supported. Updating of the User Guide, nowin progress, will onsist primarily of the onversion of line-by-line PERL sript explanations to line-by-line explanationsof essentially equivalent C++ ode. The physis underlyingthe ode will be largely unhanged.
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CHAPTER 1Introdution1.1. Code Installation From the CDROM'sThis text is meant to resemble a physis text more nearly than it resemblesa ookbook. But this setion is an exeption; it gives rudimentary instrutionson initializing the UAL omputer environment. The instrutions are written asif for a student in the USPAS shool held at Cornell University, in Ithaa, NewYork, in 2005, but they should be appliable to anyone else looking for an intensiveintrodution to UAL.This doumentation assumes that the username is ualusr, with home diretory/home/ualusr. In these instrutions this diretory is referred to as �. LINUX isthe only operating system used in the ourse. (For the USPAS shool, RedHatEnterprise linux is used.) Everything needed over and above ode inluded in the(omplete) RedHat release is ontained on two CDROM's, whih are labeled USPASand TOY-LATTICES. The ode they ontain installs into subdiretories �/USPASand �/TOY-LATTICES. Installation instrutions are given on the CDROM labels.They an be installed in either order. The USPAS ode uses the TOY-LATTICESode only as a soure of example lattie �les. Though the ADXF lattie format wasintrodued initially in UAL, in priniple it exists in a more-general-than-UAL world.The TOY-LATTICES odes proess lattie �les in that world. But these instrutionsassume that both CDROM's are being installed at the same time.The instrutions inlude opying a �le alled shr-tentative to �/.shr.But this must be done autiously. The purpose for this �le is to establish requiredenvironment variables and searh paths. To avoid unexpeted onits it is re-ommended that the ualusr aount be dediated entirely to UAL work. The userwishing to personalize the .shr �le is responsible for proteting and merging itsontents appropriately before blindly following the CDROM label's instrution toover-write this �le.A partial diretory struture (with diretory labels giving hints onerningontent) follows:� USPAS{ shr-tentative, to be opied to �/.shr{ rootr, to be opied to �/.rootr{ ual1, the main UAL ode.� gui� odes� env� ext� tools� examples 1



2 1. INTRODUCTION� do/adxf, loation of loal opu of adxf.xsd shema{ examples, simulations, loosely oupled with hapters� transverse, for transverse simulations� longitudinal� nonlinear� deoherene{ setup-linux, initialization �le{ tools,� Instrutions.ps, extrated from http://www.ual.bnl.gov� qt, Troll Teh's Qt graphial user interfae� root, CERN, objet-oriented, data-proessing environment.� SoQt, library integrating Coin and Qt� simage, support for loading and saving images, oin3D devel-opment� Coin, 3D graphis rendering library� TOY-LATTICES{ oxygen5, inexpensive ommerial, XML-aware editor, liensed for US-PAS shool{ grae, for xmgrae graphial post-proessing{ xslt� MAD8, for lattie funtion omparisons� OUTPUT, lattie funtion graphs from MAD8 runs� SCRIPTS, XSLT sripts for translating among various �le for-mats.� ADXF� INPUT-adxf, primary loation of lattie �les� OUTPUT-adxf-num, purely numerial, .adxf �les� OUTPUT-speialized, speially tailored �les, see README� OUTPUT-xsl, �les prepared for transformation by XSLT� OUTPUT-sxf, purely numerial, .sxf �les� OUTPUT-mad� OUTPUT-tpot� INPUT-sif, arhive of original MAD lattie �les� INPUT-xsl-arhive, arhive of original .xsl �les� ADXF2.10, shema, and doumentation thereof� tools� java� Xeres� xml-xalanApart from ontaining the toy lattie �les to be used in the shool, the ode in�/TOY-LATTICES onsists mainly of non-UAL-spei� utility odes useful in trans-lating lattie �les among various �le formats, and for validating the results, asregards both XML and physis. Muh of this ode is transitory, intended espe-ially for the USPAS ourse, or provided for bakward ompatibility|for exampleby providing .sxf �les that an be used in some old simulations, or .mad or .tpot�les.The primary repository for �les to be used as input to UAL simulations is�/TOY-LATTICES/xslt/ADXF/INPUT-adxf



1.1. CODE INSTALLATION FROM THE CDROM'S 3whih ontains .adxf �les for all toy-latties, with variables and expressions un-evaluated. However, some �les, suh as ags, support parameter evaluation onlyvia the ags.xsl route. All toy lattie �les are therefore available with all variablesevaluated to numbers in�/TOY-LATTICES/xslt/ADXF/OUTPUT-adxf-numUAL simulations an be started from .adxf �les in either of these diretories, withor without modi�ation. Though these �les have .adxf extensions, they are tobe proessed exatly as if their extensions were .xml. They are required to beXML-valid against the shema,http://www.ual.bnl.gov/adxf/adxf.xsdA loal opy of the shema, needed for when the web is inaessible, is/USPAS/ual1/do/adxf/adxf.xsdThe .adxf �les an be modi�ed using any editor, but the XML-aware editorprovides many valuable utilities. Espeially useful are ontext-aware pull-downmenus, that present all shema-legal options. Files an be tested for XML-well-formedness and validity. Files an also be pretty-printed and stepped throughfor line-by-line feedbak, for debugging or for browsing purposes. Obviously it issensible to save opies of the originals. They an also be regenerated using thesripts desribed next. This route must be taken if omparison output from MAD8for a modi�ed lattie is desired.For bakward ompatability all toy lattie �les are also available in .sxf formin the diretory�/TOY-LATTICES/xslt/ADXF/OUTPUT-sxfThese �les an be used as input to various (old and now unsupported) PERL-ontrolled bath-mode sripts. Sine this interfae is in the proess of being replaedthere is little support available in ase of malfuntioning of these sripts.The sripts in the SCRIPTS diretory perform various lattie desription trans-formations, suh as populating all the lattie �le diretories mentioned so far. Someof the sripts ombine several separate manipulations. If only one of these manipu-lations is required the appropriate line (a shell sript statement) should be extratedand run by itself. In all ases the transformations an be stepped through usingthe oxygen XML-aware editor. A few of the sripts (whih all some of the others)are: � proess-qfile: taking a single argument, suh as raetrak, this sriptproesses the toy lattie raetrak.adxf, and produes equivalent �les indiverse formats, suh as raetrak.mad, and raetrak.sxf (now dep-reated). These are in forms that an be (and are) immediately proessed.Also produed (for onveniene in performing XSLT transformations) areraetrak.xsl and (in a di�erent diretory) raetrak.adxf whih is apurely numerial version with all variables and expressions evaluated topure numbers.� proess-all-files: runs proess-qfile for all available .adxf �les.� hek-results: for a partiular lattie, suh as raetrak, heks forthe presene of �les generated by proess-qfile and validates the .adxf�le against its XML-Shema.All these tools are available for any lattie �le written in .adxf form. TheOXYGEN, XML-aware editor makes the generation of suh a �le straightforward, bypresenting, at every step, only legal options for the developer to hoose among. The



4 1. INTRODUCTIONonly major task in importing a new aelerator into this environment is the initialgeneration of its .adxf form. The XML-aware editor is helpful, but the task isabout as tedious as generating a lattie desription �le for any aelerator analysissoftware. 1.2. Organization of the Text and CourseThis text has been written primarily to provide referene material in support ofa ourse on omputer simulation of aelerators. Sine the hoie of subjet matteris rather onventional for the �eld, the material would be more or less appropriatefor any aelerator modeling software. Many of the problems are this general, butwe think of this text as being a kind of UAL Physis User's Guide. Almost all ofthe simulations assume the UAL environment is being used. Furthermore, many ofthe �gures aompanying the theoretial material in the text is produed by theUAL GUI.The UAL environment is intended to be useful for both o�-line models and forthe models used in online ontrol system appliations. Only the o�-line appliationsare doumented in this text.Nearly everthing of importane in aelerator physis an be subjeted to studyby simulation. From the time that a tentative lattie for a new aelerator hasbeen written down, then re�ned and the aelerator built and ommissioned, untilthe aelerator is eventually de-ommissioned, simulation an ontribute to theunderstanding and improvement of the aelerator's performane. A long, yet stillinomplete, list of important ingredients of a simulation follows:� initial lattie desription� Monte Carlo partile bunh and �eld error assignment� alulation of lattie funtions, both ideal and real� orretion apabilities, orbit smoothing, deoupling, et.� simultaneous presene of multiple e�ets� determination of bunh evolution, emittane dilution, partile loss, halogeneration, injetion and extration eÆieny.� ollimation design� spae harge, beam-wall, and beam-beam e�ets� design and performane modeling of feedbak and ontrolSome of the essential requirement of the physis underlying a simulation are:� orret basi physis (e.g. sympletiity and Maxwell equations)� sensible inlusion of (only) essential physis of suÆient generality� freedom from bugs, blunders, and oneptual errorsThough almost too obvious to write down, the third of these requirements is hardto ahieve, and ahieving it depends strongly on the �rst two, between whih thereis a kind of omplementarity. The striving for unreasonably faithful desriptiontends to inrease omplexity whih makes the ode more error-prone. This justi�esthe expenditure of muh e�ort in hoosing what idealizations are to be adopted.To be most e�etive (like all theory) simulation is best used in onjuntionwith experimental observations on a real aelerator. If the model underlying asimulation is too idealized, that fat should beome rapidly apparent during atualmahine studies.



1.2. ORGANIZATION OF THE TEXT AND COURSE 5For avoiding bugs the quality of the ode arhiteture and the areful applia-tion of tests are probably the most important determinants of the ode reliability.In many quarters it is thought that objet-oriented ode, with its highly disiplinedinterfaes, is favorable in this respet. UAL is based (almost) entirely on C++whih is objet-oriented. Amongst other features, this failitates extensibility andmaintainabily. These issues are disussed in detail in other UAL douments. Forexample, further disussion of the merits of C++, and why it is being superededin UAL is disussed in the User Guide.Another likely soure of error is the inorret interpretation of orret ode.This may be aused by inorret interpretation of physis or by omputationalissues. In this text muh emphasis will be plaed on the physis, but, in spiteof its importane, the ontribution of software arhiteture to ode reliability islittle disussed. On the other hand the benhmarking of simulation results againstindependently derived and trusted results might almost be alled the theme of thepresent text.It is not enough for a simulation just to have orret physis and sensiblemodels. It is also neessary for it to be suÆiently user friendly that it atuallygets used. The user interfae has to display its results in an aessible fashion, toprovide the rapid feedbak needed to support rapid hanging of onditions. An alltoo ommon experiene with many (all?) existing aelerators is that there is oneor more detailed but hard to use o�ine models and a rude, but easy to use, onlinemodel. From experiene one knows whih of these two models will atually be usedin the ontrol room. This senario be mainly due to the diÆulty of providing gooduser interfaes. Of ourse there are also other reequirements for a simulation, suhas performing peripheral alulations and providing post-proessing tools.So what is the relation of this text to simulations? It might seem appropriate toprovide derivations for all formulas used in the ode. Though onsiderable tehnialmaterial of this sort is inluded, only a relatively small fration of the formulas inthe UAL ode are derived here. Far more important is the task, mentioned already,of result orroboration. It is important for material supporting suh tests to beavailable. Muh of this text is therefore devoted to developing idealized modelsand to deriving analyti formulas desribing them.An all too prevalent pratie in aelerator investigations is to aept unrit-ially the results of this or that omputer program. Based on the likely validassumption that the program's author knows more than the user, the results of theprogram are aepted as being reliable. Apart from the possibility of bugs, thisapproah is likely to mask the presene of built-in assumptions that are valid insome irumstanes but not in others. It is very rare for a user to have line-by-linefamiliarity with the ode he or she is relying on, but to redue the likelihood oferror it is essential to have a fundamental understanding of what has gone into theode.Summarizing what has been said, to the extent that this text is an \AeleratorPhysis Users Guide", it is intended to provide:� an overview of the subjet of aelerator physis, in support of the en-lightened usage of simulation ode, espeially UAL� exploration of simplifying idealizations� emphasis on keying simulation to atual mahine studies



6 1. INTRODUCTION� detailed tehnial information emphasizing methods appropriate for sim-ulation� test ases that an be used to test simulation results against theoretialresults and therefore provide on�dene in results obtained in situationstoo ompliated for analyti treatment� pedagogial material for a ourse on the subjet� pratie assignments to help a user gain experiene with the methods andthe ode1.3. Assignments: Tutorials, Problems, SimulationsThere are assignments sprinkled more or less uniformly through the text. Foreasy visability all these assignments are printed in itali type and separated fromthe main text by horizontal lines. The assignments are of three di�erent types,referred to as tutorials, problems, and simulations.Tutorials. Tutorials are intended more to guide the student through pratialitiesof the UAL ode than to explore aelerator physis. They are not intended tobe diÆult. If a tutorial assignment is diÆult it may be beause objet-orientedsoftware arhiteture is unfamiliar or beause of the obsurity or absene of dou-mentation. In any ase the diÆulty probably reets more on the software thanon the student. Tutorials our mainly in the early hapters. They an only beperformed while sitting in front of a omputer sreen.Problems. As mentioned in the previous setion, the attempt is made in thistext for eah topi to be addressed by two parallel methods|one analyti, one bysimulation. The problems relate to the analyti members of these pairs. Muhlike the problems in any book disussing theoretial methods these problems areintended to exerise the student's understanding of the material. In many asesthe problems extend the treatment in the text. Whether a problem is hard oreasy depends (obviously) on the student's level of familiarity with the partiulartopi. When the purpose of a problem is to derive a result for omparison withsimulation the answer is usually given in the statement of the problem. This mayallow the result to be used even without the problem having been worked. In otherwords, it is not neessary to slavishly work through all the problems|they are,after all, intended primarily as being omplementary to the simulations. That said,it bears repeating, that one of the most important initial uses of any simulationis to orroborate its results against known results, usually obtained analytially.Mainly the problems are to be worked out with penil and paper.Simulations. The ultimate purpose for UAL is to simulate the behavior of realaelerators and storage rings. As in all siene, in ontrolling and observing anaelerator, there is tension between what is expeted and what is observed. Byinreasingly realisti simulation of what is expeted, and reoniliation with what isobserved, the performane of an aelerator an be improved. The UAL simulationsattempt to model aelerator performane in onditions that are as nearly realistias possible, onsistent with avoiding undue omplexity. The various simulationsapply to an aelerator lattie supplied by the user. When the lattie is one of theso-alled \toy" latties the results are intended to be relatively easy to interpretand to ompare with theory. When the lattie �le desribes a real aelerator theresults will be more realisti but less easily hekable.



1.3. ASSIGNMENTS: TUTORIALS, PROBLEMS, SIMULATIONS 7Doumentation of the dynami simulations is sattered through this text (andin other online material). Here it will only be stated that they are launhed byinstrutions like$ d ~/USPAS/examples/longitudinal/linux$ ./runAtually this does not start a run; rather it ehoes a usage message suh as,$ usage: run ringName lattieFile apdfFileMany lattie �les desribe only one beamline, but the \ringName" argument ispresent in ase the �le \lattieFile" desribes more than one beamline. The �nal ar-gument refers to a \propagator desription �le" alled, for example, tibetan.apdf.1Reminded by this hint, one types$ d ~/USPAS/examples/longitudinal/linux$ ./run ring ~/TOY-LATTICES/xslt/ADXF/INPUT-adxf/eq_tune_fodo.adxf ../data/tibetan.apdf(This assumes the diretory struture is suh that the �les are where they arestated to be. The diretories shown are the preferred diretories for the USPASshool. The �les an be referened by absolute or relative addresses.) This om-mand brings up a GUI that permits beam onditions and other parameters to behanged from default values. Other features of the simulation an be tailored inthe GUI and ouput in the form of plots or �les an be requested. First the GUI-available parameters are tailored as desired. Then liking on setup followed byliking on run starts the run. Beam plots are updated at regular (adjustable)intervals. If desired, the run an be paused. While viewing a plot, hard opy anbe produed and, optionally, its data saved for post-proessing. Parameters notaessible via the GUI are also hangeable, but only by re-oding the main ontrol�le /USPAS/examples/longitudinal/sr/run.. After editing, this �le has tobe reompiled using$ d ~/USPAS/examples/longitudinal/sr$ makebefore restarting the simulator as above. Similarly, to start the transverse simu-lator, $ d ~/USPAS/examples/transverse/linux$ ./run ringName lattieFile apdfFileOther UAL simulations, going by the names nonlinear and deoherene havesimilar organization and usage. A systemati listing of simulator properties isontained in Table 1.1.By their very nature all simulations are somewhat open-ended and the instru-tions may not be very spei�. Generally the simulation will involve hanging oneor more lattie or beam parameters. In some ases the GUI aepts data entry tohange parameter values. For more extensive hanges it is neessary to edit theinput �le as desribed above. The student is invited, no required, to go beyondthe expliit instrutions, espeially by formulating questions that the software ap-pliation should be expeted to be able to address. Espeially enouraged, thoughvery ambitious for a short ourse, would be to generate an input �le orrespondingto some existing or planned aelerator, and to simulate its behavior. (Manualtranslation of an existing MAD lattie desription to ADXF is straightforward but1In the ase of the longitudinal simulation, the RF avity is under the ontrol of the GUI,so treatment of the RF avity is not desribed in the .apdf �le.



8 1. INTRODUCTIONTable 1.1. Some Properties of the Simulations.simulation hapter variables algorithms funtions.name number emphasized displayedtransverse 2,3 x; y matrix, kik �, Dphase spae4 FFT QSVD spatial, temporaleigenvetoreslongitudinal 6 s separatrixphase spaedeoherene 7 x; y; s matrix, kik < x >;< y >;< s >mapnonlinear 8 x; y; s matrix, kik Q mapmap dynami aperturetedious.) In short, the simulations are the main ontent of the UAL/USPAS ourse.Obviously they require a omputer, but in most ases they also require a lively un-derstanding of the material, suh as may be obtained by reading the text and doingthe problems.1.4. The UAL Element-Algorithm-Probe Simulation FrameworkUAL (whih stands for \Uni�ed Aelerator Libraries") is an aelerator simu-lation environment. It di�ers from some other environments by its rigorous separa-tion of physial elements (magnets, avities, et.) from the formulas or algorithmsdesribing beam evolution through the elements. The quantities being evolved(partile positions, bunhes, maps, Twiss funtions, et.) are referred to as probes.These are the ornerstones of the so-alled element-algorithm-probe framework ofUAL.The parameters of the physial elements making up an aelerator lattie areontained in a so-alled ADXF �le (whih stands for \Aelerator Desription eX-hange Format".) This format is apable of desribing latties that range from thesimplest possible design lattie to the most ompliated, fully-instantiated, opera-tional lattie. It is important for all tools to funtion onsistently and e�etivelyover this full range of ompliation.For an atual simulation, after the probe quantities to be evolved have beenspei�ed, it is neessary to assoiate a spei� evolution algorithm with eah lattieelement. These linkages are desribed by an APDF �le (whih stands for \Aeler-ator Propagator Desription Format"). This �le is usually quite brief, sine thereare only a few algorithms and default algorithms are usually appropriate for mostelements.The early tutorials onentrate on gaining familiarity with ADXF. Use of APDFis onsiderably more tehnial and more speialized. The general idea an be in-ferred from the following sample, alled traker.apdf:<apdf><propagator id="teapot" aelerator="blue"><reate>



1.5. ADXF 9<link algorithm="TEAPOT::DriftTraker" types="Default"/><link algorithm="TEAPOT::DriftTraker" types="Marker|Drift"/><link algorithm="TEAPOT::DipoleTraker" types="Sbend" /><link algorithm="TEAPOT::MltTraker"types="Quadrupole|Sextupole|Multipole|[VH℄kiker|Kiker"/><link algorithm="TIBETAN::RfCavityTraker" types="RfCavity"/><link algorithm="AIM::Monitor" types="Monitor|[VH℄monitor"/></reate></propagator></apdf>With the linkages shown, magnets and drifts are handled by TEAPOT, r.f. avitiesby TIBETAN, and monitors are treated as AIM:Monitor's at whih partile positionsare reorded eah turn (for later post-proessing). (AIM stands for \aeleratorinstrumentation module".) Users familiar with other aelerator simulation odesmay onsider it a nuisane that beam positions are available only at monitors. ButUAL attempts to be realisti in the sense of making available, and making use of,only data that would be realistially avaiable in a real aelerator.The purpose of separating elements from algorithms in this way is to supportthe \mixing and mathing" of physial methods (matrix, map, Runge-Kutta, et.)with physial elements (bends, quads, RF avities, et.) As well as failitatingthe benh-marking and omparison of methods, this struture permits a simulationto link the most appropriate evolution method with eah element. More detailedexamples of .apdf �les, along with more detailed explanations, are given in Chap-ter 7. 1.5. ADXFMost users are presumably familiar with MAD lattie desriptions. This formof desription is often referred to as SIF whih stands for \Standard Input For-mat". The ADXF format, while inorporating all SIF features, superedes SIF inthree main ways. The most essential of these ways is that ADXF extends SIF andis, itself, extensible. These extensions inlude the ability to fully-instantiate thelattie by giving every element its own identity and its own deviations, parameters,et. The seond essential innovation ADXF brings is that it is based on XML. Tomake the format, as well as any extensions, self-desriptive, the XML-Shema dis-ipline is employed. Furthermore, the importation, into the aelerator world, ofstandard, up-to-date, omputer world formalism, makes available tools developedin the vastly-better-developed external world.Following an innovation in E. Forrest's PTC ode, a third, more speialized,feature of ADXF is the distintion between between \uninstalled" (\on the benh"in Forest's terminology) and \installed" elements. Naturally an aelerator on-tains only installed elements, eah potentially having its own positioning and �elddeviations. As well as being faithfull to reality, this abstration permits the simula-taneous desription of more than one ring, inluding the ability to desribe elementsthat are shared by two or more rings, or that are multiply-traversed (possibly withhanged onditions) within a single ring. There are workarounds to provide thisfeature within SIF. For example, to represent shared elements, a single element anbe treated arti�ially as two distint elements. But this ompliates the inlusionof �eld or positioning deviations. This an be done onsistently, but is error-prone.



10 1. INTRODUCTIONLike .mad �les, .adxf �les support parameters and expressions and an bepretty muh internally self-explanatory. This is espeially true for the toy lattiesto be used initially.A onsiderably more tehnial overview of ADXF is available at the UAL web-site http:www.ual.bnl.gov under ADXF 2.0. De�nitions, examples, shema, andrelationships of ADXF to other formats are given there.In order to serve for both design of idealized latties and representation offully-instantiated operational latties ADXF supports spei�ation of both designparameter values and deviations. This issue is too tehnial for disussion at thispoint, but it an be roughly understood by onsidering ordinary elements suh assbend, quadrupole, and marker. The ADXF fragment<elements><marker name="mk1"/><sbend name="bend" l="lq" angle="deltheta"/><quadrupole name="quadhv" l="lq" k1="kq1"/>...</elements>essentially just re-expresses MAD input element desriptions as XML. To desribedeviations (from a design element) ADXF uses syntax<elements><sbend name="d0mp08" l="3.58896" angle="-0.0151186"/><element name="bi8-dh0" design="d0mp08"/><mfield b="0 0 0.005476 0.033503"a="0.0 -0.010166 0.024366"/></element></elements>The <mfield> tag also allows a method attribute with the default value beingmethod="set", in whih ase the a and b entries are absolute values of the param-eters. Other possibilities are method="add" and method="multiply". In the aseof multiply an entry b="1 1.01" would result in b0 ! b0 and b1 ! 1:01 b1.1.6. \Toy" LattiesIt is regrettably true that aelerator latties are ompliated. In fat the needfor a sophistiated simulation environment like UAL is at least partly due to thisomplexity. Even professionals, with deades of experiene, an be onfused as towhih omponents are ausing whih behavior. A student in a one week ourse ansarely, therefore, be expeted to generate the lattie desriptions that UAL needsto work with. For this reason, to get started, the \toy latties" shown in Table 1.2and FIG 1.1 are to be used as starting points. These latties are suÆiently detailedto exhibit most of the behaviors important in aelerators. Furthermore, thoughreferred to as \toys", the latties are parameterized in suh a way that they an begeneralized to desribe aelerators, storage rings and olliding beams of arbitraryirumferene, energy, partile type, tunes, and so on.As they stand, not inluding ags.adxf, whih desribes the BNL alternatinggradient synhrotron, the toy latties are thin element latties, meaning that thequadrupole and sextupole lengths are negligible ompared to the ell length. (Toenable omparisons with programs, suh as MAD, that do not smoothly inorporate



1.6. \TOY" LATTICES 11

isochronous ags

rf

general_fodo_rf

2q1
2q2

general_fodo

2q
−2q

eq_tune_fodo

racetrack collider
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Figure 1.1. "Toy latties" to be used as starting points for a-elerator simulations. Note: \ags" is not a \toy".the zero length limit for thin elements, the element lengths in these �les are hosento be not quite zero, but small enough to have negligible e�et on the optis)Sine the element lengths are expressed as parameters, later on the elements anbe turned into thik elements, and the ring retuned.The early hapters of these notes largely ontain introdutory exerises intendedto provide a gentle introdution to the UAL aelerator simulation environment.The �rst two tutorials relate to two simple \toy" latties alled eq tune fodo.adxfand general fodo.adxf. These latties are designed for getting started on theaelerator modeling ourse.These �les ould have been generated from srath but some were in fat,derived from .xsl �les whih is a \pre-adxf" form. XSL is an XML proessing tool.XML stands for \eXtensible Markup Language", whih is ideal for modern lattie



12 1. INTRODUCTIONTable 1.2. \Toy latties" to be used as starting points of simula-tions. \P/N/FI" stand for \parameterized/numerial/fully-instantiated". INPUT OUTPUT�lename feature .mad .xsl .adxf .mad .sxfeq tune fodo equal tunes P P N N Ngeneral fodo unequal tunes P P N N Ngeneral fodo rf aeleration P P N N Nraetrak long straights P P N N Nollider low beta IP P P N N Nisohronous mom. ind. period P P N N Nags fully realisti FI-P FI-P FI-N FI-N FI-Ndesription. The term \pre-adxf" implies that named parameters are allowed andthey an be expressed in terms of mathematial expressions and funtions. Theseexpressions are \parsed" into numerial expressions using an XML tool known asXSLT. (At this time the UAL parser is also able to parse algebrai expressions so theneed for the XSLT expression parser has already been largely eliminated. Howeverthe XSLT transformation tools provide powerful help in translating from .adxfformat to the formats of other aelerator programs.)Based on XML, the ADXF protool (or something like it) is beginning to, buthas not yet, supereeded SIF (whih stands for \Standard Input Format"). Overtime SIF has evolved into the MAD (Methodial Aelerator Desription) format.For the UAL simulation ourse it is the .adxf �les that are the starting pointsfor the various dynami simulations. The .sxf format (motivated a few yearsago by the US-LHC ollaboration) was an early presription for exhanging fully-instantiated lattie desriptions among diverse simulation environments. This for-mat has been supereded by the .adxf format, whih is extensible, with extensionsdisiplined by XML shema. This makes the format \self-desribing".The eq tune fodo.adxf �le is espeially introdutory in harater and is in-tended to be supereded by the slightly more general general fodo.adxf afterpreliminary study. These latties are parameterized in suh a way that they andesribe rings of arbitrary radius and arbitrary tunes. The parameters of the input.xsl �les are intended to be adjusted in performing the tutorials. Later, whileperforming dynamial simulations using the graphial user interfae, the few mostimportant, but not all, parameters will be interatively hangeable without reom-pilation.When these or other latties are proessed by UAL, various output displays and�les are generated. Example output orresponding to the isohronous toy lattieis shown in FIG 1.2. When the same lattie is proessed using MAD the results areshown in FIG 1.3 and FIG 1.4 are obtained.
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Figure 1.2. UAL-generated Twiss funtions for the isohronous lattie.



14 1. INTRODUCTIONThe toy lattie �les are useful for gaining familiarity with the environment.Introdutory tasks mainly amount to heking and orrelating a few results in thisoutput by hand alulation (using any omputational tool you wish, suh as handor online alulator) using formulas given in these notes.One thing that makes aelerator physis hard is that the presene of smalle�ets of one sort or another almost always auses minor disagreements amongquantities alulated in di�erent ways. Examples will be given shortly. Only withexperiene does one obtain good judgment about what to insist upon, and what tolet pass. One purpose of this ourse is to learn how to use the UAL environmentto provide some of this experiene. It is to be a \laboratory ourse" where labora-tory is being used in the sense of omputational laboratory. After understandingthe meanings of quantities, they will be estimated and the estimations omparedto aurately omputed values. Even when quantities annot be alulated withabsolute auray, analyti formulas an often be used to alulate the hanges ofthese quantities when a lattie element strength is hanged by a small amount.Commonly in an aelerator ontrol room the installed lattie only agrees \moreor less" with the design. (As aelerators have beome larger and larger this be-omes more and more invevitable. Not only are there more elements, for whihthe parameters are only ontrolled approximately, but the same frational erroris more signi�ant in a big ring than in a small ring.) After on�rming that theinstalled lattie resembles the design, it is neessary to perform various �ne tun-ing operations to orret for minor unknown errors. Furthermore the algorithms,based as they are on an idealized model, are typially not \orthogonal" (meaningthat errors of one sort, suh as oupling, degrade algorithms intended to orretother e�ets, suh as losed-orbit deviation.) This fores methods to be iterated,either suessfully, in the ase of onvergene, if the errors are small enough andthe methods powerful enough, or unsuessfully.One appliation of the UAL ode is to simulate these lattie tuning and orre-tion proedures and then to determine aurate lattie properties. Some of theseare just realulations of quantities previously alulated. Most of the alulationsare too ompliated to be heked by hand. The assoiated assignments in the tu-torials are to spot-hek the results against the input �le spei�ations, referring tothe UAL manual to \get the drift" of what an be alulated, what an be modeled,what an be adjusted, and how to do it.Output �les for both of the initial pratie latties are available (along withother data) from the CDROM. Students are to work through the instrutions asso-iated with these latties. There are various other, more realisti, more detailed,but still \toy latties", that are available for similar study; for example a ollidingbeam lattie, and a proton aelerator (AGS) are available in .xsl form. Somelongitudinal studies are based on RHIC, the Brookhaven Relativisti Ion Collider.That lattie is available in .sxf form.
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Figure 1.3. MAD-generated Twiss funtions for the isohronous lattie.
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1.7. GRAPHICAL USER INTERFACE 17Tutorial 1.1. Use UAL to obtain the dispersion urve for the isohronouslattie, and ompare the result with FIG 1.4.Tutorial 1.2. Pratie, using the mouse and aret, to zoom one of the GUIgraphs. Note that there is no \box zoom". Rather, eah axis is to be zoomedindividually. Also learn how to read aurate numeriaal values for one of theplotted lattie funtions.After ompleting these initial assignments students are enouraged to preparean input �le desription for a partiular aelerator or type of aelerator of interest.Starting with this �le it will be possible to omplete the later stages of the oursein whih various physial e�ets are investigated.1.7. Graphial User InterfaeThe main graphial user interfae whih ontrols the UAL simulator is shownin FIG 1.5. More detailed windows are shown in FIG 4.7, FIG 4.8, FIG 7.7 andFIG 7.8. This interfae is based on QT[1℄ and ROOT[2℄[3℄.The graphial interfae for the debugger for the XSLT-transformer ontainedin the OXYGEN, XML-aware editor is shown split between FIG 1.6 and FIG 1.7.
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Figure 1.5. UAL \PlayerUI" GUI window.



1.7.GRAPHICALUSERINTERFACE
19Figure 1.6. Left half of OXYGEN Debugger window.
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Figure 1.7. Right half of OXYGEN Debugger window.



CHAPTER 2Linearized Transverse Motion2.1. Equations of Small Amplitude Transverse MotionConsider a beam of partiles being guided along a possibly-urved path, withlongitudinal position spei�ed by ar length s. To prevent the eventual loss ofpartiles no matter how slightly divergent, it is neessary to have fousing elements.For high energy harged partiles this means quadrupoles. The di�erential equationdesribing suh fousing, for example in the vertial plane, isd2yds2 = K(s)y; (2.1)where K(s) is the \vertial fousing strength". Its dependene on s permits thedesription of systems in whih the fousing strength varies along the orbit. Inpartiular K(s) = 0 desribes \drift spaes" in whih ase Eq. (2.1) is triviallysolved, and yields the obvious result that partiles in free spae travel in straightlines.It is onventional to designate dy=ds by y0. There are (at least) three andidatesfor desribing partile slopes; angle �y, slope y0, or momentium py (whih is saledto the total momentum P0). All of these are exhibited in FIG 2.1, and one seesthat y0 � dyds = tan �y = pyos �y : (2.2)This multiple ambiguity in what onstitutes the oordinate onjugate to y is some-thing of a nuisane at large amplitudes but, fortunately, all three de�nitions ap-proah equality in the small-angle limit that haraterizes Gaussian or \paraxial"optis. One knows from Hamiltonian mehanis that py is the safest hoie but,while limiting ourselves to Gaussian optis, we will refer loosely to y0 as \vertialmomentum" so that we an refer to the (y; y0)-plane as \vertial phase spae".
P0

P0 p yθy

θy
dy

ds

Figure 2.1. Spatial displaements and momentum vetors show-ing relations among transverse angle, momentum, and slope.21



22 2. LINEARIZED TRANSVERSE MOTIONStarting from any point s0 along the beamline, one de�nes two speial orbits, a\osine-like" orbit C(s; s0) with unit initial amplitude and zero slope, and a \sine-like" orbit S(s; s0) with zero initial amplitude and unit slope.C(s0; s0) = 1; C 0(s0; s0) = 0; (2.3)S(s0; s0) = 0; S0(s0; s0) = 1:Sine unity slope is manifestly not a small angle, these de�nitions only make senseafter the exat equations of motion have been linearized as in Eq. (2.1). BeauseEq. (2.1) is linear and seond order, any solution y(s) and its �rst derivative y0(s)an be expressed as that linear superposition of these two solutions that mathesinitial onditions y(s0) and y0(s0):y(s) = C(s; s0)y(s0) + S(s; s0)y0(s0); (2.4)y0(s) = C 0(s; s0)y(s0) + S0(s; s0)y0(s0):This an be expressed in matrix form, with y = (y; y0)T being a \vetor in phasespae":y(s) � �y(s)y0(s)� = �C(s; s0) S(s; s0)C 0(s; s0) S0(s; s0)�y(s0) =M(s0; s)y(s0): (2.5)This serves to de�ne M(s0; s), the \vertial transfer matrix from s0 to s". Sineany solution of Eq. (2.1) an be expressed in this way, an entire beamline anbe haraterized by M(s0; s). This matrix an be \omposed" by multiplying (or\onatenating") the matries for the suessive beamline elements making up theline. 2.2. Pseudoharmoni Trajetory DesriptionAn \ansatz" for solving Eq. (2.1), based on the known, \harmoni", dependeneproportional to os( �  0) when K(s) is onstant, isy(s) = ap�(s) os( �  0): (2.6)Here  (an intermediate \independent" variable) and �(s) depend on s but a is aonstant amplitude. Di�erentiation of Eq. (2.6) yieldsy0(s) = �ap�(s) 0 sin( �  0) + a�02p� os( �  0): (2.7)Substituting into Eq. (2.1), we an demand that the oeÆients of sin and osterms vanish independently, sine that is the only way of maintaining equality forall values of  0. This leads to the equations�  00 + �0 0 = 0; 2� �00 � �02 � 4�2 02 + 4�2K(s) = 0: (2.8)From the �rst equation it follows that �  0 is onstant. To obtain the onventionaldesription we pik this onstant to be 1 and obtain 0 = 1� ; or  (s) =  (s0) + Z ss0 ds0�(s0) : (2.9)Sine  is the argument of a sinusoidal funtion, and the argument of a harmoniwave is 2�s=wavelength, this permits us to interpret 2��(s) as a \loal wavelength"
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Figure 2.2. An elliptial beam in vertial phase spae, showingthe geometri on�guration of a beam ellipse mathed to the loalTwiss parameters �, � and . Exept for a fator of order 1,depending on the detailed beam distribution, the area of the ellipseis the emittane ". The skew orientation depends primarily onTwiss parameter �. E is the \beam envelope".or, equivalently, 1=�(s) is the \loal wave number". Substituting into the seondof Eqs. (2.8), we obtain �00 = 2� K(s) + 21 + �02=4� : (2.10)This seond order, nonlinear di�erential equation is usually onsidered to be thefundamental de�ning relationship for the evolution of the lattie �-funtion. Be-ause K(s) depends on s, solving the equation may be quite diÆult in general. Ina problem below a \�rst integral" of Eq. (2.10) is obtained;y2� + �(y0 � �02� y)2 = a2: (2.11)Even without �(s0) yet having been determined, this equation makes it natural,at �xed position s0, where (�(s0); �(s0)) = (�0; �0), to plot the ellipse shown inFIG 2.2, for (�; �) = (�0; �0). As s inreases away from s0, individual points evolveindependently, but points sharing this ellipse at s0 will share the same (�; �) =(�1; �1) ellipse at s = s1.2.3. Relations Among the \Twiss" Lattie FuntionsSine properties of the so-alled \Twiss lattie funtions", �(s), �(s) and (s),are spelled out in all aelerator books, only the briefest of outlines will be givenhere. With �(s) already de�ned, the de�ning relation for �(s) and (s) are� = �12 d�ds � ��02 ;  = 1 + �2� : (2.12)In this text, while analysing toy latties, sine nothing but thin elements and driftsare used, it is suÆient to work out the s dependene of the Twiss funtions forjust drifts and thin lenses, whih is to say, quadrupoles. Other than requiring input



24 2. LINEARIZED TRANSVERSE MOTIONTable 2.1. Lattie funtion evolution formulas. Sign of q is gov-erned by horizontal (q > 0! horizontal defous) and is the samefor all entries. Both �� and � are assumed to be positive.Vertial Horizontal Dispersion�y �x ~D � ~DxDRIFT � = �0 � 2�0+s+ 0+s2 � = �0 � 2�0+s+ 0+s2 ~D = ~D0 + ~D00+slength �(s) = �0 � 0s �(s) = �0 � 0s ~D0(s) = ~D00s (s) = 0 (s) = 0thin �+ = �� �+ = �� ~D+ = ~D�QUAD �+ = �� + �0q �+ = �� � �0q ~D0+ = ~D0� + ~D0qq + = � + 2��q + �0q2 + = � � 2��q + �0q2thin no hange �+ = �� ~D+ = ~D�BEND �+ = �� + �0��=� ~D0+ = ~D0� +���� + = � + 2����=�+ �0��2=�2and output positions to be the same, the de�ning equation of a thin lens of foallength f � �1=q is �y0 = qy: (2.13)The lens strength q and fousing funtion K(s) are related byq = Z K(s)ds; (2.14)where the range of integration spans the lens loation.The Twiss funtion dependenies for drifts and thin lenses are given by formulasin the seond and third olumns of Table 2.1. All entries are to be worked out inproblems below. For drifts, propagation is from 0 to s. When applied to a drift,for a potentially disontinuous quantity suh as �, the value �0+ stands for �(0+),the value just after the thin element at s = 0. This de�nes the start of the drift.In general �� and �+ are the values just before and just after a thin element. Forquadrupoles, the vertial and horizontal olumns are related by the the well-knownresult (also proved in Eq (8.6)) that the foal lengths of quadrupoles are equal inmagnitude but opposite in sign for horizontal and vertial planes.The onvention used in the table is that positive q orresponds to the quad beingfousing in the horizontal plane. Sine there is no universally aepted onvention,it is neessary to be heking the signs of quadrupole strengths arefully whendi�erent formalisms are ompared.For onveniene the fourth olumn of the table also gives the variation of dis-persion1 ~D(s). Those entries, whih depend of bending magnets, will be disussedlater.What makes drifts simple is that, sine K = 0, the �rst term on the right handside of Eq. (2.10) vanishes. What makes thin lenses simple is that, sine K = 1(at the lens loation) the seond term on the right hand side of Eq. (2.10) an be1Tildes on ~D(s) and ~Æ, here and later, will be explained below. They are introdued fornotational onsisteny with the treatment of longitudinal dynamis in later hapters. Exept fora fator �0, Æ and ~Æ are idential. At the level of faithfulness justi�ed for the toy latties understudy one should assume fully relativisti motion for whih �0 = 1. This justi�es simply ignoringthe tildes.



2.4. ESTABLISHING ABSOLUTE VALUES OF THE TWISS FUNCTIONS 25negleted there. (Individual partile trajetories have to be ontinuous, even inpassing through thin elements. As a result �(s) has to be a ontinuous funtion ofs, even at a lens loation. This means that �0 has to be �nite there.) At a lensloation, beause �00 = 1, it follows from Eq. (2.12) that �(s) is disontinuous atthe lens position. In other words, the funtion �(s) has a kink there.This setion has now inluded all the hints neessary to derive all entries inolumns two and three of Table 2.1. Problems to this e�et are given next.Problem 2.1. With a view toward eliminating the argument  �  o fromEqs. (2.6) and (2.7), solve the seond of these equations for ap�(s) sin( �  0),expressed in terms of y and y0. Then square and sum the two equations. In thisway prove the onstany of the \�rst integral" introdued in Eq. (2.11).Problem 2.2. In a drift region K = 0, whih simpli�es Eq. (2.10) markedly.Solve this di�erential equation to show that the variation of �(s) has to be quadratiin s. This has derived the top row entry in eah of the �rst two olumns of Table 2.1.Problem 2.3. Continuing from the previous problem, use the relations on-tained in Eqs. (2.12) to derive the dependenies of �(s) and (s) in drift regions.In other words derive the seond and third rows of Table 2.1 for the variation ofTwiss funtions in drift setions.Problem 2.4. For thin elements it was argued above that the last term ofEq. (2.10) an be dropped. Use the resulting equation, along with Eqs. (2.12) and(2.14), to derive the �+ � �� disontinuity relations given in Table 2.1.Problem 2.5. Continuing from the previous problem, use the relations on-tained in Eqs. (2.12) to derive the disontinuity equations for �(s) and (s) at thinlens loations. In other words derive the �rst and third rows of Table 2.1 for thevariation of Twiss funtions at thin lens loations..In drifts and quads the graph of ~D(s) is the same as that of a horizontal par-tile trajetory. When passing through a thin dipole that auses inward deetionthrough angle ��, ~D su�ers an outward kink ��. This means that (exept in re-verse bends, whih are rarely used) a dipole auses ~D(s) to be \repelled" from thehorizontal axis. For this reason ~D(s) is positive everywhere in ordinary latties.Both �x and �y are neessarily everywhere positive beause they are \repelled" fromthe axis in drift spaes (with strength inversely dependent on �). (A ounter exam-ple, in whih negative dispersion is intentionally present is the isohronous.adxflattie.) 2.4. Establishing Absolute Values of the Twiss FuntionsEquation 2.10 �xes only variation of �(s). As with any seond order, ordinarydi�erential equation, it is neessary to use initial onditions or boundary onditionsto �x the two undetermined parameters. Whih of these onditions is to be useddepends on the way the Twiss funtions are to be interpreted. There are two mainlines of development, depending on whether an open \transfer line" or a losed\irular ring" is under disussion.� The ellipse shown in FIG 2.2 an be regarded as the aspet ratio of abeam of partiles in one dimensional phase spae. (There would be asimilar plot for the other transverse plane.) In this ase the parameters



26 2. LINEARIZED TRANSVERSE MOTION(�0; �0; 0) are properties of the beam. They an be established or variedwith no referene to any lattie; (for example, by hanging voltages on theeletrodes of the soure or \gun" from whih the partiles are generated.)This triplet of values serves as initial onditions establishing absolute val-ues of the Twiss funtions for the transfer line into whih this beam isinjeted. In this ase the Twiss funtions an be regarded as propertiesof the beam.� For a (more or less) irular ring, it is natural to establish absolute valuesfor the Twiss funtions by using boundary onditions. Assuming a losedorbit is known, and that the oordinates being used are measured rela-tive to that orbit, the fousing funtion K(s) is neessarily periodi, withperiod C0, whih is the orbit irumferene. Requiring the boundary on-ditions �(C0) = �0 and �(C0) = �0 �xes the absolute values of the Twissfuntions. In this ase the Twiss funtions an be regarded as propertiesof the lattie.When a beam is injeted into a irular ring there is a lash between these twosets of Twiss funtions. Ideally the two sets would be idential, in whih ase thebeam is said to be \mathed". In this ase it is unneessary to distinguish betweenthe two de�nitions, and the Twiss funtions are de�ned unambiguously for one fullturn around the mahine and, for that matter, for all subsequent turns.Naturally the beam are never be exatly mathed to the lattie. If the lattiewere truly linear then the bunh harateristis would survive inde�nitely. Butthe lattie is never truly linear and, after a suÆiently long time, a proess alled�lamentation, will ause the beam to adapt itself to the lattie. This proess, whihalso goes by various names suh as \emittane dilution" and \deoherene" is thesubjet of Chapter 7.2.5. Transfer Matries for Simple Elements2.5.1. Drift spae. The most important transfer matrix is Ml, whih de-sribes propagation through a drift spae of length `. Sine the orbits are given byy(s) = y0 + y00s; y0(s) = y00, we haveMl = �1 `0 1� : (2.15)2.5.2. Thin lens. The next most important transfer matrix desribes a \thinlens" where the de�nition of \thin" is that the thikness �s is suÆiently smallthat oordinate y(s��s=2), just before the lens, and y(s+�s=2), just after, anbe taken to be equal. A typial fousing pro�le is shown in FIG 2.3. The lensauses a \kink" �y0 = y0(s+�s=2)� y0(s��s=2) in the orbit whih, as shown inthe �gure, is taken as ourring at the enter of the lens. The kink an be obtainedby integrating Eq. (2.1) from O�, just before the lens to O+, just after it:�y0 = Z O+O� dds�dyds �ds = y Z O+O� K(s)ds � y K�s: (2.16)This relation de�nes the produt K�s. Now, a fousing strength that hangesdisontinuously from 0 to K is not atually realisti. But the produt K�s, knownas a \�eld integral", an be regarded as an abbreviation for R O+O� K(s)ds where O�and O+ are well outside the �eld region. If K is taken to be equal to KO (the value
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O- O+Figure 2.4. Fousing ation of a thin lens for whih the fousingstrength-length produt is K�s and �elds outside the range O� <s < O+ an be negleted. The \foal length" is f = �(K�s)�1 ��q�1.at the enter of the element) then �s is typially equal to (or, beause of fringe�elds, slightly greater than) the physial length of the element. The \foal length"f of the lens, de�ned in FIG 2.4, and the \lens strength" q = �1=f , are then givenby q = � 1f = �y0y = K�s: (2.17)Building in the approximation that y is ontant through the lens, the transfermatrix is then given by Mq = �1 0q 1� : (2.18)As drawn, K and q are positive, f is negative, and the lens is \defousing".2.5.3. Thik lens. The ondition for the thin lens formula just given to bevalid (�s << jf j) is usually well satis�ed for aelerator beamlines. Even if non-vanishing, if K(s) is onstant (as it usually is, by design anyway) it is easy tointegrate Eq. (2.1). This yields matrix elements of M that are no worse than sinesand osines (or hyperboli sines and osines, depending on the sign ofK). Formulasfor ideal thik quadrupoles are given in most aelerator books and, other than ina problem below, won't be disussed here. When the linear lattie assumption is



28 2. LINEARIZED TRANSVERSE MOTIONregarded as aeptably aurate, these matries an be used in UAL, for examplein the FastTeapot, to minimize omputation time through linear setions.For low energy, few element, aelerators, expliit thik element matries usedto be onsidered \anonial". But, for high energy aelerators, the thin lens ap-proximation is usually adequate. In any ase, making use of now readily availableomputer power, one an always split elements longitudinally to better validate theassumption that the elements are \thin". Quite apart from improving auray, itis handy to split elements in two in order to enable lattie funtion evaluations atlens enters. (The lattie funtions typially go through maxima or minima nearthese points and aperture limits are usually established at those points.) Even inthe most extreme ases of intersetion region quads, splitting by another fator of,say, four, is more than adequate, espeially sine the residual inauray is typiallyless than the errors due to the neglet of other fators like fringe �elds. For thesereasons thik element formulas are de-emphasized here.The emphasis on thin elements in UAL resembles the restrition to �nite ele-ments in the �nite element method of mehanial engineering. In both ases theexpliit need for numerial treatment redues the usefulness of idealized, thik ele-ment, analytial approximations. In the ase of partile dynamis the requirementof sympletiity makes this disretization obligatory, sine there is no known sym-pleti treatment of distributed nonlinearity. Historially this led to the use ofso-alled \kik odes" for inorporating nonlinearity. The �rst general-purposeode taking this route was TEAPOT[6℄. Over time this has evolved into the vastlymore general and more inlusive UAL ode. As well as inorporating TEAPOT, theUAL environment has ome to inorporate the homogeneous inlusion of heteroge-neous odes while preserving the sympleti apability. By using trunated Taylorseries (TPS) maps, even thik elements an be represented analytially, thoughsympletiity an only be assured up to a given polynomial order.2.5.4. Bending Magnet. Bending magnets (also known as uniform �eldmagnets or, based on a \multipole expansion" to be desribed in Chapter 8, as\dipoles") are obviously needed to bend the partiles into losed urves. The mainparameters de�ning a bending magnet are the bend angle �� and the ar length l0of the referene orbit as it passes through the magnet. Sine there are signi�antend e�ets it is neessary to also speify entrane and exit angles. The simplestspeial ase has both entrane and exit normal to the pole fae, in whih ase themagnet is referred to as an sbend, whih stands for \setor bend". In this textbending magnets without further detailing will be assumed to be sbends. Anotherspeial bending magnet, haing parallel exit and entrane pole faes, is referred to asan rbend, whih stands for \retangular bend". (In the ase of an rbend, insteadof design orbit ar length, the \magnet length" is usually taken to be the designorbit hord length, whih is the same as distane from pole to pole.) For a generalbending magnet the entrane and exit pole fae angles E1 and E2 also need to begiven. A rather areful treatment of orbits in an sbend is given in setion 8.6.4;the present setion ontains only a simpli�ed disussion.Partiles travelled in perfet irles in the original partile aelerator, theylotron. Starting from one arbitrary point P, the entral, referene partile travelsin one suh irle, of radius �. A partile starting from point P with zero momentumo�set, but with small angular deviation x00 from the referene momentum, travelsin a irle of the same radius and, as a result, returns to the same point P after one



2.5. TRANSFER MATRICES FOR SIMPLE ELEMENTS 29revolution. (This is the basis for the 360Æ spetrometer.) With x being the radialoordinate, one sees that there is a \geometri fousing e�et" tending to \restore"x toward its equilibrium value x = 0. The radial motion is desribed approximatelyby the equationsx = x00� sin s� ; dxds = x00 os s� ; d2xds2 = �x00� sin s� = � 1�2 x: (2.19)This means that, for radial motion, Eq. (2.1) needs to be replaed byd2xds2 = �Kq(s) +Kb(s)�x; where Kb = � 1�2 : (2.20)Here Kq replaes K and represents the fousing of a so-alled ombined funtionmagnet, and Kb represents the geometri fousing. In a uniform �eld magnet theKq(s) term vanishes. Note that the Kb x term appears only in the x equation;unlike quad fousing, there is geometri fousing only in one of the two transverseplanes. With the newly-inluded Kb term, the alulation of transfer matries andTwiss evolution in a bending magnet is just like the orresponding alulation ina quadrupole. For inlusion in Table 2.1, the relation l0=� = �� has been used.As with thik quadrupoles, for greater auray, the setor bend an be slied intoslimmer setors.Problem 2.6. For an ideal, horizontally-fousing, thik quadupole, the fousingstrength is Kx(s) = �K, with K positive, and trajetory equations (2.1) beomed2xds2 = �Kx; and d2yds2 = Ky: (2.21)Show that the transfer matries through suh a quadrupole of length L are given byMx =  os pKL 1pK sin pKL�pK sin pKL os pKL ! ; (2.22)My =  osh pKL 1pK sinh pKLpK sinh pKL osh pKL ! : (2.23)Problem 2.7. In Eq. (2.5), the transfer matrix M(s0; s) was de�ned, withmatrix elements C, S, C 0, and S0. Find these elements for a drift setion and showthat the Twiss funtion evolution through the drift an be expressed as0���1A = 0� C2 �2CS S2�CC 0 CS0 + SC 0 �SS0C 02 �2C 0S0 S02 1A0��0�001A : (2.24)Problem 2.8. Show that Eq. (2.24) is also valid for propagation through a thinlens.Problem 2.9. Show that Eq. (2.24) remains valid when applied to a drift fol-lowed by a thin lens or, for that matter, to any sequene of thin elements and drifts.Even a thik lens transfer matrix an be omposed by onatenating drifts and thinlenses. It follows that Eq. (2.24) an be applied to an arbitrary linear transfer line.[This problem is notieably more diÆult than the others.℄



30 2. LINEARIZED TRANSVERSE MOTION2.6. O�-Momentum Behavior2.6.1. Frational Momentum and \Frational" Energy. There is a mildinonsisteny in these notes, and in the aelerator �eld at large, onerning thede�nition of the frational longitudinal momentum/energy variable Æ. As withmany other quantities, there are both eletron/hadron onventions and Ameri-an/European onventions. Until quite reently the onventional meaning for Æ, atleast in the eletron world, was \frational momentum deviation". This de�nitionis espeially appropriate for transverse dynamis beause magneti deetions areinversely proportional to p. To \geometriize" lattie theory it is onventional to\fator out" dependene on the total momentum p0 from the transverse transversemomentum omponents. We therefore de�ne~Æ = �pp0 ; (2.25)where �p = p�p0. The purpose of the overhead tilde is to distinguish this de�nitionfrom the following alternate de�nition. For longitudinal dynamis, the fundamentale�et of the avity is an energy hange �E = E � E0 (rather than a momentumhange). The frational e�et an be spei�ed byÆ = �Ep0 : (2.26)For reasons of sympletiity the normalizing fator here has to be the same asthe normalizing fator for transverse momenta. This, and the fator  inserted forunits onveniene, aount for the hoie of denominator p0 in Eq. (2.26). So it isalmost, but not quite, valid to desribe Æ as \frational hange of energy".These two de�nitions are related byÆ = �Ep0 = �pp0 dEd(p) = �0~Æ: (2.27)Sine these de�nitions di�er only by the fator �0, whih approahes 1 in the rela-tivisti limit, the distintion is unimportant for fully relativisti aelerators. Foreletrons this inludes essentially all aelerators, but for pratial hadron aeler-ators Æ and ~Æ may di�er appreiably.For an introdutory disussion of transverse lattie optis (suh as the analysisof toy latties in the early hapters of these notes) use of Æ de�ned by Eq. (2.26)introdues seemingly ad ho fators of �0 into all magneti deetion formulas.There are two ways to overome this inonveniene. One way is to delare that allformulas apply only to fully relativisti motion, where �0 = 1. Another way is touse the variable ~Æ de�ned by Eq. (2.25). In the early hapters of these notes both ofthese approahes will be taken. Not only will frational momentum be expressed as~Æ (to make the formulas tehnially orret) but also the formulas will be assumedto apply to fully-relativisti motion for whih the relation Æ = ~Æ is valid in any ase.When advaning to aurate desription of longitudinal motion in hadron a-elerators it will be important and neessary to onsider these issues more arefully.2.6.2. Dispersion. During aeleration the radial oordinate x and the o�-momentum oordinate ~Æ are \oupled" by the dynamis. But at �xed energy themomentum p = p0(1 + ~Æ), for any partiular partile, and therefore also ~Æ, anbe regarded as a onstant parameter of that partile. It is traditional, therefore,



2.6. OFF-MOMENTUM BEHAVIOR 31for given ~Æ, to �nd the the losed orbit x~Æ(~Æ), and, from it, to de�ne \dispersionfuntion"2 ~D(s) by x~Æ(~Æ) = ~D(s) ~Æ; (2.28)This equation is exat and does not assume that ~Æ is small, even though the righthand side looks like the �rst term in a Taylor expansion.The dispersion funtion is used to separate a general horizontal displaementx into two parts: x = x~Æ + x� � ~D(s) ~Æ + x� : (2.29)Sine ~Æ is a onstant parameter, the entire Courant-Snyder formalism applies to thex� evolution, provided the Twiss funtions are worked out for the o�-momentumorbit. They should therefore be symbolized as ~�; ~�; ~. Nothing in this formalismhas required ~Æ to be small. But most latties, in fat, have limited momentumaperture whih restrits ~Æ to quite small values.As it has been de�ned, ~D(s)~Æ is simply a partile trajetory and so also is ~D(s).In the linearized formalism, a onstant fator, suh as the fator ~�(s), a�ets onlythe amplitude, not the shape of the trajetory. All orbits in �eld free regions aresimply straight lines. This aounts for the dispersion entries for drift elementsin Table 2.1;All that remains is to evaluate the kinks ouring in the dispersion funtion atthe loations of thin elements. A partile of momentum p = p0(1 + ~Æ), when in auniform magneti �eld, travels in a irle of radius �0(1+~Æ). In traveling a distane�s suh a partile su�ers an outward angular deetion (relative to referene)�x0 = �s� 1�0 � 1�� � �s 1�0 ~Æ: (2.30)The equation of the o�-momentum orbit is obtained by adding this ontribution toEq. (2.20); d2 ~D(s)ds2 + ��Kq(s) + 1�20� ~D(s) = 1�0 ; (2.31)where a ommon fator ~Æ has been divided out.This equation an be used to derive all entries in the \Dispersion" olumn ofTable 2.1. The interpretation of the ~D kink ourring at a bend magnet is notquite as lean as the kink at the enter of a thin lens. There is no really onsistentway to let the bending magnet length go to zero while preserving its bend angle.3As in FIG 2.4 one an approximate ~D by straight lines, with a kink at the enterof the bend. But letting the magnet length approah zero while holding the bend2The o�-momentum losed orbit deviation is traditionally expressed as D(s)Æ, where D(s)is known as the \dispersion funtion". To be onsistent, when using ~Æ, we have introdued amodi�ed dispersion funtion ~D suh that the o�-momentum orbit deviation is ~D(s)~Æ � D(s)Æ.This is the soure of the tildes appearing on ~D in Table 2.1. As mentioned already, at the level ofauray justi�ed for the toy latties under study, the tildes on ~Æ and ~D should probably simplybe ignored. The mnemoni variable names in the toy lattie desriptions suppress the tildes.(Also the eletron-world notation eta, rather than D, is used for dispersion in the toy lattiedesriptions.)3The so-alled drift/kik split sympleti integration algorithm (disussed in Chapter 8) in-volves the longitudinal splitting of bends into arbitrarily short intervals. But in that ase the bendper interval also approahes zero. Nevertheless, the bend/kik split, in whih the orbit is formedfrom irular ars, avoids this sensitivity and is therefore a safer approah.



32 2. LINEARIZED TRANSVERSE MOTIONangle �xed would entail also �0 ! 0. Clearly the result in Table 2.1 for the ~D kinkat a bend assumes ~D << �0. This is amply valid in high energy aelerators. Butsmall aelerators require greater are. That is, ~D has to be obtained by atuallysolving Eq. (2.31).Problem 2.10. Eq. (2.31) is suÆiently general to desribe both quadrupolesand bending magnets and, for that matter, also ombined funtion magnets. As-suming ~D << �0 in the ase of bends, use Eq. (2.31) to derive all entries in the\Dispersion" olumn of Table 2.1.For o�-momentum, horizontal partile propagation from an arbitrary startingpoint s0 to another point s it is useful to de�ne a two-argument dispersion funtion~D(s; s0) With this funtion Eq. (2.5) generalizes to0�x(s)x0(s)~Æ 1A = 0�C(s; s0) S(s; s0) ~D(s; s0)C 0(s; s0) S0(s; s0) ~D0(s; s0)0 0 1 1A0�x(s0)x0(s0)~Æ 1A : (2.32)



CHAPTER 3Thin Element \Toy" Latties3.1. IntrodutionIn preparation for investigating toy latties with UAL, this hapter begins byderiving analyti formulas for the simplest possible aelerator lattie, one madeup entirely of equal tune FODO setions. The analyti formulas are used to givestarting values for a �rst-ut design that will later be made more realisti and tunedup by UAL. As already mentioned, a harateristi feature of aelerator lattiesis that it is fairly diÆult to obtain an absolute design but that it is fairly easyto make small hanges around an existing design. Also, one a oarse but stabledesign has been ahieved, it is straightforward to adjust many of the parametersto good auray. In the ontrol room this is only pratial if instrumentation isavailable for measuring the quantity in question to good auray. In a omputersimulation the quantity an be alulated to arbitrary auray.One the parameters of a lattie to be studied have been established, moredetailed, more visual studies are to be performed using a graphial user interfae(GUI). This interfae enables the user to adjust those parameters that are espeiallyimportant for the physial study being performed. Before getting to that stage, thegross aelerator outline has to be established.3.2. An Equal Tune FODO LattieWe start with the eq tune fodo.adxf input �le. When UAL is run, startingfrom this �le (or possibly from the �le eq tune fodo.sxf derived from it) theneeded parameters are alulated using formulas given in this setion and the resultsare ehoed for omparison. These formulas are oded into the eq tune fodo.adxfinput �le using variable names similar to the names used here. A listing of the �leis in Table 3.1. Depending on the status of the ADXF parser, a di�erent syntax forelement's and/or setor's may be required. Either these hanges an be made orthe eq tune fodo.sxf variant used instead.Our immediate purpose then, for a simple aelerator lattie, is to give pre-sriptions by whih the parameters of a �rst-ut design an be obtained. Laterthe properties an be ompared with the more aurate values that UAL alu-lates. This is intended to serve the pedagogial purpose of showing the determiningrelationships.There are various reasons analyti formulas an be inaurate. Some of theseare: thik element e�ets, presene of errors, hromati e�ets, and dipole fousing.For various reasons then, one should not be surprised by disagreements in \abso-lute" quantities at, say, the few perent level. The auray of \relative" quantities,for example the hange in some lattie parameter when some element strength ishanged, an be almost arbitrarily aurate.33



34 3. THIN ELEMENT \TOY" LATTICESTable 3.1. The eq tune fodo.adxf lattie �le.<?xml version="1.0" enoding="UTF-8"?><adxf xmlns:xsi="http://www.w3.org/2001/XMLShema-instane"xsi:noNamespaeShemaLoation="file:/home/ualusr/USPAS/ual1/do/adxf/adxf.xsd"><onstants><!-- nhalf*elltuni must be integer; number of "fullell"s in "lattie" must be nhalf/2 --><onstant name="pi" value="3.14159265359"/><onstant name="twopi" value="2*pi"/><onstant name="" value="299792458.0"/><onstant name="nhalf" value="20"/><onstant name="sale" value="1/20"/><!-- tamper with sale at your own risk. with sale=1.0/20, the half ell length with10 ells is 1 meter, irumferene 20 m.To sale up the number of ells, hange nhalf,leaving sale fixed. This assumes- momentum~(nhalf)^2- onstant phase advane per ell and onstant magneti field- bend per dipole = 2*pi/nhalf ~ ld/momentum ~ lhalf/momentum- therefore, lhalf ~ nhalf --><onstant name="dipfra" value="0.9994"/><onstant name="quadfra" value="0.0002"/><onstant name="sextfra" value="0.0001"/><onstant name="nufra" value="0.25"/><onstant name="elltuni" value="0.20"/><onstant name="lhalf" value="sale*nhalf"/><onstant name="ld" value="dipfra*lhalf"/><onstant name="lq" value="quadfra*lhalf"/><onstant name="ls" value="sextfra*lhalf"/><!-- ! derived parameters --><onstant name="deltheta" value="twopi/nhalf"/><onstant name="nu" value="0.5*elltuni*nhalf + nufra"/><onstant name="ellmu" value="twopi*nu*2/nhalf"/><onstant name="sby2" value="sin(0.5*ellmu)"/><onstant name="qp" value="sby2"/><onstant name="q" value="sby2/lhalf"/><onstant name="kq" value="q/lq"/><onstant name="q1" value="q"/><onstant name="q2" value="-q"/><onstant name="kq1" value="kq"/><onstant name="kq2" value="-kq"/><onstant name="q1p" value="q*lhalf"/><onstant name="q2p" value="-q*lhalf"/><!-- lattie parameters --><onstant name="rat" value="(1.0+qp)/(1 -qp)"/><onstant name="ratinv" value="1.0/rat"/><onstant name="betax1" value="sqrt(rat)/q"/><onstant name="betay1" value="sqrt(ratinv)/q"/><onstant name="betax2" value="sqrt(ratinv)/q"/><onstant name="betay2" value="sqrt(rat)/q"/><onstant name="eta1" value="(1.0+qp/2) * deltheta/q/q/lhalf"/><onstant name="eta2" value="(1.0 -qp/2) * deltheta/q/q/lhalf "/><onstant name="s1" value="q1/eta1"/><onstant name="s2" value="q2/eta2"/><onstant name="ks1" value="q1/eta1/ls"/><onstant name="ks2" value="q2/eta2/ls"/></onstants><!-- define magneti elements --><elements><marker name="mk1"/><marker name="mbegin"/><marker name="mend"/><sbend name="bend" l="lq" angle="deltheta"/><quadrupole name="quadhf" l="lq" k1="kq1"/><quadrupole name="quadvf" l="lq" k1="kq2"/><sextupole name="sext1" l="ls" k2="ks1"/><sextupole name="sext2" l="ls" k2="ks2"/></elements><setors><setor name="fullell"line="mk1 quadhf sext1 bend sext2 quadvf quadvf sext2 bend sext1 quadhf mk1"/><setor name="lattie"line="mbegin fullell fullell fullell fullell fullellfullell fullell fullell fullell fullell mdnd"/></setors></adxf>}
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11 2Figure 3.1. An idealized, thin lens, FODO lattie, showing di-mensioning and element strength parameters.Table 3.2. Parameters of a pure, equal tune, FODO lattie.nhalf is an even integer and nhalf*elltuni also has to be an in-teger. The �nal entry doesn't really belong in this table; it is listedonly to all attention to the inonsisteny between its symbols etaand D.Quantity variable name symbol expressionsale salenumber of halfells nhalf nhalfell (ar) length lhalf ldipole length ld ld lhalf*dipfraquadrupole length lq lq lhalf*quadfrasextupole length ls ls lhalf*sextfradipole bend angle deltheta �� 2�=nell tune (int. tune part only) elltuni 2�int=nfrational ring tune nufra �frainteger ring tune �int elltuni*nhalf/2ring tune nu � = �int + �fraell phase advane ellmu 4��=nhalfquad strength q qquad gradient kq q=lqdispersion eta DA partial glossary of translations from symbols in these notes to symbols in the.adxf omputer �les is given in Table 3.2.The frations of lhalf taken up by dipole, quadrupole, and sextupole, as shownin the table. Note that the entire ar is �lled with magneti elements|there areno drifts. Of ourse this is impratial, but this is just a pratie lattie. Tomake realistially long quadrupoles and to introdue the inevitable drifts needed forvauum pumps, anges, bellows, et. length an be taken from the dipoles (whihare optially almost \inert") provided that their bend �elds are inreased to holdthe bend angle �� onstant. When some input parameters are hanged (preferablyusing an XML-aware editor) all other parameters are alulated self-onsistently.



36 3. THIN ELEMENT \TOY" LATTICESBut the saling of some parameters, espeially in \highly-tuned" latties suh as theolliding beam lattie, large parameter hanges are likely to make the lattie \gounstable". As well as being de�ned here and in FIG 3.1, many symbols are furtherde�ned in omments in the input �le. Lengths are saled by the fator sale (whihdoes not otherwise our expliitly in the analyti formulas given in these notes.)In partiular lhalf is evaluated as sale*nhalf. This \builds in" the relationbetween irumferene and tunes in \typial" aelerators, having \typial" phaseadvane per ell. Sine this is almost ertainly onfusing, don't worry about it anddon't tamper with sale, at least initially. With sale=1.0/20, the halfell lengthwith 10 ells nhalf=20 is 1 meter, and the irumferene is 20mTo a surprising extent aelerator latties an be desribed purely in geometriterms, without referene to the partile type or momentum of the partiles beingaelerated. Still, for some of the modeling instrutions, \dynamial" informationis required. At that time partile type and partile momentum/energy will have tobe assigned.To a \zero'th" approximation, the generally irular nature of an aeleratoran be ignored in alulating the optis. In this approximation the quadrupolesan be regarded as strethed out in a straight line and, for pedagogial simpliitywe start with this approah. This neglets a small fousing e�et of dipoles. Forlarge rings with many bending magnets this is a small e�et, but for small rings thedipole fousing e�et is appreiable. As it happens a ring with just ten ells andirumferene of 20m is small in the sense that dipole fousing annot be negleted.To give a lattie with simpler properties, while still just analysing a single ell, nhalfan be inreased, for example by a fator of ten. For this reason the variable nhalfhas been set to 200 in the default version of lattie eq tune fodo.adxf,For the formulas given here to be as aurate as possible, the quadrupolesand sextupoles should be very short (ompared to the half-ell length) sine theseelements are treated as thin; ie. quadfra << 1, sextfra << 1. This restritionapplies to initial investigation only. Later the elements an be made realistiallythik and, if desired, be segmented for greater auray. The UAL environmentmakes available various evolution \engines". When using the original TEAPOTthin element ode, to preserve sympletiity, elements that are, in fat, thik aremodeled by segmenting them arti�ially into thin elements. Originally even idealbending magnets had to be treated this way for good auray. But by now UALanalyti, thik element formulas are available in UAL for treating ideal bendingmagnets diretly as thik elements. If �eld nonuniformity needs to be modeled,in ombined funtion magnets for example, the old thin element segmentation isemployed.Notationally subsript 1 identi�es the start of the �rst half-ell (or equally theend of the seond half-ell, whih is the start of the next ell) and 2 identi�esthe mid-ell loation (at the quad enter.) The ell layout, dimensions and elementstrength parameters are indiated in FIG 3.1. The di�erene in e�et of a sextupolebetween horizontal and vertial is more ompliated than just swithing the sign,but we defer onsideration of this.In a later setion a more general FODO desription, permitting unequal quadstrengths jq1j 6= jq2j and unequal tunes will be desribed, and many more symbolswill be introdued. The UAL �lenames for that disussion are \general fodo.adxf"



3.2. AN EQUAL TUNE FODO LATTICE 37and \general fodo.adxf". The reader will be expeted to �gure out the transla-tions of symbols in that �le without bene�t of a glossary either beause they aremnemoni or beause they are the same (or almost the same) as symbols de�nedhere.3.2.1. Longitudinal Variation of the Lattie Funtions. In the drift re-gions between quadrupoles the �-funtions are quadrati funtions of the longitu-dinal oordinate s, with the origin of s taken to be at loation 1. At the quadenter the slope �0 = d�=ds � �2� vanishes (by symmetry when the lattie ismade of repeated idential ells) but there are slope disontinuities related to thequad strengths by ��0(x) = �2q�(x)1 ; ��0(y) = 2q�(y)1 ; (3.1)so the other Twiss parameters at the quadrupole exit are given by�(x)1+ = q�(x)1 ; �(y)1+ = �q�(y)1 ; (3.2)(x)1+ = 1 + q2(�(x)1 )2�(x)1 ; (y)1+ = 1 + q2(�(y)1 )2�(y)1 ; (3.3)In the region from 1 to 2 the �-funtions are given by�(x)(s) = �(x)1 � 2�(x)1+s+ (x)1+ s2; �(y)(s) = �(y)1 � 2�(y)1+s+ (y)1+ s2: (3.4)By substituting s = l, it an be heked that �(x)(l) agrees with �(x)2 as determinedby Eq. (3.16). The �-funtions in the region from 2 to 1 an be obtained bysymmetry.The horizontal dispersion funtion ~Dx � ~D through the ell an be determinedsimilarly. (With no vertial deetions there is no vertial dispersion.) The slopeof the dispersion funtion vanishes at the quadrupole enter, but there is a slopedisontinuity at 1, due to the quadrupole, so that~D01+ = �q ~D1: (3.5)There is a slope disontinuity �� at l=2 due to the bend (whih is being treatedas if onentrated at the enter of the half ell). Using the fat that in drifts andbends the dispersion funtion propagates like a partile displaement, ~D2 an beobtained from ~D1 and then ~D1 an be obtained from ~D2;~D2 = ~D1 � q ~D1l +�� l2 ; ~D1 = ~D2 + q ~D2l+�� l2 : (3.6)Solving yields ~D1 = (1 + ql=2)��q2l ; ~D2 = (1� ql=2)��q2l ; (3.7)with the useful onsequene that an average, or \typial" value of the dispersionfuntion is ~Dtyp = ~D1 + ~D22 = ��q2l : (3.8)



38 3. THIN ELEMENT \TOY" LATTICES3.2.2. Establishing Quadrupole Strengths. Transfer matries for a quadrupoleof strength q are M (x) = � 1 0�q 1� ; M (y) = �1 0q 1� : (3.9)Note that an expliit negative sign appears with q where it enters the horizontaltransfer matrix; this means that positive q orresponds to fousing in the x-plane(horizontal). The ell layout was shown previously. With quad loations labeled1 and 2, the quadrupole strengths have been set equal and opposite, q1 = q andq2 = �q < 0. With the hoie q > 0, loation 1 is a horizontally fousing point.A bend through angle �� is assumed to our at the enter of eah half ell, andsextupoles of strength S1 and S2 are loated immediately adjaent to the quads.In the y plane there are no dipole deetions and the quadrupole sign reversals areindiated. The x transfer matrix 2 1 isM (x)21 = �1 0q 1��1 l0 1�� 1 0�q 1� = �1� ql l�q2l 1 + ql� : (3.10)As usual the matrix furthest to the right orresponds to the element furthest tothe left; the notation 2  1 and the order of subsripts on M21 are intended torepresent this. There is a similar matrix for 1 2, obtained by reversing the signof q. For the full ell 1 1,M (x)11 = �1 + ql l�q2l 1� ql��1� ql l�q2l 1 + ql� = � 1� 2q2l2 2l(1 + ql)�2q2l(1� ql) 1� 2q2l2� :(3.11)For a periodi lattie made by repeating these ells, this matrix an be written in\Twiss" form, with � vanishing by symmetry, whih is onsistent with the 11 and22 elements being equal;M (x)11 =  os�(x)1 �(x) sin�(x)1� sin�(x)1 =�(x) os�(x)1 ! ; (3.12)The subsript 1 �1 indiates that it applies to one ell. Equating oeÆients andinluding y motion by swithing the sign of q leads toC1 = os�(x)1 = os�(y)1 = 1� 2q2l2: (3.13)This leads to a simple relation among q, l, and �(x)1 = �(y)1 = �1;sin �12 = ql: (3.14)The \tune advane per ell" is �1 = �12� . If an entire ring is formed from n half-ells,the tune of the ring is � = �int + �fra = n2 �1 (3.15)The �-funtions are obtained by equating o�-diagonal elements in Eqs. (3.11) and(3.12). �(x)1 =s1 + ql1� ql 1q ; �(x)2 =s1� ql1 + ql 1q ; (3.16)�(y)1 =s1� ql1 + ql 1q ; �(y)2 =s1 + ql1� ql 1q :



3.2. AN EQUAL TUNE FODO LATTICE 39Note the identities �(x)1�(x)2 = 1 + ql1� ql ; �(y)1�(y)2 = 1� ql1 + ql : (3.17)Also a geometri mean or \typial" �-funtion value is�typ =q�(x)1 �(x)2 =q�(y)1 �(y)2 = 1q : (3.18)The �-funtions alulated by UAL are plotted in FIG 3.2, for nhalf=20. To simplifythe alulations (by reduing the importane of dipole fousing) a larger valuenhalf=200 is suggested for the following exerises.Tutorial 3.1. To pratie orrelating omputer variable names with mathe-matial symbols, �ll in the remaining entries in olumn 2 of the Tutorial Worksheet.Tutorial 3.2. After running UAL with the eq tune fodo input �le, �ll in theblanks of olumns 4 and 5 of the Worksheet. Certain entries, suh as lengths, neednot be entered, as they are obviously the same in all olumns. Lattie funtions,suh as �x, are to be obtained both using the numerial readout at the mouse positionin the GUI appliation (to be entered in olumn 4) and from the �le the GUI an beinstruted to generate (olumn 5). Exept for auray the entries in these olumnsare supposed to be redundant.Tutorial 3.3. The purpose for this exerise is to pratie editing and pro-essing input �les but the result will also be useful in making the next simulationagree more aurately with the theoretial formulas (by reduing the importane ofdipole fousing,) Using the oxygen editor, edit the input eq tune fodo.adxf �leto hange nhalf to 200. It is neessary to inlude the orresponding number offullell elements in the lattie line. This hange will have redued the bend perdipole magnet by a fator of 10. Proess the �le using the instrution�/TOY-LATTICES/xslt/SCRIPTS/proess-qfile eq tune fodoSimulation 3.1. Change nufra by an amount small enough that the lattieremains stable but large enough that the tabular entries in the \modi�ed values"olumn di�er from entries in the \sample value" olumn by a numerially signi�antamount. Save these data for a problem in the next setion (or plan to regeneratethem later.)
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Figure 3.2. Lattie funtions for the eq tune fodo lattie. nhalf=20.



3.2. AN EQUAL TUNE FODO LATTICE 41Table 3.3. TUTORIAL WORKSHEET I. Copy as needed.variable name symbol sample value UAL plot UAL �le modi�ed val UAL valuesale 0.05nhalf 20ls 0.0001lq 0.0002lhalf 1.0ld 0.9994elltuni 0.2nufra 0.25deltheta 0.314159q2 q2 -0.70710q1 0.70710s2 S2 -1.7409s1 S1 0.83144nuellmu 1.41371betax1 3.3400betax2 0.70984betay1 0.70984betay2 0.70984eta1 0.9867eta2 0.5030



42 3. THIN ELEMENT \TOY" LATTICES3.2.3. Chromatiity Compensation. Nothing has been said so far aboutthe sextupoles present in the lattie. Their purpose is to orret hromatiity, whihquanti�es the dependene of tune on momentum. Chromatiities for the two planesare de�ned by Q0x = dQxd~Æ ; Q0y = dQyd~Æ : (3.19)The symbols �x and �y are also often used for hromatiities. The fundamentalause of hromatiity is the inverse dependene of quad strength on momentum.An o�-momentum partile passing through a quad of strength q an treated, to alowest approximation, as being on-momentum, but with a fousing perturbation ofstrength �~Æq. But there is also a shift of the o�-momentum orbit whih, if there isa sextupole superimposed on the quad, also provides a fousing perturbation. The�eld dependene of a sextupole magnet is derived in Chapter 8. For now all thatis required is that a sextupole os strength S auses horizontal deetion equal toSx2=2.In order to ontribute no hromatiity, the ombination of a sextupole ofstrength S1 superimposed on a quadrupole of strength q must be arranged to sup-press the term proportional to ~Æx in the deetionq(1� ~Æ)x + 12S1(x+ ~D1~Æ)2; (3.20)and a similar relation an be written at loation 2. Assuming that \nominal"sextupole strengths should orrespond to zero hromatiity, this leads to the valuesS1 = q~D1 ; S2 = �q~D2 : (3.21)Note that the sextupole strengths are unequal even though the linear optis is thesame in both planes. The sextupole loated at a vertial fousing quad has to bestronger beause the horizontal dispersion is less there. The hromati ompensa-tion power is proportional to the quadrupole �eld at a displaement value ~D~Æ, afator whih is smaller at vertially fousing quads.3.3. A Universal, Unequal Phase Advane FODO Lattie3.3.1. The Twiss Parameters in Terms of the Quadrupole Strengths.Formulas in this hapter relate to the �le general fodo.xsl. Variation from whathas gone before inludes allowing the horizontal and vertial tunes to be di�er-ent, ompensating for dipole fousing, and de�ning parameters needed to analyselongitudinal motion.In pratie the apability to have greatly di�erent horizontal and vertial tunesis often not needed. Though the frational tunes are almost always separated infuntioning aelerators, the integer tunes are often lose. In this ase the separa-tion in frational tunes an usually be ahieved as a perturbation away from thesymmetri tune situation. (This operation an be performed using the tunethininstrution of UAL.) Nevertheless, for greater exibility, it is onvenient to havea losed form, unequal tune, basis lattie. Transfer matries for a quadrupole ofstrength q were given in Eq. (3.9). We now introdue unequal quad strengths q1and q2, labeled 1 and 2, without yet speifying whih is fousing in whih plane.Reall that positive q orresponds to fousing in the x-plane (horizontal). One ofq1 and q2 will be positive, the other negative. A bend through angle �� is assumed



3.3. A UNIVERSAL, UNEQUAL PHASE ADVANCE FODO LATTICE 43to our at the enter of eah half ell, and sextupoles of strength S1 and S2 areloated beside the quads.The x transfer matrix 2 1 isM (x)21 = � 1 0�q2 1��1 l0 1�� 1 0�q1 1� = � 1� q1l l�q1 � q2 + q1q2l 1� q2l� ; (3.22)and a similar matrix for 1  2 is obtained by swithing q1 and q2. The full ell,1 1, x-transfer matrix isM (x)11 � 1� q2l l�q1 � q2 + q1q2l 1� q1l�� 1� q1l l�q1 � q2 + q1q2l 1� q2l�= � 1� 2q1l � 2q2l + 2q1q2l2 2l(1� q2l)2(�q1 � q2 + q1q2l)(1� q1l) 1� 2q1l � 2q2l+ 2q1q2l2� : (3.23)For a periodi lattie made by repeating these ells, this matrix an be written in\Twiss" form, with � again vanishing by symmetry;M (x)11 =  os�(x)1 �(x) sin�(x)1� sin�(x)1 =�(x) os�(x)1 ! : (3.24)Equating oeÆients and generalizing to inlude y motion by swithing the signsof q1 and q2 leads toC(x) = os�(x)1 = 1� 2q1l � 2q2l + 2q1q2l2; sin2 �(x)12 = q1l + q2l � q1q2l2;(3.25)C(y) = os�(y)1 = 1 + 2q1l + 2q2l + 2q1q2l2; sin2 �(y)12 = �q1l � q2l � q1q2l2The �-funtions are obtained similarly;�(x)1 =ls1� q2l1� q1lr 1q1l+ q2l � q1q2l2 = ls1� q2l1� q1lr 21� C(x) =s1� q2l1� q1l lsin �(x)12 ;�(y)1 =ls1 + q2l1 + q1lr 1�q1l � q2l � q1q2l2 = ls1 + q2l1 + q1lr 21� C(y) =s1 + q2l1 + q1l lsin �(y)12 ;(3.26)�(x)2 =ls1� q1l1� q2lr 1q1l+ q2l � q1q2l2 = ls1� q1l1� q2lr 21� C(x) =s1� q1l1� q2l lsin �(x)12 ;�(y)2 =ls1 + q1l1 + q2lr 1�q1l � q2l � q1q2l2 = ls1 + q1l1 + q2lr 21� C(y) =s1 + q1l1 + q2l lsin �(y)12 :Note the simple identities,q�(x)1 �(x)2 = lsin �(x)12 ; q�(y)1 �(y)2 = lsin �(y)12 : (3.27)and �(x)1�(x)2 = 1� q2l1� q1l ; �(y)1�(y)2 = 1 + q2l1 + q1l : (3.28)



44 3. THIN ELEMENT \TOY" LATTICESOften �(x) and �(y) are approximately equal. If they are exatly equal, the formulassimplify onsiderably. Taking point 1 to be a horizontally fousing quadrupoleloation we de�ne q1 = �q2 = jqj; (3.29)we obtain os�1 = 1� 2jqj2l2; sin �12 = jqjl; (3.30)as well as the relations,�(x)1 =s1 + jqjl1� jqjl 1jqj ; �(y)1 =s1� jqjl1 + jqjl 1jqj ; (3.31)�(x)2 =s1� jqjl1 + jqjl 1jqj = �(y)1 ; �(y)2 =s1 + jqjl1� jqjl 1jqj = �(x)1Note that these formulas agree with Eqs. (3.16), whih led to identities (3.17) and(3.18).3.3.2. Longitudinal Variation of the Lattie Funtions. Referring againto Table 2.1, in the drift regions between quadrupoles the �-funtions vary quadrat-ially with s. At the quad enter the slope �0 = d�=ds � �2� vanishes, but thereare slope disontinuities related to the quad strengths by��0(x) = �2q1�(x)1 ; ��0(y) = 2q1�(y)1 ; (3.32)so the Twiss parameters at the quadrupole exit are given by�(x)1+ =q1�(x)1 ; �(y)1+ = �q1�(y)1 ; (3.33)(x)1+ =1 + q21(�(x)1 )2�(x)1 ; (y)1+ = 1 + q21(�(y)1 )2�(y)1 :In the region from 1 to 2 the �-funtions vary as�(x)(s) = �(x)1 � 2�(x)1+s+ (x)1+ s2; �(y)(s) = �(y)1 � 2�(y)1+s+ (y)1+ s2: (3.34)The slope of the horizontal dispersion funtion ~D(s) vanishes at the quadrupoleenter, but there is a slope disontinuity at 1, due to the quadrupole, suh that~D01+ = �q1 ~D1; (3.35)and a slope disontinuity �� at l=2 due to the bend (whih is being treated as ifonentrated at the enter of the half ell). As a result, the value of ~D2 is~D2 = ~D1 � q1 ~D1l +�� l2 ; ~D1 = ~D2 � q2 ~D2l +�� l2 ; (3.36)where the same argument has given the seond equation also. Solving Eq. (3.36)yields ~D1 = (1� q2l=2)l��sin2 �(x)2 ; ~D2 = (1� q1l=2)l��sin2 �(x)2 : (3.37)For the ase of equal tunes as in Eq. (3.29) these beome~D1 = (1 + jqjl=2)l��jqjl2 ; ~D2 = (1� jqjl=2)l��jqjl2 ; (3.38)
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Figure 3.3. Lattie funtions for the general fodo lattie, withnhalf=20, elltnxi=0.2, elltnyi=0.1.with the useful onsequene that ~D1 + ~D22 = ��lq2 : (3.39)Twiss funtion variation for the general fodo lattie are shown in FIG 3.3.3.3.3. Setting the Tunes. One an adjust the strengths q1 and q2 to ahievedesired values for the phase advanes �(x) and �(y). De�ning the \average" quantityS2 = 12�sin2 �(x)2 + sin2 �(y)2 �; (3.40)and the \di�erene" quantity,�(S2) = sin2 �(y)2 � sin2 �(x)2 ; (3.41)Eqs. (3.25) beome q1l + q2l = ��(S2)=2; q1lq2l = �S2: (3.42)These lead to the quadrati equation(q1l)2 + 12�(S2)q1l � S2 = 0; (3.43)with the roots being q1l = �qS2 + (�(S2))2=16��(S2)=4: (3.44)The sign hoie depends upon whih of the two quads is horizontally fousing|forFODDOF q1 > 0; q2 < 0, for DOFFOD q1 < 0; q2 > 0.



46 3. THIN ELEMENT \TOY" LATTICES3.3.4. Chromatiity Compensation. In order to ontribute no hromati-ity, the ombination of a sextupole of strength S1 superimposed on a quadrupoleof strength q1 must be arranged to suppress the term proportional to ~Æx in thedeetion q1(1� ~Æ)x + 12S1(x+ ~D1~Æ)2: (3.45)Assuming that \nominal" sextupole strengths should orrespond to zero hromati-ity, this leads to the values S1 = q1~D1 ; S2 = q2~D2 : (3.46)For equal tunes the same formulas have been derived earlier.3.3.5. Compensation For Dipole Fousing. The tune shift aused bya small quadrupole perturbation. A result that is so important in aeleratorphysis that it deserves to be alled \the golden rule" is that a quadrupole pertur-bation of strength �q, at a point in the lattie where the beta-funtions are �x and�(y), auses tune shifts given by��x = 14��x�q; ��y = � 14��y�q: (3.47)For positive q the horizontal tune is shifted to higher value. The same quad shiftsthe vertial tune to lower value.Use of the golden rule to ompensate for dipole fousing. There is afousing e�et due a dipole, say a setor bend, that shifts the horizontal tune.Espeially in small rings, ompensating for this shift improves agreement betweendesired and ahieved tunes. Assume that the magnet lengths satisfyld + lq + ls = l: (3.48)The e�etive fousing strength of the dipole (it ats only in the horizontal plane)is qd = (��)2ld : (3.49)This quadrupole perturbation shifts the tune by an amount��(x) = n4� qd�(x) = n2� (��)2 l=ldsin �(x)2 : (3.50)where �(x) has been approximated using Eq. (3.27) and qd taken from Eq. (3.49).This tune shift is neessarily positive. To ompensate for this perturbation, whihto this point has been negleted, we apply hanges �q1 and �q2 to q1 and q2,applying the ondition that both total tune shifts vanish yields4���(x)1 = 0 =�q1�(x)1 +�q2�(x)2 + qd�(x); (3.51)4���(y)1 = 0 =��q1�(y)1 ��q2�(y)2 :Solving these equations yields�q1 = �qd �(y)2�(x)1 �(y)2 � �(y)1 �(x)2 lsin �(x)2 ; �q2 = ��q1�(y)1�(y)2 : (3.52)



3.3. A UNIVERSAL, UNEQUAL PHASE ADVANCE FODO LATTICE 473.3.6. Orbit Length and Transition Gamma. The general fodo.adxf�le also inludes alulations that are primarily of importane for longitudinal dy-namis. Desription of these alulations is deferred until setion 6.3 in hap-ter 6, whih deals with longitudinal dynamis. Sine that material does not de-pend on anything not overed so far, the reader wishing to fully understand thegeneral fodo.adxf �le ould turn to it next.Simulation 3.2. This simulation ontinues to use the eq tune fodo lattie. Itis deferred to this loation beause Eq. 3.47 is needed for the analysis. Continuingan earlier simulation, hange nufra by an amount small enough that the lattieremains stable but large enough that the tabular entries in the \modi�ed values"olumn di�er from entries in the \sample value" olumn by a numerially signi�antamount.Simulation 3.3. For the input quantity q and the output quantity �, by per-forming the subtrations alluded to in the previous problem, evaluate d�=dq both forentries from the analyti olumn and from the UAL olumn. If the values di�ersigni�antly it may beause you have hanged parameters by too great an amountfor \linearized" formulas to be valid.





CHAPTER 4Instrumental Analysis of 1D Partile and BunhMotionNOTE: This hapter introdues the distintion between idealized single partilemotion and the motion of the entroid of a bunh of partiles (whih is the onlything that is measurable in pratie). The methods developed are intended primar-ily to be applied to bunh entroid motion. In spite of this, only the transversesimulator, whih traks one, or a few, partiles individually, will be used for simu-lations desribed in this hapter. This an be regarded as testing the data-proessingalgorithms in simple ases before applying them later in more realisti, more om-pliated, ases. In Chapter 7, the deoherene simulator will be applied to thedynamis of bunh entroid motion.4.1. IntrodutionThe lattie that will mainly be used for simulations in this hapter is alledollider mon (in either .adxf or .sxf) form. The investigations have nothingwhatsoever to do with olliding beams. The only reason for using this lattie is thatit has regions of very small and very large �-funtion values. This makes it morehallenging to extrat the �-funtions using beam-based methods. The mon in thename indiates that multiple BPM's have been distributed around the ring. Theseare the only loations at whih partile positions are onsidered (by the simulation)to be known. But, to make the lattie �le handier for tutorial purposes, BPM'shave also been plaed at points whih would be physially inaessible, for exampleat the intersetion points, where elementary partile detetors would oupy thespae.The Twiss funtions an be alulated for the ollider mon lattie, using meth-ods desribed in Chapter 3.3. The results are shown in FIG 4.1. One of the tasksof this hapter will be to use BPM's to measure these funtions. This will be anexample of the so-alled \model independent analysis", in whih properties of thelattie are obtained without relying on the design model of the lattie. Of oursethe beam based measurements will only be simulated here.This hapter disusses the instrumentation needed to measure beam propertiesin an aelerator, and the methods employed to proess this data. It might bethought that there would be no need for suh experimental apparatus in a simula-tion ontext that is entirely theoretial. But the essene of simulation is to repliateatual onditions and to aquire information about the beam using methods thatare pratial in a ontrol room. Instrumentation issues determine what is availableand what is useful. 49



50 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTION
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Figure 4.1. Lattie funtions for the ollider mon lattie, ob-tained using the matrix method of Chapter 2.Ideal aelerators have only linear, error free elements and highly ollimated,monoenergeti, low urrent beams, that an be measured with noise-free instrumen-tation. The behavior of suh ideal mahines an be investigated by studying singlepartiles. None of these idealizations is fully appliable to real aelerators andmost of the deviant features are quite diÆult to handle by purely analyti alula-tions. The existene of these non-ideal features is perhaps the greatest justi�ationfor investigation by simulation.The presene of eletroni noise limits the auray of beam detetor mea-surements. The main tool available for de-sensitization from noise is the use ofFourier-like methods. These permit the oherent superposition of the e�ets ofmultiple measurements for whih the e�ets of noise tend to average toward zero.Analysis of suh methods is the subjet of this hapter.Sine the soures of eletroni noise are rarely well understood, the noise levelin a simulation has to be represented by one or more empirial oeÆients. Evenso, for single partile motion, one an, in priniple, make the noise negligible byextending the measurement over long enough times.Unfortunately, many beam detetors respond only to entroid motion of thebeam bunhes being studied. For low emittane beams this entroid motion isquite aurately the same as single partile motion. In partiular the Courant-Snyder invariant of the bunh entroid is, in fat, nearly invariant. But bunhes of�nite size in nonlinear �elds su�er from e�ets variously known as �lamentation,deoherene, and Landau damping, that ause the entroid to exhibit damping-like
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Figure 4.2. Time domain and frequeny domain signals from apoint referene partile.behavior. The fundamental physis underlying these e�ets is relatively well knownand hene is easily and reliably inorporated into simulation. Filamentation anddeoherene is analysed in Chapter 7.The presene of entroid \damping" means that the single-partile-like motionof a bunh survives for only a limited number of turns. Averaging over times largeompared to this is ounter-produtive as it inreases noise without enhaning thesignal. This makes it important to attempt to maximize the information extrationfrom a limited number of terms. A method known as \Priniple Component Analy-sis" (PCA), while e�etively subsuming Fourier methods, takes this approah. Thismethod, whih UAL uses to analyse one-dimensional motion, is desribed in latersetions of this hapter.Beause the PCA method makes no use of Hamiltonian features, i.e. symple-tiity, it is somewhat immune to the presene of entroid damping. But to makeprogress in the analyti treatment of oupled motion, i.e. two or three dimensional,sympleti features seem to be required. Analysis of oupled motion within UAL isthe subjet of a later hapter.4.2. Spetral Analysis of BPM Signals4.2.1. Spetrum of Referene Partile. Let s stand for the ar lengthoordinate in a irular aelerator of irumferene C0. A partile of harge e,traveling at speed v0, on the entral orbit passes a �xed point (all it s = 0) atregular intervals of time of length T0 = C0=v0. The line harge density, per unitlength, orresponding to a single passage of the partile at t = 0, is�(t) = eÆ(s) = ejds=dtjÆ(t) = ev0 Æ(t): (4.1)Here � is that quantity whih, when multiplied by a spatial interval ds, yields theharge ontained in range ds. Adding all the passages yields�(t) = ev0 1Xl=�1 Æ(t� lT0): (4.2)This is a \omb" of equally-spaed, equal-strength lines in the time domain. Afast, digitized, beam urrent monitor (BCM) would reord the pulse heights ofthe sequene of pulses shown on the left part of FIG 4.2. This is referred to aslongitudinal \turn-by-turn" data.



52 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTIONThe same information an be represented analytially, as a sum of terms havingsinusoidal time variation, using the easily derived Fourier series relationship1Xl=�1 Æ(t� lT0) = 1T0 1Xn=�1 os 2�ntT0 : (4.3)De�ning a \fundamental" osillation os!0t where !0 = 2�=T0, the urrent signalan be regarded as the superposition of \harmonis" of the fundamental,�(t) = ev0T0 1Xn=�1 osn!0t: (4.4)As a hek, alulation of the harge in the omplete irumferene (using the n=0,DC term) orretly yields �C0 = e.The Fourier series Eq. (4.4) an be replaed by an integral over a frequenyvariable !, that is, as a Fourier integral, by representing the oeÆients by Æ-funtions;�(t) = eC0 Z 1�1 d! 1Xn=�1 Æ(! � n!0) os!t = Z 1�1 d!�(!) os!t; (4.5)where the frequeny domain spetral funtion �(!) is given by�(!) = eC0 1Xn=�1 Æ(! � n!0): (4.6)This shows that the signal is also a \omb" of equally spaed equal strength in thefrequeny domain. Pitorially the situation is shown in FIG 4.2. Proessing theBCM signal with a spetrum analyser would exhibit this spetrum. Typially abandwidth less than !0 would be exhibited and only one line would be visible.4.2.2. Spetrum of Gaussian Bunh. The line density of a bunh ontain-ing unit harge, having Gaussian pro�le with r.m.s. length �s is� = 1p2��s exp(�v20t22�2s ) = Z 1�1 d!�(!) os!t; where �(!) = exp(��2s!22v20 ):(4.7)Aounting for all beam revolutions, the time domain formula for the line hargeof a bunh ontaining N harges e is� = Nep2��s 1Xl=�1 exp(�v20(t� lT0)22�2s ): (4.8)This an be regarded as the onvolution of distributions (4.2) and (4.7). Aordingto a theorem of Fourier analysis, onvolution in the time domain orresponds tomultipliation, in the frequeny domain, of the two transforms. As a result�(!) = NeC0v0 exp(��2s!22v20 ) 1Xn=�1 Æ(! � n!0): (4.9)Pitorially the situation is shown in FIG 4.3.
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Figure 4.3. Time domain and frequeny domain signals from anon-axis Gaussian-distributed, bunh of length �s.
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ωFigure 4.4. Spetrum of BCM signal due to a single partile ex-euting longitudinal osillations.4.2.3. Spetrum of a Longitudinally Osillating Partile. Consider apartile that is osillating longitudinally (relative to the referene partile). Thepartile's arrival time at the BPM is modulated away from its nominal value by asinuisoidal fator osillating at the synhrotron osillation frequeny !s, and withlongitudinal amplitude v0Ts. Adjusting the time origin so that the initial osillationphase is zero, substitution into Eq. (4.2) yields� = ev0 1Xl=�1 Æ(t� lT0 � Ts os!st): (4.10)This \phase modulated" expression an be expressed as a sum of harmonis of thefundamental, along with \synhrotron sidebands" that are displaed away by smallinteger multiples of the synhrotron frequeny. The oeÆients in this expansion areproportional to Bessel funtions Jm(n!0Ts), where m = 0;�1;�2::: are labels forthe sidebands, and n = 0;�1;�2::: are labels for the harmonis of the fundamental.Typially the \modulation depth" Ts=T0 is a very small number, so the argumentsof the Bessel funtions are very small ompared to 1, at least for small n (i.e. lowharmonis.) In this ase, the leading term, with oeÆient J0(n!0Ts) is dominant,whih makes the sidebands insigni�ant. At large values of n the sidebands beomerelatively more important. The situation is illustrated in Fig. 3.



54 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTION
νx

νy

0−1 21 ν

Λ(ν)
range
DFT
basic

1.50.5−0.5Figure 4.5. Cartoon showing spetrum extrated from singleplane BPM. Due to oupling both horizontal and vertial tunelines are visible. There is aliasing to all integer tune ranges as wellas reetion above and below integers.4.2.4. Spetrum of a Transversely Osillating Partile. For a partileundergoing pure horizontal transverse osillations, the transverse amplitude x� =p�x�x os(�x!0t) register as x-dependent urrents ��;�� = ev0 (1�Ap�x�x os(�x!0t)2R 1Xl=�1 Æ(t� lT0); (4.11)in urrent monitors symmetially left and right of the beamline. A beam positionmonitor (BPM) onsists of suh a pair of pikups, whih produes a signal propor-tional to x as the di�erene of the two signals in Eq. (4.11). In Eq. (4.11), withR being the beam pipe radius, the BPM sensitivity A is a dimensionless numberof order 1. Performing the subtration, and substituting from Eq. (4.11), yields a\transverse signal";�+ � �� = ev0 AT0Rp�x�x os(�x!0t) 1Xn=�1 os(n!0t)= ev0 A2T0Rp�x�x 1Xn=�1 � os �(n+ �x)!0t�+ os((n� �x)!0t��: (4.12)One sees that the betatron spetrum onsists of idential sidebands, symmetriallyabove and below all revolution harmonis. In the presene of oupling both hori-zontal and vertial lines are visible in the same plot, for example as in FIG 4.5. Inthe presene of nonlinearity even more spetral lines are observed.The horizontal and vertial tune speta for the ollider mon lattie are shownin FIG 4.6. Sine this lattie is ideal, and therefore has no x; y oupling, no \wrongplane" lines are visible. There are however hints of lines of unknown origin, forexample at �x = 0:34. Lines like this will be disussed in Chapter 8. Note, however,with the vertial sale being logarithmi, the amplitudes of thes lines are extremelysmall. 4.3. Disrete Time, DFT AnalysisThe disrete Fourier transform (DFT)1 is a numerial tool that an be usedto determine the oeÆients in ontinuous time expansions like Eq.(4.12). This1A ommon terminology refers to all disrete Fourier methods as FFT (fast Fourier transform)methods. This is not quite appropriate as the FFT is just one eÆient algorithm for evaluatingDFT's
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Figure 4.6. Horizontal and vertial tune spetra for theollider mon lattie.proedure entails sampling and digitizing the signal to be analysed at disrete timeintervals. For beam detetors in irular rings it is natural to hoose the revolutiontime T0 as the digitization time. Espeially for transverse osillations, sine thereare many osillation periods per revolution period, this represents gross under-sampling. This auses \aliasing" in whih osillation at one frequeny is detetedat another frequeny. For the relatively simple spetra under disussion this aliasingdoes not destroy the usefulness of the spetra and the aliasing is little worse thana nuisane. This will not be further disussed here.The \natural" domain of the DFT is omplex numbers. Wanting to analysereal funtions, it is eonomial to transform two real funtions at the same time.Normally one has more (usually many more) than one BPM to analyse, and it isquite satisfatory to proess them in pairs. The fundamental DFT formula startsfrom two sets, eah ontaining an even number N of real samples, x(n) and y(n),of the two funtions to be transformed, formed into a single omplex sequenez(n) = x(n) + iy(n), n = 0; 1; : : : ; N � 1. It does no harm to think of this as aomplexi�ed read out of horizontal and vertial positions at the same loation onturn number n, but the DFT proess keeps the x and y sequenes separate, so thesequenes ould just as well have ome from di�erent BPM's. The \transform"onsists of N omplex numbers Z(n), n = 0; 1; ; : : : ; N � 1 given byZ(k) = 1N N�1Xn=0 z(n) exp�� i2�knN �: (4.13)The output range an be regarded as a frational tune range from 0 to 1, binnedinto tune intervals of width 1=N . (The integer part of the tune is suppressed by



56 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTIONthe aliasing mentioned earlier.) The N values of Z(k), k = 1; 2; : : : ; N , an beinterpreted as the binned spetral ontent of the funtion represented by samplesz(n). The inverse transform, the IDFT, is given byz(n) = N�1Xk=0 Z(k) exp� i2�knN �: (4.14)Essentially the same program an be used for either DFT or IDFT beause, with� indiating omplex onjugation,x = N(DFTfX�g)�: (4.15)In this form the Fourier transforms of x and y are \mixed together". To separatethem: suppose that X(k) and Y (k) (both omplex) are the transforms of x and y,(both real). That isz(n)$ Z(k); x(n)$ X(k); y(n)$ Y (k): (4.16)These show thatX(k) = 12�Z�(N � k) + Z(n)�; Y (k) = i2�Z�(N � k)� Z(n)�: (4.17)There is redundany in these relations. It an be shown that the Z(n) values aresymmetri about n = (N � 1)=2, whih is to say about frational tune 0.5. Thisfurther restrition of the output tune range, already visible in FIG 4.5, is anotheraliasing e�et. Beause of this symmetry there is no point in exhibiting spetrumoutside the tune range 0 < � < 0:5 as there is no extra information outside thisrange.Problem 4.1. For this and the following problem you are to use any omputerlanguage you have aess to that is apable of handling matries; for example MAT-LAB, MAPLE, or a spread sheet. For pedagogial purposes a programmable handalulator is ideal, even though it may be too slow at proessing large matries inprodution usage. In the statement of the problem (and similar problems elsewherein the text), example ode valid on an HP alulator will be used to spell out thetask. Even for someone unfamiliar with this alulator should �nd the ode simpleenough to serve as pseudoode or to be onvined that oding from srath is not aformidable task.Consider a 4� 4 one-around transfer matrix M given by0.231876 -0.029239 -0.031317 0.00000032.36138 0.231876 -0.822722 0.0000000.000000 0.000000 1.000000 0.0000000.822722 0.031317 -0.012908 1.000000Key it into the alulator, or whatever program you are using, as a variable M.For a starting displaement X0 suh as x0 = 1; x00 = 0; y0 = 1; y00 = 0, i.e. inthe alulator [1 0 1 0℄, iterate the matrix multipliation Xi+1 = MXi NTR=16times to generate simulated data at a single \BPM" as sample data to by subjetedto FFT analysis analysis in the next problem. (NTR an be any integer power of 2.)For example, on an HP alulator, the following ode de�nes a program named $XY(following the onvention that program names start with $ signs). Starting withthe initial ondition vetor on the stak, this ode generates x+ iy for N turns andstores the sequene of omplex numbers in variable TRK. The atual ode appearsbetween the << and the >> signs.



4.4. PCA, PRINCIPLE COMPONENT ANALYSIS 57$XY: << DUP DUP 1 GET SWAP 3 GET R->C1 N 1 - START SWAP M SWAP *DUP DUP 1 GET SWAP 3 GET R->CNEXTSWAP DROP N ->ARRY 'TRK' STO >>For omparison with a \anned" FFT routine, it is onvenient to have, say, a purex(n) sequene, whih an be obtained from similar ode;$X: << DUP 1 GET 1 N 1 -START SWAP M SWAP * DUP 1 GET NEXTSWAP DROP N ->ARRY 'TRK' STO >>Use the FFT provided by the software you are using to alulate the DFT of thesequene TRK. Then, as a hek, on�rm that IFFT restores the original sequene.Problem 4.2. Using Eq. (4.13), �nd the DFT of the turn-by-turn data generatedin the previous problem. Then alulate the IDFT and on�rm that the result agreeswith the original data set. On the HP alulator the matrix of oeÆients neededin Eq. (4.13) an be alulated and stored in matrix EJK using$EJK: << N N << -> j k<< (0.0,1.0) NEG 2 * PI * j * k * N / EXP N / >>>>LCXM 'EJK' STO >>and a program to produe the FFT of the array on the stak is$DFT: << EJK SWAP * >>Finally, for the IDFT$IDFT: << CONJ EJK SWAP * CONJ N * >>For a value suh as N=16 hek that the transform evaluated using $DFT agrees withthe FFT alulated in the previous problem. Compare the time taken by the FFTprogram provided by the software you are using.4.4. PCA, Priniple Component Analysis4.4.1. Introdution and Motivation. As stated by Jolli�e[9℄, \The entralidea of prinipal omponent analysis (PCA) is to redue the dimensionality of a largenumber of interrelated variables, while retaining as muh as possible of the variationpresent in the data set". The method an have the heavily statistial emphasis ofdrawing maximal inferene from minimal data sets, or a more purely desriptive,algebrai emphasis on the eonomial representation of multiple observations bya minimal number of parameters. The diagnosis of an aelerator based on BPMsignals is made diÆult both by the inherent omplexity of the data and by the noiseit ontains. With the former being judged the more fundamental ompliation, UALstresses the algebrai aspet of PCA rather than the statistial. Though the �elderrors that degrade aelerator performane were random at the time the aeleratorwas being onstruted, they do not ontribute stohastially to the sorts of datasets to be investigated, as they are mainly assumed to have been \frozen in" whenthe aelerator was built.One way of viewing the spetral analysis of a multiturn BPM signal desribedin previous setions is that a large number of measurements z(n) (one for eah ofN turns) has been distilled into a small number of spetral amplitudes. If the tune



58 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTIONhappens to be an integral multiple of 1=N , the entire data set is haraterized by twonumbers, the amplitudes of sine-like and osine-like osillations. All other spetralamplitudes are zero, or are at least very small relative to the dominant lines. Evenfor arbitrary tunes only a few bins have appreiable amplitudes. Taking Eq. (4.13)as example, this distillation has been aomplished by generating numbers that arelinear superpositions of data values z(n) with (theoretially derived) oeÆientsexp(�i2�kn=N). Sine there were grounds for expeting di�erent BPM's to exhibitthe same tune lines their data sets ould be subjeted to idential analyses.If the individual BPM signals were not expeted to show essentially sinusoidalvariation the Fourier transform proedure would not be expeted to work so well.Some extraneous e�ets merely exhibit the power of Fourier transforms. For exam-ple noise tends to average to zero. BPM misalignment, whih auses even the ref-erene partile to give transverse signals, gives spetral response at zero frequeny,whih is easily distinguished from the true transverse lines.But other e�ets may not be so benign. One an inquire whether a linear su-perposition using oeÆients other than the sinusoidal Fourier oeÆients might befound that ahieves omparable distillation even when the signals are theoretiallyless preditable. The answer is \yes", the method is alled \Priniple ComponentAnalysis" (PCA) and the distilled parameters are alled \Priniple Components"(PC). (By this de�nition, the Fourier transform values ould be |but typially arenot|legitimately referred to as priniple omponents.)Before spelling out this proedure it is appropriate to identify essential fea-tures of the data. The turn-by-turn data from a single BPM, say the j'th, an beexpressed by a vetor x j = 0BB�x j1x j2: : :x jN1CCA : (4.18)A matrix an be formed from the measurements from M BPM's, eah arrayed asin Eq. (4.18); X = �x 1 x 2 : : : xM� = 0BBBBBBBB�x
11 x 21 : : : x M1x 12 x 22 : : : x M2x 13 x 23 : : : x M3x 14 x 24 : : : x M4x 15 x 25 : : : x M5: : :x 1N x 2N : : : x MN

1CCCCCCCCA (4.19)(The upper indies have been shifted slightly to the right to make it natural, inmatrix operations, to regard the upper index as the seond index. Also the matrixhas been been given the osmeti appearane of being higher than it is wide, sinethat is a requirement of the SVD method to be introdued in the next setion; i.e.N � M , more turns than BPM's.) All entries in this matrix are ommensurate,meaning they have the same units|in this ase length. This failitates matrix ma-nipulations sine the oeÆients of transformation matries an be dimensionless.Though all elements are ommensurate, it is essential to realize that the harater-istis of olumns and the harateristis of rows are di�erent. In performing matrix



4.4. PCA, PRINCIPLE COMPONENT ANALYSIS 59operations on the matrix X it is important to use only methods that respet thisdi�erene between rows and olumns.Within the matrixX the row index an be referred to as \temporal", sine timeinreases from top to bottom of the matrix. The elements of any one olumn mapout a \temporal pattern". In purely onservative, or Hamiltonian, motion there willbe no systemati tendeny for the elements to beome small with inreasing rowindex. But, for lossy or deohering systems, the elements will tend to get smallertoward the bottom.The olumn index of X, whih distinguishes di�erent loations in the ring, anbe referred to as a \spatial" index. In priniple, in PCA, the di�erent olumns ouldrefer to quite dissimilar properties of the system under study. In our ase the dy-namis at di�erent BPM loations is expeted to have quite similar harateristis.But the transverse sale an hange disontinuously and erratially in progressingfrom one BPM to the next. Suh variation an be displayed as a spatial \pattern"or \shape". One may have some theoretial expetation of this variation, but in aso-alled \model independent analysis" (MIA) this spatial pattern is regarded as apriori unknowable, and a major purpose of the analysis is to extrat the transversesaling fators (i.e. p�-funtions) from the data.There are too many optional features in the properties of data matries likeX for all options to be disussed here. For example the various olumns ould bemultiple measurements from the same BPM. This is the ase to be assumed for thetime being. Or eah olumn ould be derived from a di�erent BPM, a ase that willbe adopted later, for purposes of �-funtion determination. There ould be moreturns than BPM's, N >M (the only ase to be onsidered here) or vie versa.An important algebrai parameter that helps to distinguish these ases math-ematially is the rank R, whih haraterizes the extent to whih the olumns ofX are algebraially independent. If all olumns of X have ome from the samedetetor, all with proportional initial onditions, all under ideal onditions, then allolumns would be proportional and R would be 1. Slightly more general would bethe same situation but with random starting onditions, in whih ase there wouldbe sine-like and osine-like olumns (atually superpositions thereof) and R = 2.In any ase R annot exeed the smaller ofM and N . Sine we require N > Mit follows that R �M . Beyond this point, determining the value of R beomes a bitsquishy. The ondition for R to be less than M is that one or more determinantsformed from elements of X vanish. Unfortunately, no experimentally measuredquantity an vanish exatly (beause there is always noise at some level). Butthe whole point of PCA is to identify linear dependenies among the olumns ofX|suh dependenies an be used to redue the number of parameters needed todesribe the data. If exat, eah suh (independent) relationship orresponds to aredution of R.In spite of this lak of rigor, the following approximate approah often sueeds.For R =M the number of PC's is M . Eah PC quanti�es the ontribution to thedata of one mode. If the PC is big then the orresponding mode is important.In pratie, with \good" data, only a few of the PC's are big and the rest are\small" (without noise or other peripheral e�ets the small PC's would presumablyvanish). Setting the small PC's exatly to zero auses the rank R to be exatlyequal to the number of retained PC's. Only the non-zero PC's that survive deserveto be alled \prinipal omponents". Suh a phenomenologial proedure is of



60 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTIONourse only approximate and its validity has to be investigated further on a ase-by-ase basis. In the simplest nontrivial, but still ideal, ase there will be two PC'sorresponding to sine-like and osine-like motions, and R = 2.4.4.2. Rotation to Priniple Axes. The matrix X ontains a large numberMN of data points, probably all that will be needed to haraterize the lattie, atleast in the ase where eah olumn represents a di�erent BPM. Even so, one anregard this data as just one sampling of MN random variables, or of M samplingsof an N -omponent random vetor. In priniple the SVD proedure works evenif these variables are mutually independent, but any useful inferene to be drawnreets their internal relationships.Consider multiple samplings of a partiular olumn x j , and, for eah sample,interpret the entries as oordinates of a point to be plotted in an N -dimensional dotplot. To simplify disussion take N = 3 and assume that allM olumns orrespondto the same BPM. The points will be sattered in a roughly ellipsoidal region. Ageneral treatment would permit the vetors x j to get ontributions from noise,from momentum dependene, from misalignment, et. Beause of e�ets like thisthe ellipsoid would not neessarily be entered on the origin but, deferring thispossibility for simpliity, let us assume that the theoretial averages of all entriesare zero. The di�erent data sets reet evolution of the same system but withrandom start times. As suh the M data points in any one data set under studywill be imbedded indistinguishably within this plot.It is natural to identify priniple axes of this ellipsoid and to perform a rota-tion to oordinates in whih the ellipsoid is eret relative to all axes. Being eretimplies the absene of orrelation between any pair of omponents. Restriting thistransformation to be a rotation exploits the ommensurate nature of the elementsand prevents the distortion that would result when di�erent multipliative fatorsare applied to omponents along di�erent axes.It ould happen that the ellipsoid just disussed is very long and skinny. Itwould be natural then to hoose the axis along whih the ellipsoid is long as the�rst oordinate axis. The omponent along this axis would indeed be a prinipleomponent sine the motion would be essentially one dimensional, with this om-ponent desribing the state of motion. Normally the data will be more than onedimensional. The next simplest ase would have the data approximately restritedto an elliptial region lying in some skew plane. The �rst priniple omponentwould then be hosen along the major axis, the seond along the minor axis. Allthis disussion generalizes to the N -dimensional region needed to desribe all Nomponents of x j . In general there will be N priniple omponents, ordered fromlargest to smallest. If a few of these omponents are \large" and the rest \small",one will have redued the dimensionality of the data set (in some approximatesense) from N to the number of \large" PC's.4.4.3. The SVD Method of Determining Priniple Components. Thenumerial, algebrai \singular value deomposition" (SVD) method is desribed byPress et al.[10℄ Though anient (Beltrami, 1873, Jordan, 1874) the SVD methodwas reently introdued into aelerator physis by Irwin, Wang et al[8℄. UnlikeDFT, let us require all omponents and all oeÆients to be real.



4.4. PCA, PRINCIPLE COMPONENT ANALYSIS 61SVD is a robust algebrai algorithm, that permits an arbitrary, not neessarilysquare, N �M matrix X to be expressed in the formX = USVT = �1u1vT1 + �2u2vT2 + : : : : (4.20)Here S is an N �M matrix whih, though not square, has non-vanishing elementsonly along the main diagonal, their values being �1 > �2 > � � � > �M :. Matrix U,U = �u1 u2 : : : uN� ; uTi uj = Æij ; (4.21)is an N � N orthonormal matrix whose olumns are vetors ui that satisfy theorthonormality relations shown. Similarly,VT = 0BB�vT1vT2: : :vTM1CCA ; vTi vj = Æij ; (4.22)is an M �M orthonormal matrix.Beause the vetors ui and vj are normalized, the magnitudes of the oeÆ-ients �i in Eq. (4.20) aurately reet the importane of the individual terms.Being ordered with largest �i �rst, the terms in Eq. (4.20) are ordered from mostimportant to least important.By spelling out Eq. (4.20) in more detail;X = �10�v1;10�u1;1u1;2: : :1A v1;20�u1;1u1;2: : :1A : : :1A+�20�v2;10�u2;1u2;2: : :1A v2;20�u2;1u2;2: : :1A : : :1A+: : : ;(4.23)one sees that ui desribes the temporal pattern (de�ned earlier) of the i'th modeand vi desribes the spatial pattern of the same mode. Sine the SVD fatorizationis unique, and an be performed mehanially using readily available software tools,one sees that onsiderable information an be extrated automatially from datamatrix X.To obtain the spatial patterns vi one an introdue a matrix, referred to as the\sample ovariane matrix", and de�ned byC��ij = 1N XTX��ij = 1N Xk x ik x jk : (4.24)The summation is over turn number k and division by N onverts the elements toaverage values;Cij = 0BB�< x 1x 1 > < x 1x 2 > : : : < x 1xM >< x 2x 1 > < x 2x 2 > : : : < x 2xM >: : :< xMx 1 > < xMx 2 > : : : < xMxM >1CCA : (4.25)Using Eq. (4.20) and the orthonormality of U and V, one derivesCV = 1N XTXV = 1N VSUT USVT V = 1N VS2: (4.26)This equation shows that the olumns of V (whih have previously been alledspatial patterns) are eigenvetors of C. Beause it is symmetri, the eigenvalues



62 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTIONof C are known to be real, and its eigenvetors are known to be orthogonal. Alsofrom Eq. (4.26) one infers that the eigenequations for individual eigenvetors areCvi = �ivi;= vi�2i =N: (4.27)From eah eigenvalue � of C this determines a diagonal element � = p�N of S.The matrix C, to the extent it is statistially well determined by the data,enables geometri determination of the priniple omponents. Sine the vetors viform an orthonormal set they de�ne a harateristi referene frame. For an arbi-trary data vetor x, its priniple omponents zi an be obtained as the omponentsof x along these axes. In vetor algebra these omponents would be determined as\dot produts" vi � x. In matrix notation,zi = vTi x; or z = VTx; (4.28)where, in the seond form, the vetors have been arrayed within matries. Finally,onsider the family of N -dimensional ellipsoids de�ned by the equationxTC�1x = onstant: (4.29)Using Eq. (4.28), and the orthonormality of V, this equation an be expressed asonstant = zTVTC�1Vz: (4.30)By manipulating Eq. (4.26), this equation an be transformed toonstant = zT S�2N z = 1N NXi=1 z2i�2i ; (4.31)whih is the equation of the harateristi ellipsoid in the oordinates in whih it iseret. This derivation has been formal. The detailed geometri interpretation of theequation depends on the treatment of the previously-mentioned errati behavior ofsmall �i values. Dropping suh indeterminate terms from Eq. (4.31), the formulais useful primarily in the ase that it redues to a relatively short sum of squaredterms. In this frame the distribution of points an be represented, at least rudely,as a one dimensional distribution of points binned into ellipsoidal shells, with theshell size parameterized by allowing the onstant appearing on the left hand sideof the equation to vary.4.4.4. Extrating Betatron Phases and Beta Funtions. Muh of thissetion follows Wang et al.[7℄. From here on it will be assumed that theM olumnsin data matrix X onsist of turn-by-turn data from separate BPM's. The mainnew physis the PCA approah is intended to address is the non-invariane of theCourant-Snyder invariant evaluated from a bunh entroid when it is treated asthe position of a single partile. Suh variation invalidates equations like (4.12) inwhih the CS invariant � was assumed to be onstant. In pratie the deoherenee�et that auses � to vary is usually fairly weak and the frational variation of �during any one turn is tiny.Based on the slowness of this variation, for extrating betatron parametersfrom the turn-by-turn data matrix X, Wang et al.[7℄ suggest the following sensibleapproximation. During any one turn � is taken to be exatly onstant. This meansthe spatial pattern introdued earlier will be exatly the same as for single partilemotion. But, to support deoherene or other non-Hamiltonian behavior, the emit-tane is permitted to have arbitrary (though slowly varying) temporal dependene.Notationally, the bunh CS-invariant is simply given a temporal index i so that �i,



4.4. PCA, PRINCIPLE COMPONENT ANALYSIS 63even though its value varies with i, is onstant during any single turn. The entroidmotion an therefore be expressed asx mi =p�i�m os(�i +  m); (4.32)where �m is the beta-funtion and  m the phase at the m-th BPM and �i is thetime-evolving phase at some referene loation in the ring (to be referred to as\origin").As stated already, the measured omponents of X will have other extrane-ous ontributions (due, for example, to noise and dispersion) but we will trustthe PCA approah to suppress their e�ets. By substituting from Eq. (4.32) intopreviously derived formulas we an derive theoretial expressions for the variouseigenvalues, eigenvetors, and patterns that have been introdued, in terms of thenewly-introdued parameters �i, �m, �m, and  i.For a given data set, taken at arbitrary time, the starting phase at the origin isarbitrary. The starting phase an be inferred from the elements in the top two rowsof X along with Eq. (4.32). Wang et al.[7℄ give an expliit formula (double-valuedand not reprodued here) for this phase, as well as the following formulas for thetwo non-vanishing eigenvalues;�� = < � >4 MXm=1 �m(1 + os 2 m)= < � >4 � MXm=1 �m �s(Xm �m os 2 m)2 + (Xm �m sin 2 m)2�: (4.33)where and initial phase �0 has been set to zero, by judiious hoie of starting turnindex.2 Wang et al. also give theoretial formulas for the spatial shapes,v+ = < � > �m2p�+ os m; m = 1; : : : ;M;v� = < � > �m2p�� sin m; m = 1; : : : ;M; (4.34)as well as for the temporal shapes,u+ = 2�iN < � > os�i; i = 1; : : : ; N;u� = � 2�iN < � > sin�i: i = 1; : : : ; N: (4.35)Finally these formulas an be used at eah BPM to extrat, from the SVD expan-sion, the betatron phase,  = tan�1 �p�� v�p�+ v+� (4.36)and the �-funtion, � = 2< � > (�+v2+ + ��v2�): (4.37)2The quantity < � > in Eq. (4.33) is multiturn average of the possibly-time-varying emittane.If the entroid motion is damped, and the measurement extended to times long ompared to thedamping time, then this average varies inversely with the number of samples. Obviously there isno point in extending data olletion into this region.



64 4. INSTRUMENTAL ANALYSIS OF 1D PARTICLE AND BUNCH MOTION4.4.5. The PCA Feature of the transverse bSimulator. The followingseries of �gures were obtained using the SVD feature of the transverse simulator.FIG 4.7 shows the SVD opening window. Only the leading PC's are shown. Allthose not shown are tiny. As expeted, there are only two large PC's. The third,not quite tiny PC is the subjet of one of the assignments.The spatial and temporal eigenvetors are shown in FIG 4.8. Their interpre-tations will be disussed further in Chapter 7. The spatial eigenvetor is loselyrelated to the �-funtion variation. In this ase the interpretation is ompliatedby the fat that the �-funtion is neessarily positive while the eigenvetor ompo-nents an have either sign. The signs are resolved using Eqs. (4.36) and (4.37). The�-funtions and phase advanes derived from this data are shown in FIG 4.9. The�-funtion extration uses Eq. (4.37). Treating the emittane < � > as unknown,this leaves an overall sale fator undetermined, but the variation of �x around thering is determined. This \model-independent" determination an be seen to agreewill with the model-based determination. The phase advane determinations usingEq. (4.36) also agree well with matrix-based determinations.Simulation 4.1. Vary the noise level in the .apdf �le and investigate thedegradation in auray of the PCA-determined Twiss funtions. The noise level(relative to signal level) whih auses a typial degradation of, say, 10% in aurayshould be determined.Problem 4.3. Suggest a possible soure for the third, not quite negligible PCindiated in FIG 4.7. Derive a quantitative fomula for the magnitude of this PC.Simulation 4.2. Compare the PC's obtained when the energy o�set Æ of thepartile is varied. Pay espeial attention to the third omponent and plot its valueagainst Æ.Simulation 4.3. Augment the SVD simulation feature so that it also extratsthe dispersion at the loations of monitor elements in the lattie.Simulation 4.4. Radiation damping in an eletron aelator auses the x; y; sCourant-Snyder invariants of eah partile to be multiplied eah turn by fatorsax; ay; as, eah less than 1 by an amount that is typially of order one part in10,000. t! as t.The presene of small deviations like these an be modeled in the simulatorin muh the same way that noise is simulated. The main di�erenes are that thedamping derements are neessary negative and they are not stohasti. Rather thederements are proportional to the partile amplitude. For example x! x(1� ax).Augment the transverse simulator to model the presene of damping. Measurethe damping rate and relate it aurately to the damping oeÆient as you havebuile into the ode.
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Figure 4.7. Opening window for the UAL PCA simulator. Theleading prinipal omponents (PC)'s are shown.

Figure 4.8. Spatial and temporal SVD eigenvetors derived fromthe PCA simulation of the ollider mon lattie are exhibited.



664.INSTRUMENTALANALYSISOF1DPARTICLEANDBUNCHMOTIONFigure 4.9. Twiss funtion and phase advanes derived for the ollider mon lattie using the PCA simulator.Bold dots superimposed on urves indiate agreement between model-independent and model-based determinations.



4.4. PCA, PRINCIPLE COMPONENT ANALYSIS 67Problem 4.4. In problem 4.1 a programmable alulator program $X operatedon the 4 omponents of an initial ondition vetor to produe a multiturn sequeneTRK by repeated multipliation by a matrix (here alled MM so that M an stand forthe number of BPM's). This ode an be re-used here. The routine$RI: << RAND RAND RAND RAND 4 ->ARRY $X TRK >>repeats this alulation for a random starting position. $RI is used within the pro-gram$DATA: << 1 M START $RI NEXT M ROW-> TRN 'DATA' STO>>After transforming rows and olumns with TRN, the result is an N�M (for example16� 8) data matrix, like that de�ned in Eq. (4.20).The elements in eah olumn are onsistent with being the N measurementson a single BPM. The random starting oordinates simulate random phase andamplitude starting onditions at the same BPM. The olumns are saved as a matrixDATA. Using ode like this, produe suh a matrix and subjet it to SVD analysis.Again a programmable alulator is slow but adequate. You should �nd two largeelements on the diagonal of matrix S and the rest very small. Interpret this result.Con�rm that U and V are orthogonal.





CHAPTER 5Analysis of Coupled Motion5.1. Analysis of a 4� 4 Sympleti MatrixGeneral 3D linearized propagation around a ring is represented by a 6 � 6transfer matrix. Muh simpler, and often approximately valid, is the representationof one dimensional motion by a 2�2 transfer matrix. In this setion an intermediateapproah is taken in whih the oupling between two planes, usually x and y, butsometimes x and s, annot be negleted. This alls for a 4 � 4 matrix treatment.In the last setion a 6� 6 formula is also given.No matter how messed up an aelerator lattie is, as long as it elements areonstant in time, there is a small amplitude domain in whih transverse motionis aurately represented by a transfer matrix, whih we are taking to be a 4 � 4matrix M. In a omputer simulation all 16 elements of this matrix would beknown but, operationally, in the ontrol room, none of the elements are known apriori. The task of \model independent analysis" (MIA) is to use measurementsfrom available instruments (in our ase only beam position monitors (BPM) areassumed to be available) to infer valid aelerator properties even though M isompletely unknown. Even though unknown, M is guaranteed to be a sympletimatrix.This hapter desribes several MIA methods, using BPM data and FFT anal-ysis, that an be used to infer tunes and losed orbit deviations. The �rst step isto exploit sympletiity to derive a di�erene equation satis�ed by M.The transverse partile position is spei�ed by a 4-element olumn vetorx = (x; x0; y; y0)T . This vetor represents small transverse deviations from theequilibrium orbit. Note that the equilibrium orbit is not the same thing as thedesign orbit. About the only feature guaranteed to be true about the equilibriumorbit is that it stays in the vauum hamber and repeats exatly turn after turn.Any bunh, no matter how poorly injeted, by deoherene and �lamentation, even-tually enters itself on an equilibrium orbit. The vetor x, by de�nition, measuresdeviations from that orbit. Linearized evolution of x from longitudinal oordinates0 to s is desribed by the matrix equationx(s) =M(s; s0)x(s0): (5.1)The fat that M is sympleti, ritial to the derivation of the di�erene equationbeing sought, an be expressed using the matrixS = 0BB�0 �1 0 01 0 0 00 0 0 �10 0 1 0 1CCA (5.2)69



70 5. ANALYSIS OF COUPLED MOTIONForM to be sympleti, its inverse must be equal to its \sympleti onjugate"M,M�1 =M = �SMTS: (5.3)Partitioning the 4�4 matrixM into 2�2 elements, it and its sympleti onjugateare M = �A BC D� ; M = �A CB D� : (5.4)A 2� 2 matrix A and its sympleti onjugate are related byA = �a b d� = � d �b� a � = A�1 det jAj; (5.5)provided the determinant det jAj is non-vanishing.Espeially important for analysing the state of (x; y) oupling is a partiularo�-diagonal ombination from Eq. (5.4), E = C+B and its determinant E = det jEj.E � C+B � �e fg h� = �11 + b22 12 � b1221 � b21 22 + b11� ; det jEj = eh� fg � E : (5.6)For a stable lattie, eigenvalues �A and �D, of M (with their omplex onjugatetwins) satisfy the relations�A � �A + 1=�A = exp(i�A) + exp(�i�A) = 2 os�A (5.7)�D � �D + 1=�D = exp(i�D) + exp(�i�D) = 2 os�D;where �A � 2��A and �D � 2��D are real angles. The quantities �A and �D,eigenvalues of M+M, satisfy�A +�D = trA+ trD; (5.8)�A�D = trA trD� E :For motion at small amplitude the linearized transfer matrix desription gives athoroughly satisfatory desription of the motion. In the presene of oupling thetunes �A and �D are only approximately equal to the ideal, (or nominal, or design)tunes �x and �y. But �A and �D are readily measurable, no matter how badlyoupled the lattie is. For this reason, they an be regarded as known, or atleast operationally measurable, quantities. In fat the most ommon appliationof Fourier analysis of partile motion (as measured with beam position monitors)is for the operational measurement of these tunes. The formulation of this setionan be used to exploit this proedure.As partially seen already, the ombinationM+M =M+M�1 = �trA 00 trD�+ �0 EE 0� (5.9)has simpler properties than M. Using the fat that M�1 an be used to propagatebakwards in time, this relation an be used to obtain four third-order, oupleddi�erene equations that relate the oordinates on three suessive turns (labeled�, 0, +): x+ � trAx0 + x� = hy0 � fy00x0+ � trAx00 + x0� = � gy0 + ey00 (5.10)y+ � trD y0 + y� = ex0 + fx00y0+ � trD y00 + y� = gx0 + hx00:



5.1. ANALYSIS OF A 4� 4 SYMPLECTIC MATRIX 71It is possible to unouple these equations. Start by squaring Eq. (5.9), sub-trating 2I, and using Eqs. (5.8);M2+M�2 = �tr2A+ (E � 2)I 00 tr2D+ (E � 2)I�+(trA+trD)�0 EE 0� : (5.11)From Eqs. (5.9) and (5.11), form the ombination that eliminates the o�-diagonalbloks, M2 +M�2 � (�A +�D)(M+M�1) + (2 + �A�D)I = 0: (5.12)Using this equation to obtain a di�erene equation for the phase spae oordinateson suessive turns yieldsx++ + x�� � (�A +�D)(x+ + x�) + (2 + �A�D)x0 = 0: (5.13)This is the equation we have been seeking. Before applying it to pratial problemssuh as losed-orbit �nding and feedbak ontrol, we note the simpler equationsthat hold in ase there is no ross-plane oupling. In that ase, Eqs. (5.7) and (5.8)redue to �A = trA = 2 os�x; �D = trD = 2 os�y; (5.14)the right hand sides of Eqs. (5.10) vanish; and the �rst equation, for example,beomes x+ � 2 os�x x0 + x� = 0: (5.15)It is left as an exerise to show that this equation and the orresponding y-equationare onsistent with Eq. (5.13) when there is no oupling.Problem 5.1. In the ase that there is no oupling between x and y motion,show that Eq. (5.13) redues to Eq. (5.15) and the orresponding y-equation.Problem 5.2. Algorithm for onverting an almost sympleti matrix into asympleti matrix. De�ne S = 0BB�0 �1 0 01 0 0 00 0 0 �10 0 1 0 1CCA : (5.16)The sympleti onjugate of a matrix M is de�ned byM = �SMTS; (5.17)where MT is the transpose of M. One an write a alulator routine to performthis operation$BAR: << TRN S * S SWAP * NEG >>A matrix Ms is sympleti if and only ifMs =M�1s : (5.18)Suppose that M is \almost" sympleti. De�ne a new matrix, lose to M byMs =M+ M�MMM2 : (5.19)Negleting terms quadrati in M�Ms, show that Ms is approximately sympleti.Using 4� 4 unit matrix I44, One an write a alulator routine,$SYM: << DUP DUP $BAR * 2 / NEG I44 1.5 * + SWAP * >>



72 5. ANALYSIS OF COUPLED MOTIONthat \sympleti�es" a transfer matrix.In a simulation program an arti�ial manipulation like this is risky. Just be-ause a matrix is sympleti does not mean it is orret. But sometimes one isquite on�dent that a matrix is essentially orret, and wishes to use it for itera-tion, say millions of times. Even the tiniest of failures of sympletiity will ausethis operation to give arti�ial emittane growth over suh long times. In this asearti�ial sympleti�ation may be justi�ed.Problem 5.3. The matrix M0.231876 -0.029239 -0.031317 0.00000032.36138 0.231876 -0.822722 0.0000000.000000 0.000000 1.000000 0.0000000.822722 0.031317 -0.012908 1.000000appeared in an earlier problem. This matrix is very nearly sympleti but, to makeit look less gross in print, its elements are given to only 5 or 6 deimal points. Itan therefore not be exatly sympleti. Perform the \sympleti�ation" de�ned inthe previous problem one or more times so that the matrix is sympleti to mahinepreision, typially 12 plaes or so.Problem 5.4. With the sympleti�ed matrix M obtained in the previous prob-lem, on�rm that Eq (5.12) is satis�ed. It is neessary to �rst �nd �A and �D bysolving a harateristi equation.5.2. Finding the Tunes and Closed Orbit, Unoupled CaseKouthouk[11℄ has desribed a losed-orbit �nding proedure, based on Eq. (5.15),whih he asribes to Verdier and Risselada.[12℄ That method, whih assumes purelyunoupled motion, will now be desribed and then generalized. Muh the same de-sription applies whether one is disussing operational proedures applied in theontrol room of an atual aelerator or simulation in a omputer. In either ase�nding the losed orbit is usually performed by starting with a guess and iterativelyimproving it.In the derivations of the preeeding setion it was impliitly assumed thattransverse oordinates were measured relative to an unknown losed orbit. Letus assume that the BPM's are positioned perfetly on the design orbit. This israrely preisely true, but to get our feet on the ground we have to start somewhere.Then, in priniple, the BPM is apable of measuring the losed orbit deviation atthat point; all it xo. Making the replaement x ! x � xo in Eq. (5.13), aftersimpli�ation, yieldsx+++x��� (�A+�D)(x++x�)+(2+�A�D)x0 = (2��A)(2��D)xo: (5.20)Making the same replaement x! x� xo in Eq. (5.15) yieldsx+ � 2 os�x x0 + x� = 2(1� os�x)xo: (5.21)The parameters �A and �D in Eq. (5.20) are simple funtions of operationallymeasurable tunes, as is os�x in Eq. (5.21). In the ontrol room of an atualaelerator, if irulating beam an be obtained, �A and �D an be measuredby spetral analysis of beam position monitor signals. Similarly, in a omputersimulation, if multiple turns survive, the tunes an be obtained by FFT analysis.Unfortunately the \if's" in the two previous sentenes are sometimes not satis�ed.



5.2. FINDING THE TUNES AND CLOSED ORBIT, UNCOUPLED CASE 73
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Figure 5.1. Geometri onstrution indiating how tune andlosed orbit an be found from measuring the transverse displae-ment for several suessive turns. Open square symbols are mea-sured. Solid irle symbols lie on and de�ne the orret phase spaeirle. Open irles lie on a andidate, but wrong, phase spaeirle.For this reason it is desirable to have a robust proedure for extrating tunes thatmakes minimal operational demands. Following Verdier and Risselada we obtainanother equation like Eq. (5.21) by inrementing the indies by one, (whih leavesthe right hand side unhanged), and then eliminate xo from the two equations,x3 � 2 os�x x2 + x1 = x2 � 2 os�x x1 + x0: (5.22)Solving for �x yields os�x = x3 � x2 + x1 � x02(x2 � x1) : (5.23)From this equation, starting with x0, if the partile (or beam) an survive threefull turns, and the displaement measured on eah passage through the origin, thetune an be obtained. One the tune is known, the losed orbit is obtained fromEq. (5.21), xo = x2 � 2 os�x x1 + x02(1� os�x) : (5.24)This presription an be foiled by measurement errors, by the presene of oupling,or by the presene in the lattie of nonlinear elements that violate the onditionsused in deriving the di�erene equation. There is nothing we an do about mea-surement errors exept omplain about the instrumentation. Before proeeding todisuss what an be done about oupling we onsider nonlinearity.Beause of nonlinearity, Eqs. (5.23) and (5.24) will be not quite satis�ed and thelosed orbit not quite found. This performane is typial of almost all operationalaelerator proedures. The universal attempted �x is to proeed by iteration.In this ase, having found a tentative value for xo we launh another partilefrom that point. Assuming a sensible presription for piking the initial slope



74 5. ANALYSIS OF COUPLED MOTIONis available, the ability of nonlinearity to foil this approah will rapidly dereasewith eah sueeding iteration, as the orbit will stay in progressively redued, andhene more linear, regions. It an ertainly happen however, that the �rst iterationfails due to nonlinearity. Either the partile is lost ompletely, (a possibility thederivation exluded) or the errors make the \improved" losed orbit worse thanthe tentative starting value. In either ase an alternate approah must be found.In pratie the alternate approah is usually trial-and-error or \knob-twiddling",whih normally sueeds eventually. From that point rapid onvergene employingEqs. (5.23) and (5.24) is typial.A proedure for improving the starting slope would improve the onvergene.The earlier derivation showed that the slope variables satisfy the same di�ereneequations as the displaements. As a result we obtainx0o = x02 � 2 os�x x01 + x002(1� os�x) : (5.25)Assuming slope values are available (whih is ertainly true in a omputer simula-tion, but would only be true by using and adjaent BPM in the laboratory) thisequation an be used to improve the tentative losed orbit initial onditions.5.3. Example of MIA in a Coupled LattieWe now wish to generalize this presription in order to make its onvergene ro-bust even in the presene of oupling. In pratie, the presene of oupling seriouslyompromises the e�etiveness of losed orbit determinations. Beause oupling is a\linear e�et", its frational importane does not redue with sueeding stages ofiteration. For too great oupling the iterative approah desribed above simply doesnot onverge. For this reason we ontemplate using the more general Eq. (5.20) toobtain simultaneous onvergene in both planes. As in the unoupled ase, thereare two stages, the �rst to �nd the tune(s), the seond to �nd the losed orbit.Several alternative approahes to �nding the tunes suggest themselves. The�rst two are appliable only if the oupling is weak (whih is often the ase sine itspresene is unintentional) and hene its e�et on the tunes is likely to be negligible(beause tune shifts depend quadratially on skew quadrupole strengths.) In thisase the \design" tunes ould be used in a omputer simulation, but this is not reallypratial operationally. Instead the few turn determination of �x using Eq. (5.23)and a orresponding determination of �y might be adequate.A more robust approah is to obtain equations for �A and �D in a manneranalogous to the derivation of Eq. (5.23). We write the vetor equationx4 + x0 � (�A +�D)(x3 + x1) + (2 + �A�D)x2= x5 + x1 � (�A +�D)(x4 + x2) + (2 + �A�D)x3: (5.26)Colleting terms yields�x4 � x3 + x2 � x1 �x3 + x2y4 � y3 + y2 � y1 �y3 + y2���A +�D�A�D � = �x5 � x4 + 2x3 � 2x2 + x1 � x0y5 � y4 + 2y3 � 2y2 + y1 � y0 � :(5.27)These equations an be solved for �A and �D if data from �ve onseutive fullturns is available.By far the most aurate determination of �A and �D is appliable whenmultiple turns an be obtained. De�ne the expetation value < f > of N samples



5.4. EIGENANALYSIS OF 3D MAPS 75fi by PNi fi=N . Multiplying the x and y omponents of (5.13) by x0 and y0respetively, taking expetation values, and rearranging to express as equations for�A and �D yields�< (x+ + x�)x0 > � < x20 >< (y+ + y�)y0 > � < y20 >���A +�D�A �D � = �< (x++ + x��)x0 > +2 < x20 >< (y++ + y��)y0 > +2 < y20 >� :(5.28)When this equation was applied for 512 turn data at LEP and solved for �A and �D,auraies of approximately�0:003 were obtained for the tunes �x and �y.[13℄ Onethe tunes are known, the oeÆients in Eq. (5.20) an be evaluated, and improvedvalues for all four losed orbit oordinates an be obtained from the equationxo = x+++x��� (�A+�D)(x++x�) + (2+�A�D) x0(2� �A)(2� �D) : (5.29)In an aelerator ontrol room the quantities �A and �D are usually available tohigh auray from one of the ubiquitous spetrum analyser displays. Sine theseare global quantities, they an be measured anywhere in the lattie. In this aseEq. (5.29) an be applied to �nd the losed orbit position at every dual-plane BPMwith no further ado.If the BPM's are not dual-plane, they are usually arranged alternately aroundthe lattie, with vertial measured at vertially-fousing quads, horizontal at hori-zontal quads. In this ase, to use Eq. (5.29), say at the loation of a horizontallyfousing quad, it is neessary to \interpolate" a vertial measurement from the ad-jaent vertial BPM's. This operation annot be said to be \model-independent"sine it relies on the lattie design in the region of the three quads. But, barringserious �eld imperfetions over suh a small region, the interpolation an be saidto be \somewhat model-insensitive".5.4. Eigenanalysis of 3D MapsPossibly the most diÆult step in the MIA analysis of 2D oupled motion wasthe derivation of expliit formulas for the eigenvalues of a sympleti 4�4 equation.(The quadrati equation formed from Eqs. (5.8).) It is possible to perform theanalogous alulation even in the most general ase. For fully-general 3D motionthe linear transfer matrix M, and its sympleti onjugate M an be written inpartitioned form asM = 0�A B EC D FG H J1A ; M = 0�A C GB D HE F J1A : (5.30)Let us assume that interplane oupling is suÆiently weak that the matries A,D, and J , are \not too far from" the unoupled 2 � 2 \design" transfer matriesorresponding to pure x, y, and z motion respetively. However, the purpose of thisassumption is not to justify a perturbative expansion, sine the formulas will beexat. Rather it is to resolve ambiguities in identifying the roots of the equationsby onsiderations of ontinuity. BeauseM is neessarily sympleti, its sympletionjugate, de�ned using blok-diagonal matrix S, eah of whose diagonal bloks is�0 �11 0 �, M = �SMTS; (5.31)



76 5. ANALYSIS OF COUPLED MOTIONis also its inverse M =M�1: (5.32)We de�ne an auxiliary matrix,� =M+M =M+M�1; (5.33)having muh simpler properties than X . In partiular, if (as it does) M has eigen-value � = ei� with � real, then � has real eigenvalue � = �+ ��1 = 2 os�. Thisimplies that � has three, real, double eigenvalues, �x, �y, and �z, for a stablelattie.Expliitly � is given by� = 0�trA I T UT trD I VU V trJ I1A ; (5.34)where B + C = T = � h �f�g e � ; T = �e fg h� ; (5.35)E +G = U = � n �l�m k � ; U = � k lm n� ; (5.36)F +H = V = � s �q�r p � ; V = �p qr s� : (5.37)Note espeially that the 2 � 2 diagonal bloks of � are proportional to identitymatrix I . For simplifying formulas whih follow, two relations, valid for 2 � 2matries, are useful: A �A = detA � jAj; A+ �A = trAI: (5.38)The harateristi equation is�(�) = det ������ (trA� �)I T U�T (trD � �)I V�U �V (trJ � �)I������ = 0: (5.39)This determinant an be worked out by following Gantmaher.[14℄ To simplify thealgebra it is useful to introdue a symbols� = (trA� �)I: (5.40)Though this is a 2� 2 matrix it ommutes with everything and an be treated justlike a salar fator. We obtain�(�) = �3 � p1�2 � p2�� p3 (5.41)where p1 = trA+ trD + trJ = �A +�D +�J (5.42)p2 = � trAtrD � trAtrJ � trDtrJ � jU j � jT j � jV j= � (�A�D +�A�J +�D�J) (5.43)p3 = � trDjU j � trJ jT j � trAjV j+ tr( �V �TU) = �A�D�J : (5.44)The expression for p3 has a suspiious-looking lak of symmetry, but it is invariantto reordering of the (x; y; z) oordinates; so also is its last term. For a stable lattie



5.4. EIGENANALYSIS OF 3D MAPS 77the three roots of Eq. (5.41) are all real, and an expliit formula an be written forthem. Following Press et al.[15℄, and de�ningQ = p21 + 3p29 (5.45)R = � 2p31 � 9p1p2 � 27p354 (5.46)� = aros(R=pQ3); (5.47)the roots are given by �1 = � 2pQ os(�3) + p1=3 (5.48)�2 = � 2pQ os(� + 2�3 ) + p1=3 (5.49)�3 = � 2pQ os(� + 4�3 ) + p1=3: (5.50)The eigenvalue triplet (�1;�2;�3) is some permutation of the triplets (�x;�y;�z).These an also be labeled (�A;�D;�J) assuming the perturbations away fromdesign, unoupled optis, leaves the tunes lose to their design values. We willassume relabeling has been performed so that (1; x; A) go together, as do (2; y;D)and (3; z; J).





CHAPTER 6Longitudinal Dynamis6.1. Synhrotron Osillations6.1.1. Equations of Motion. When passing through an RF avity at phaseangle �0(t) the referene partile aquires energy �Eref given by�Eref = QV̂ sin�0(t)� uref(t); (6.1)with Q and V̂ both assumed positive. Here QV̂ is the maximum possible energygain in the RF avity. For eletrons or protons Q = jej, for ions Q = Zjej. Possibleenergy loss represented by uref(t) is due, for example, to synhrotron radiation orbeam wall interation. This loss is distributed more or less ontinuously around thering, but we assume that it an be adequately represented by a single loss ourringat the RF avity. It is obviously important for orret relativisti formulas be usedto alulate energy E gains and the orresponding hanges in total momentum p0.We will return to these detailed alulations after desribing the essential featuresof synhrotron osillations.Formula (6.1) may represent storage ring operation for whih < �E >= 0, inwhih ase, negleting possible small shift due to nonlinearity, �0 adjusts itself suhthat QV̂ sin�0 = uref : (6.2)Formula (6.1) also applies to aeleration, in whih ase the maximum possibleenergy gain per turn is given by�Eref < �Emax = QV̂ � uref(t): (6.3)Sine the stable buket area vanishes in this limit, the aeleration rate has tobe made substantially smaller. To support an aeleration interval followed by astorage interval, or any other aeleration senario, the time dependene of �0(t)has to be programmed aordingly. For truly adiabati aeleration the aelerationhas to be muh less than the limit given by Eq. (6.3). Muh of the following analysisassumes that a steady energy beam is being desribed, but the formulas will applyalso even during aeleration, at least in the truly adiabati ase.Sine we are primarily interested in motion of a general beam partile relativeto the referene partile we wish, to the extent possible, to suppress the variation ofEref(t) from the formulas, or rather to \hide" the dependene by making it impliit.The energy gain �E of a general partile, with arrival \time" t, relative to thereferene partile, is�E = QV̂ sin�!rf t+ �0��QV̂ sin�0 ��u; (6.4)where �u represents energy loss over and above that su�ered by the referenepartile. In eletron aelerators the �u term, beause of its dependendene on79



80 6. LONGITUDINAL DYNAMICSposition in phase spae, inuenes bunh distributions. In this hapter �u will beset to zero.It is neessary for the RF frequeny !rf to be synhronized to the revolutionfrequeny !rev, but the former an di�er by a (typially large) integer fator knownas the \harmoni number" h, de�ned byh = !rf!rev (6.5)With �0 near zero, the sign of the �rst term of Eq. (6.4) has been hosen suhthat a partile with t > 0 (whih arrives late) has its energy inreased by theavity. Below transition, where revolution time is a�eted more by veloity thanby irumferene, this is the sign of energy inrement needed for stability.The partile's revolution period Trev � T (0) is related to the revolution fre-queny by Trev = 2�=!rev. The single most important lattie parameter inueninglongitudinal motion is �rf , the so-alled \slip fator"1 2 de�ned by�rf~Æ � �rf Æ�0 = �tir(~Æ) + �tvel(~Æ)Trev : (6.6)The tildes present in this equation require explanation. The need for introdu-ing ~Æ = Æ=�0 to desribe less-than-fully-relativisti motion was explained in se-tion 2.6.1. Eq (6.6), following tradition, de�nes the slip fator in terms of frationalmomentum, for whih our symbol is ~Æ.The energy gain given by Eq. (6.4) is negative below transition, where theseond term, whih is negative for positive Æ, dominates the �rst. The (linearized)hange �(t) in arrival time of a partile at the RF avity is governed by the slipfator; �(t) = Trev(�rf=�0)Æ: (6.7)Eqs. (6.4) and (6.7) are equations of motion relating the dependent variables bygiving the hange in �Æ = �E=(p0) on a given turn due to t and vie versa.To analyse longitudinal motion it is pratial to use either a ontinuous inde-pendent variable ta (with subsript a used to di�erentiate absolute, wall lok, timefrom relative-to-referene-partile arrival time t) or to use turn index i. Thoughthe latter hoie is usually adopted for analysing transverse motion, the use of tais ommon for studying longitudinal motion. Beause the longitudinal osillationperiod is always long ompared to the revolution period, the longitudinal phaseadvane per turn is small ompared to 2� and, exept for a sale fator, turn in-dex i is a kind of (not very �ne grain) \disretized" version of ta. Quantitativelythe transition to ontinuous time is based on the relation between ontinuous anddisrete rates, whih is d(t)dta � �(t)Trev ; (6.8)1As explained in the text, the phase spae variable Æ = �E=(p0), as de�ned in Eq.(2.26), isnow being used. Until now it has been suggested that the distintion between Æ and ~Æ was largelyosmeti. But the very phenomenon of transition rossing reets not quite fully relativistimotion, where the distintion is important.2In the eletron world the dispersion funtion D(s) is often denoted by �(s) whih must notbe onfused with �rf . In the \toy" lattie �les, this aounts for the use of eta as the variablename for dispersion. The purpose for the subsript \rf" on �rf is to avoid the same ambiguity.



6.1. SYNCHROTRON OSCILLATIONS 81where �(t) is a t deviation ourring in one turn. The so-alled \smooth ap-proximation" assumes that the frational variation of this ratio during one term isnegligible.6.1.2. Small Amplitude Motion. As usual with osillations, it is easiest tostart with small amplitudes. For arrival time t the (linearized at t = 0) hange�Æ is �Æ = �Ep0 = QV̂ !rf os�0p02 t; (6.9)For stability this impulse needs to be \restoring". However, what onstitutesrestoration swithes sign at transition, beause �rf hanges sign there. There are twohoies for the angle �0 that lead to the same aeleration per turn of the referenepartile; their typial separation is somewhat less than �. As the beam aeleratesthrough transition it is neessary to swith from one of these hoies to the otherto preserve stability. To do this the RF phase �0 is altered disontinuously.Negleting the �u term in Eq. (6.4), and assuming small amplitudes, the hangein Æ at the RF an be expressed by a di�erene formula, using i as turn index;Æi+ � Æi� = QV̂p0 � sin�!rf t+ �0�� sin�0� � QV̂ !rf os�0p02 ti: (6.10)Sine the energy is onstant everywhere exept at the avity, the end points ofthis di�erene an be taken anywhere in the post and pre-passage turns. Thelongitudinal evolution for two onseutive turns is given byti+1 � ti = Trev(�rf=�0)Æi+; (6.11)ti � ti�1 = Trev(�rf=�0)Æi�: (6.12)Subtrating these two equations, and applying Eq. (6.10) yields3ti+1 � 2ti + ti�1 = (Trev!rf)((�rf=�0) os�0) QV̂p0 ti (6.13)Depending on the relative values of the parameters, the solution of suh a seondorder di�erene ondition an be osillatory.Problem 6.1. Using standard trigonometri identities show that either of thefuntions (sequenes, if you prefer)xj = A sin(�0 j)os(�0 j); j = 0; 1; 2; : : : ; (6.14)satis�es the seond order di�erene equationxj+1 � 2 os�0 xj + xj�1 = 0: (6.15)If the numerial value of the oeÆient of the seond term exeeds 2 in absolutevalue it is lear that the equation represents unstable motion as there is no realangle �0 onsistent with the equation.3There are two rationales behind maintaining fators grouped in the ombination((�rf=�0) os�0). If the phase is \jumped" appropriately, then this ombination is ontinuousin passing through transition, and the grouping (�rf=�0) was justi�ed earlier.



82 6. LONGITUDINAL DYNAMICSUsing the result of the previous problem, in the osillatory ase, the �s anbe obtained by inspetion of the equation beause the oeÆient of the ti term is�2 os�s; os�s = 1 + (Trev!rf)((�rf=�0) os�0) QV̂2p0 (6.16)In most pratial ases �s is suÆiently small to allow the small angle approxima-tion, so that �2s = �(Trev!rf)((�rf=�0) os�0)QV̂p0 (6.17)For stable motion it is required that �s be real, whih implies that the hoie ofangle �0 must be suh that os�0 and (�rf=�0) have opposite signs. To ompletethe analogy with transverse formalism, the synhrotron \tune" �s is introdued as�s = �s2� : (6.18)The desription has been in terms of di�erene equations, rather than di�er-ential equations. With the RF onentrated at one point this onstitutes a orretdesription. But, beause �s is usually small, the angular steps in phase spaeeah turn are small, and the usual approximation is to introdue a \smoothed"desription in whih the longitudinal variables exeute simple harmoni motion.In this spirit, the \synhrotron (radian) frequeny" 
s an be obtained from thesynhrotron tune;4 
s = �sTrev : (6.19)We an employ transfer matrix notation for longitudinal motion but using lon-gitudinal quantities (t; Æ) rather than (x; x0) as phase spae variables. In analysingmotion in longitudinal phase spae the following points should be noted:� Unlike x0, Æ is not d(t)=ds. The orret relation will be given shortly.� Beause of the externally imposed time dependent RF, it is natural to use\absolute" time ta rather than s as independent variable.� If the longitudinal fousing were uniform around the ring it would lead topure simple harmoni osillation but this is not the ase. The RF avityats like a \thin lens" for longitudinal motion, retarding front runnersand advaning tardy partiles one per turn. In priniple, with more thanone avity, a longitudinal \�-funtion" formalism would be required. Butwe assume that the fousing is weak in the sense that the e�etive \foallength" of the RF avity is long ompared to the ring radius. This isequivalent to assuming that the syhrotron osillation phase advane perturn �s satis�es �s << 1.Longitudinal, one-around evolution an be desribed in Twiss-like form by5�tÆ�n+1 = � os�s ~�s sin�s� sin�s=~�s os�s ��tÆ�n (6.20)4There is an unfortunate redundany of symbols. The quantities �s, �s, and 
s, di�er onlyby onstant fators and are therefore essentially equivalent parameters. The main virtue of 
sis that 
s=(2�) is the frequeny observed on a ontrol room spetrum analyser that is sensingsynhrotron osillations.5The tilde that appears over ~�s (whih is a beta funtion, not a relativisti fator) in thissetion, is ompletely unrelated to the distintion between Æ and ~Æ. This tilde represents the fatthat ~�s is almost, but not quite, the analog of a transverse beta funtion.



6.1. SYNCHROTRON OSCILLATIONS 83The analogy between ~�s and an ordinary beta-funtion has to be established. Con-sistent with ~�s being treated as onstant, the analog of the Twiss alpha funtionhas been taken to be zero. To onvert to irular phase spae motion the salealong the energy axis an be hanged;� t~�sÆ�n+1 = � os�s sin�s� sin�s os�s�� t~�sÆ�n : (6.21)The fator ~�s provides the phase spae aspet ratio or, what is atually observable,the ratio of (r.m.s) bunh length �t to the (r.m.s.) \frational"6 energy spread �Æ ;�t = ~�s �Æ : (6.22)In an eletron aelerator the energy spread is alulable from synhrotron radiationformulas, so this equation establishes the bunh length. In a proton aeleratorthe energy spread is inherited at injetion, and evolves adiabatially, ausing theaspet ratio in phase spae to be governed by !rf , RF voltage V̂ , and beam energyE0 (or equivalently 0). The usual way to hange this aspet ratio appreiably isby \rebuketing". This maneuver requires the turning o� of avity exitation atone frequeny and turning on a avity at another frequeny.It is again onvenient to hange the sale of the seond omponent so thatthe phase spae motion is irular. For this purpose, as always in simple harmonimotion, the phase spae oordinates need to be in the ratio (t; 1
s d(t)dta ). Combiningthis result with Eq. (6.22) and Eq. (6.8), omponents (t; ~�sÆ) map out a irle inphase spae if ~�s = �t�Æ = j(�rf=�0)j�s C(0): (6.23)This is the result needed to obtain bunh length from energy spread. In parti-ular, to lowest approximation, the bunh length goes to zero at transition, where(�rf=�0) = 0. Passage through transition will be analysed shortly. A UAL simula-tion is shown in FIG 6.6.For using beta-funtion terminology, the irular phase spae oordinates needto be (t; �s d(t)ds ). This requires �s = 1�s C(0): (6.24)This an be regarded as the \longitudinal beta-funtion". The phase advane perturn �s is rarely as great as 0:1. As a result the \longitudinal beta funtion" �snormally greatly exeeds the ring radius R. This justi�es some of the assumptionsthat have been made, suh as negleting �s and treating �s as onstant. It an alsobe noted, sine the transverse beta funtion satis�es <�x> � C(0)=�x, that�s<�x> � �x�s ; (6.25)the ratio typially being in the range of hundreds or thousands.6.1.3. Large Amplitude Motion. The analysis to this point has been lin-earized, but desription of large amplitude motion is also important, espeially inhadron aelerators for whih the region of stability an be nearly �lled. In general6Reall that alling Æ = �E=p0 \frational energy spread" is only really valid for fullyrelativisti motion.



84 6. LONGITUDINAL DYNAMICS
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Figure 6.1. "Fish diagram" of longitudinal phase spae motion.On passing through transition the pattern is right-left reeted.i.e. the �sh points in the opposite diretion.this requires numerial treatment, but analyti formulas for features of the separa-trix, suh as the maximum exursions of the variables and the approximate \buketarea", an be obtained. The large amplitude motion is easiest to understand in on-netion with the \�sh diagram" shown in FIG 6.1.Beause RF avities ause essentially disontinuous motion it would be appro-priate, and not diÆult, to ontinue to use di�erene equations for this disussion.But most aelerator physiists are more omfortable using the di�erential equationthat beomes a good approximation for �s << 1. This is known as the \smooth ap-proximation" beause the aeleration is regarded as spread out uniformly aroundthe ring. This approximation is exellent for essentially all hadron aeleratorsand most eletron aelerators. In this approximation the result of the followingproblem an be used to derive the appropriate di�erential equation.Problem 6.2. If the quantity zi, i = 0; 1; 2; ::: varies slowly enough (i.e. jzi+1�zij << jzij) the index i an be onsidered to be ontinuous rather than disrete.Then the ontinuous time variable t is given by t = Tsi, where Ts is the revolutionperiod. Derivatives dz(t)=dt and d2(t)=dt2 an then be approximated by di�ereneformulas based on suessive values, zi�1, zi, and zi+1. Derive these formulas.For large amplitude motion Eq. (6.13) an be repeated, but without lineariza-tion, by substituting diretly from Eq. (6.4);ti+1 � 2ti + ti�1T 2rev = (�rf=�0) Trev QV̂ � sin �!rf t+ �0�� sin�0�p0 : (6.26)



6.1. SYNCHROTRON OSCILLATIONS 85Interpreting the left hand side as a di�erene approximation to the seond derivatived2(t)=dt2a, one obtains the \Newton's law" equation satis�ed by t;d2(t)dt2a = (�rf=�0) Trev QV̂ � sin �!rf t+ �0�� sin�0�p0 : (6.27)Espeially in situations where �0 is not hanging, this equation is simpli�ed on-siderably by introduing a new variable �, de�ned by� = !rf t+ �0; t = !rf (�� �0): (6.28)In terms of �, Eqs. (6.8) and (6.27) beomed(� � �0)dta = !rf�frÆ; d2(�� �0)dt2a = (�rf=�0) !rfTrev QV̂p0 (sin�� sin�0): (6.29)\Fixed points" are points where the \fore" on the right hand side of the seondequation vanishes;sin� = sin�0 ! � = �0; or � = � � �0: (6.30)Referring to FIG 6.1, the angle �0 has already been de�ned so that the stable �xedpoint, at the enter of the pattern, is at t = 0, whih is to say at � = �0. Theunstable �xed point, the point of maximum exursion of t, is therefore given by�max = � � �0: (6.31)The separatrix separating stable and unstable motion passes through the t axis atthis point. The rest of the separatrix is determined by analogy with \onservation ofenergy", whih will be explained next. Quotation marks indiate that the quantitiesbeing disussed do not atually have the dimensions of energy. To exploit the fatthat the right hand side of Eq. (6.26) depends only on the dependent variable �,the equation an be written d2(�� �0)dt2a = ��V�� ; (6.32)where V is a \potential energy" funtion given byV = (�rf=�0) !rfTrev QV̂p0 (os�� os�0 + (� � �0) sin�0): (6.33)Note that, without spoiling its use, a onstant term os�0 + �0 sin�0 has beensubtrated so that V vanishes at the stable �xed point. The \total energy" is thenumerial value of a funtion H, known as the \Hamiltonian";H = 12 �d(�� �0)dta �2 + V= 12 !2rf�2rf Æ2 + (�rf=�0) !rfTrev QV̂p0 (os�� os�0 + (� � �0) sin�0): (6.34)To reover small osillation theory one must extrat the leading term in the poten-tial energy term;H(�; Æ) = 12 !2rf�2rf Æ2 � 12 ((�rf=�0) os�0) !rfTrev QV̂p0 (�� �0)2: (6.35)



86 6. LONGITUDINAL DYNAMICSAs explained previously, the parenthesized fator has to be kept negative for sta-bility; that is, for H to be positive de�nite.As always in osillatory motion, energy sloshes between kineti and potential,and phase spae trajetories are urves of onstant H. In this language, the �rstterm of H is to be thought of as \kineti energy". The area enlosed by suh atrajetory is known to be an adiabati invariant �s. (The true adiabati invariantis the area in true momentum phase spae. Sine we work with Æ, our phasespae area atually shrinks proportional to p0 whih, in the relativisti regime, isproportional to 0. This is the well-known \adiabati damping" as it inueneslongitudinal motion.) For any individual partile this area is the analog of theCourant-Snyder invariant of transverse motion. For the bunh as a whole it isknown as the longitudinal emittane. All partiles in the bunh, if they are not tobe lost, must lie inside a separatrix enlosing the stable buket.Sine Æ = 0 and � = � � �0 at the maximum exursion point of the motion,the maximum value of H is given byHmax = �((�rf=�0) os�0) !rfTrev QV̂p0 �2� (� � 2�0) tan�0�: (6.36)The maximum value of Æ is then obtained from the stuation when the \energy isall kineti" by Æmax = p2Hmax(�rf=�0)!rf : (6.37)The partiular urve for whih H = Hmax, beause it separates stable and unstablemotion, is referred to as the \separatrix". It enloses the so-alled \stable buket".The approximate buket area is �Æmax(t)max when the phase spae axes are Æand t. The buket area, re-expressed in units of eletron-volt-seonds, is givenapproximately by A � �Æmax(t)maxp0=: (6.38)One of the UAL/USPAS simulations will investigate longitudinal bunh evolu-tion within the stable buket, emittane growth due to �lamentation and passagethrough transition. \Rebuketing" in whih RF of one frequeny is gradually re-plaed by RF of another frequeny is also a andidate for simulation. The purposeof rebuketing is to permit the use long bunhes during passage through transitionand shorter bunhes at ollision (in a olliding beam faility.)6.2. Some Formulas for Relatisti KinematisFor the study of longitudinal dynamis it is neessary to alulate deviation ofthe revolution period, and for this both the irumferene C(~Æ) and veloity v(~Æ)must be alulated as funtions of the frational momentum o�set. For eletronsthe veloity is normally lose enough to the veloity of light that the di�erenefrom  an be negleted, but for protons the following alulations are neessary.The dynamial variable governing deetion in a magneti �eld is the momentump, whih deviates from the entral momentum p0 aording top = p0(1 + ~Æ): (6.39)This de�ning equation for ~Æ was introdued earlier in Eq. (2.25). Note that Eq. (6.39)is an exat equation and the use of the inremental quantity ~Æ by no means impliesthat linearized equations are neessarily being used.



6.3. THE OFF-MOMENTUM ORBIT LENGTH 87A few relativisti results will now be quoted without proof.� = v ;  = 1p1� �2 ; (6.40)E2 = p22 +m24 = total energy squared; (6.41)p = mv; E = m2 (6.42)v = p2E ; dEdp = p2E = v; dvd~Æ = p0p v2 : (6.43)These may be familiar or an be looked up or derived. The relation we will atuallyuse, evaluated on the entral orbit, isdd~Æ�1v�~Æ = 0 = � 120 1v0 ; (6.44)and 1v = 1v0 � 120 1v0 (~Æ + 12 v202 ~Æ2) + � � � : (6.45)Near transition even the ~Æ2 term has observable e�et.For omparison purposes a few formulas will next be opied from Jie Wei'sthesis[16℄. 11 +�tvel(~Æ)=T (0) � v � v0v0 = 120 ~Æ � 3�20220 ~Æ2 � (1� 5�20)�20220 ~Æ3 + � � � : (6.46)The �rst two terms agree with Eq. (6.45). The orresponding dependene of ir-umferential length is de�ned byC(~Æ)� C(0)C(0) = ~Æ2t (1 + �1~Æ + �2~Æ2 + � � � ): (6.47)For a losed orbit made up of straight line segments, suh as general fodo.adxfthe oeÆients in this expression an be obtained by omparison with Eq. (6.58).Using the expansion oeÆients just de�ned, a more detailed expansion of theslip fator an be de�ned; �rf = �0 + �1~Æ + �2~Æ2 + � � � : (6.48)The oeÆients are given by�0 = 12t � 120 ; �1 = �12t � 120 � 12t � 120 �+ 3�20220 ; : : : : (6.49)This expansion is useful for a purely analytial treatment of passage through tran-sition. But for numerial simulation there is little point in using suh term-by-termexpansions. Instead, the diret evaluation of the time delay �t(Æ), as given, forexample, in Eq. (6.59) below, gives the needed phase slip per turn at the RF avityfor arbitrary Æ. 6.3. The O�-Momentum Orbit LengthFor longitudinal dynamis the arrival time of the partile at the RF avityis of ritial importane. As well as depending on partile veloity, the arrivaltime also depends on the o�-momentum path length. Beause of the elongatedgeometry in a large ring, the geometry of this alulation is diÆult. The so-alled\momentum ompation fator" �0, (also known as 1=2t ) the frational momentum



88 6. LONGITUDINAL DYNAMICSproportional inrease in irumferene C, is alulable in terms of loal radius �(s)and o�-momentum losed orbit funtion ~D(s);�0 � 12t = dC=C(0)d~Æ = 1C(0) Z C(0)0 ~D(s) ds�(s) : (6.50)For reasons already disussed t is known as \transition gamma" A rule-of-thumbformula gives ~Dtyp: in terms of the horizontal tune Qx;~Dtyp: � C(0)2�Q2x (6.51)From this follows the semi-quantitative heuristi relation,t � Qx: (6.52)This setion now proeeds to alulate the exess ar length for our thin el-ement, general fodo lattie. For this alulation, to simplify the geometry, weassume the dipole �lls the entire half-ell length (ld = l) but still apply the entiredeetion as a kink at the midpoint. This is not very aurate but the (relatively)simple formulas onvey the essene and the diÆulties of the alulation.As shown in FIG 6.2, the on-momentum, design path length through one halfellis C1=2 = 2l�� tan ��2 , Referring to FIG 6.3, and using oordinate axes s; x enteredat q1 with s being normal to the multipole plane, the equation of the o�-momentumlosed orbit is x = ( ~D1 � q1 ~D1s)~Æ: (6.53)The equation of the transverse plane through the dipole enter iss = (x + �0) tan ��2 ; (6.54)where �0 = l=�� is the bending radius of the referene orbit. At the enter of a fo-using quad, using its loal (s; x) oordinates, the oordinates of the o�-momentumlosed orbit are (0; ~D1~Æ), and the oordinates of the intersetion with the enterlineof bending magnet are sd1(~Æ) = (�0 + ~D1~Æ) tan ��21 + q1 ~D1~Æ tan ��2 ; (6.55)xd1(~Æ) = ~D1~Æ � q1 ~D1~Æ�0 tan ��21 + q1 ~D1~Æ tan ��2 :Starting from q2 the orresponding quantities sd2(~Æ) and xd2(~Æ) are obtainedby replaing 1 by 2. The ontribution to the irumferene of the o�-momentumlosed orbit from one halfell isC1=2(~Æ) =q(xd1(~Æ)� ~Æ ~D1)2 + s2d1(~Æ) +q(xd2(~Æ)� ~Æ ~D2)2 + s2d2(~Æ): (6.56)There is a useful numerial trik that avoids the need for evaluating these squareroot expressions. (In a \kik ode" the trajetory onsists entirely of straight linesegments like this.) De�ning C(~Æ) as the o�-momentum path length along a straightline segment, and C(0) as the orresponding on-momentum path length, the quan-tity needed is C(~Æ)� C(0) = C2(~Æ)� C2(0)C(~Æ) + C(0) � C2(~Æ)� C2(0)2C(0) : (6.57)
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Figure 6.3. Geometry for alulation of o�-momentum, polygo-nal path length. The on-momentum and o�-momentum orbits areshown. The bending magnet is represented by a prism symbol.For eah straight line segment the numerator expression is one of the fators underthe square root signs in Eq. (6.56). The �nal approximation here is adequate formost purposes. Applying this formula and Eq. (6.56) to the general fodo.adxflattie, the frational momentum-dependent inrease in irumferene isC(~Æ)� C1=2C1=2 � (xd1(~Æ)� ~Æ ~D1)2 + s2d1(~Æ) + (xd2(~Æ)� ~Æ ~D2)2 + s2d2(~Æ)� 0:5C21=2C21=2 :(6.58)(For improved numerial auray, the TEAPOT ode expands the numerator ex-pressions to take advantage of the expliit anellation of the dominant lengthterms.)



90 6. LONGITUDINAL DYNAMICSWith there being n=2 ells in all, the o�-momentum arrival time delay afterone revolution, relative to the referene trajetory, is�t(~Æ) = n2 C1(~Æ)v � n2 C1(0)v0 = n2 C1(~Æ)� C1(0)v + n2 C1(0)�1v � 1v0 � (6.59)= �tir(~Æ) + �tvel(~Æ):The two terms in Eq. (6.59) an be interpreted separately. The �rst is the delay inarrival time due to altered irumferene�tir(~Æ) = n2 C1(~Æ)� C1(0)v ' 1v0 dC(~Æ)d~Æ ~Æ = normally positive for ~Æ > 0: (6.60)�tir(~Æ) = C(0)v02t ~Æ (6.61)The seond term in Eq. (6.59) is the delay in arrival time due to altered veloity;�tvel(~Æ) = C(0)�1v � 1v0 � ' �C(0)v0 120 ~Æ; (6.62)whih is always negative for ~Æ > 0. Combining Eqs. (6.61) and (6.62) yields�t = Trev� 12t � 120 �~Æ; (6.63)where Trev is the period of one on-momentum revolution. Near transition, wherethis expression vanishes, more aurate determination of �t may be alled for.The term �tvel does not depend on lattie design but �tir an be altered overa large range by altering the mahine optis. Notie the possibility that �t(~Æ) =0, whih is known as the ondition for \transition". In this ondition there isno hange in revolution period aompanying an inrease in momentum beausethe inrease in irumferene anels the e�et of inreased veloity. In eletronaelerators 2 is normally so large that transition would be rossed only at energiesfar below the injetion energy. In proton aelerators transition rossing normallyours for energies of several or several tens of GeV. If transition is regarded astoo undesirable, 1=2t an be redued to zero, or even made negative, by ausingthe average dispersion to be arti�ially small (by making the dispersion negativeover large setors of the ring.) In this ase t beomes imaginary, whih violatesno physial priniple. The toy lattie isohronous.adxf has been designed to givet =1. 6.4. Numerial Approah Using TIBETANWithin UAL, instead of element-by-element traking, it is (optionally) possibleto treat transverse motion in linearized fashion while representing longitudinal dy-namis with faithful nonlinear formulas. This formalism (due to Jie Wei) is alledTIBETAN. It is a semi-empirial formalism in whih propagation around the ring isrepresented by linear transfer matries and the representation of RF avity (or av-ities) e�ets inlude realisti nonlinear dependenies. For the general fodo.adxflattie introdued earlier, most of the needed parameters have already been ob-tained.The APDF (Aelerator Propagator Desription Format) �le for this simulationis espeially simple. In its entirety it is



6.5. TYPICAL PARAMETER VALUES FOR RHIC 91<apdf><propagator id="tibetan" aelerator="blue"><reate><link algorithm="TIBETAN::OneTurnTraker" setor="Default" /></reate></propagator></apdf>There is no RF entry beause the RF parameters are under ontrol of the GUI. Thispermits these parameters to be adjusted without requiring any ode reompilation.Simulation 6.1. Investigate the longitudinal behavior of the raetrak lattie.Though there is an element named rf in this lattie, it is designated as a driftelement. This is not inonsistent with the design of the longitudinal simulator.The reason for this is that the longitudinal simulator \takes ontrol" of the lon-gitudinal dynamis, applying a longitudinal kik to eah partile on eah turn. Thisputs the relevant longitudinal parameters under the ontrol of the GUI.Sine the raetrak lattie was originally generated with eletron rings inmind, it might not seem to be appropriate as an aelerator for gold ions. Neverthe-less, to begin, leave most parameters the same as for the simulation of aelerationof fully ionized gold ions in RHIC, whih stands for \Relativisti Heavy Ion Col-lider". But the beam energy should be adjusted to be below transition. Before beingable to make this setting you have to �nd t. Allowing the simulation to run youshould see �lamentation like that exhibited in FIGs 6.4 and 6.5. Find the emittanegrowth the beam has su�ered due to �lamentation, from the time it is injeted untilit has equilibrated. Sine there are no quantum utuations, nor radiation damping,this simulation is not at all appliable to an eletron storage ring. Then �nd thefration of beam aptured by the RF. Finally, hange the initial bunh length andmomentum spread to be \mathed", and as large as possible so that all or mostof the partiles are aptured. Calulate the longitudinal emittane of this maximalbeam bunh. Compare your values with formulas given in the text.Simulation 6.2. Reprodue FIG 6.4 and FIG 6.5.Problem 6.3. This problem should only be attempted by individuals with ex-periene in objet-oriented programming, preferably C++. The previous tutorialidenti�ed the loation of the ode to be modi�ed to introdue ad ho dampinginto the longitudinal motion. The problem here is to study the ode, startingwith �/USPAS/examples/longitudinal/sr/run. to �gure out how the programalls the ode that was modi�ed in the tutorial.6.5. Typial Parameter Values for RHICA onsistent set of parameter values an be taken from a paper by Montag andKewish[17℄, whih desribes longitudinal bunh manipulation in RHIC. Some ofthese values are given in Table 6.1. They apply to the aeleration of fully-ionizedgold ions in RHIC. Harmoni number h is de�ned by h = !rf=!rev and nonlinearmomentum ompation fator �1 was de�ned in Eq. (6.47).



92 6. LONGITUDINAL DYNAMICSTable 6.1. RHIC parameters for fully stripped gold ions[17℄.Property Symbol Value UnitTransition gamma t 22.8Aeleration rate d=dt � 0 0.5 1/sMaximum o�-energy parameter Æmax 0.0043Cirumferene C(0) 3833.845 mAtomi number Z 79Atomi weight A 197Transition energy per nuleon Et 21.4 GeVPeak RF voltage V̂ 300 kVHarmoni number h 360Nonlinear momentum ompation parameter �1 -0.54Charateristi nonadiabati time T 0.053 sChromati nonlinear time Tnl 0.188 sTransition gamma jump �t 1.0Transition gamma jump time �tjump 0.030 s6.6. Simulation of Longitudinal MotionThe following �gures show various examples of longitudinal bunh evolution,as exhibited by the UAL longitudinal simulator. The onditions are indiated inthe aptions, and in the inset parameter boxes. (The ontents of these baxes arenot readable in the �gures shown in this text, but, using the GUI, the boxes an beresized for readability.) In eah ase 10,000 gold ions are traked for for some thou-sands of turns, and the distributions are updated every 100 turns. The simulationuses a realisti representation of the RHIC aelerator. In FIG's 6.4 and FIG 6.5the �gures are grouped into quartets de�ned in the �gure aption. In longitudinalphase spae plots the absissa is longitudinal phase � and the ordinate is �E=(p0).\Mountain range" plots (whih are ommonly available in the ontrol room using alongitudinal pro�le monitor) onsist of a series of one dimensional plots with beamharge density represented by olor ode, or by shading, at regular intervals. Byshifting the plots up the plot as time progresses, evolution of the longitudinal beampro�le is displayed. The three dimensional spatial bunh distribution is exhibitedin the upper left orner of eah quartet.6.7. Longitudinal Dynamis Near TransitionThe ondition that must be satis�ed for the adiabati analysis desribed so farto be valid is 1
2s d
sdta << 1: (6.64)Stating this in words, during unit advane of longitudinal phase, the frationalhange in 
s is small ompared to 1. This ondition annot be met at transitionsine (�rf=�0), and hene 
s, vanish at that point. Rede�ning the time variable tato be zero at the instant of rossing transition, the beam energy evolves aordingto  = t + 0tt: (6.65)
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Figure 6.4. Top: Partile distribution just after injetion ofslightly over-sized 10000 partile beam. Bottom: Partile distribu-tions 100 turns after injetion of the same beam. Counterlokwise,starting at upper left, the �gures are 3D spae, longitudinal phasespae, transverse phase spae, and turn number vs. longitudinal.



94 6. LONGITUDINAL DYNAMICS

Figure 6.5. Top: Partile distribution 800 turns after injetionof the same beam. Bottom: Partile distributions 7000 turns afterinjetion of the same beam.



6.7. LONGITUDINAL DYNAMICS NEAR TRANSITION 95Some form of alternative analysis (suh as numerial simulation) has to be per-formed during a time interval ontaining the transition time. The length T of anadequately long interval an be obtained by working problem 6.4.Another ompliation of transition rossing is that, beause the partiles havedi�erent synhrotron osillation amplitudes, and hene di�erent values of 
s, theydo not all ross transition at the same time. This means that, in priniple, the timeorigin has to be de�ned for eah partile individually. For beams of small enoughlongitudinal emittane this e�et is negligible sine 
s is essentially the same forall partiles. But for bunhes that nearly �ll the stable buket the e�et beomesimportant. In fat, in that limit, some loss of partiles out of the stable buket isinevitable. Again this e�et is best studied numerially.To quantify the nonlinear e�et one de�nes a \hromati nonlinear time" Tnl,suh that, for a partile of maximal energy o�set �Æmax, the transition-rossingtime is shifted by �Tnl. As a following problem, Tnl an be derived using formulasgiven previously. A typial numerial value is given in setion 6.5.If nothing else were to be done, the beam would beome unstable after transi-tion rossing, and it would blow up inexorably and be lost. One therefore swithesthe RF phase as has been disussed previously. The time taken for this phaseswith to our an be assumed negligible relative to the other times that havebeen disussed.If beam degradation during transition rossing is too great some other longitu-dinal gymnastis are alled for. Beause of the large indutane of superonduting(or any other) magnets, it is typially not pratial to inrease 0t by inreasingthe magneti ramp rate. But reall from Eq. (6.52) that t depends on lattieproperties and hene 0t an potentially be inreased by shifting Qx toward lowervalues as the beam energy inreases through transition. This is done by impulsivelyaltering the urrents in some lattie quadrupoles. Of ourse this annot be doneinstantaneously. For the example given in the next setion, for a jump �t = 1,the time taken is �tjump = 30ms. This inrease the e�etive value of 0t by a fatorof 60 whih, aording to Eq. (6.67), redues T by a fator of about 4.



96 6. LONGITUDINAL DYNAMICSProblem 6.4. For times t lose to the time of transition rossing, show thatthe synhrotron frequeny is given approximately by
2s � jtjT 3 ; (6.66)where T = � �Et�2t 3tQV̂ jos�tj0th!2rev�1=3: (6.67)Time T is referred to as the \harateristi nonadiabati time". Typial values forT and other parameters are given in setion 6.5.Problem 6.5. Estimate the hromati nonlinear time Tnl to beTnl = j�1 + 1:5�20Æmaxtj0t : (6.68)Simulation 6.3. Reonstitute the simulation illustrated in FIG 6.6. In that�gure, to illustrate phase spae evolution, an unrealistially small emittae bunh(espeially as regards energy spread) was used. Alter the phase spae before tran-sition to be better mathed and to almost �ll the stable buket. Then alulate thegrowth of all three emittanes �x, �y, and �s as gold ions are aelerated throughtransition in RHIC.
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Figure 6.6. Series of distribution snapshots (every 1000 turnsfor a beam of 10000 partiles) starting just before, and endingjust after transition. The RF phase is jumped at the instant oftransition rossing.





CHAPTER 7Deoherene and Filamentation7.1. IntrodutionEven in eletron rings, where some damping due to synhrotron radiation isto be expeted, the damping is so weak that the Courant-Snyder invariant of anyone partile is, in fat, almost onstant for thousands of turns. The sensitivityof the beam position monitors (BPM) used to reord suh motion are usually \inthe noise" unless a bunh of some large number N of o-moving partiles, equalto millions or more, are sensed. If all of these partiles were exatly superimposedthen the observed signal would simply be N times greater than the signal from asingle partile. Of ourse this is not the ase. Commonly there is some physialphenomenon limiting the density of partile in phase spae, with the result thatthe more partiles there are present in a bunh, the larger the phase spae volumeontaining all partiles tends to be. Even so, if all deetions in the ring were linear(as that term has been de�ned in earlier hapters) then the signals indued in a BPMwould be very nearly the same as that of a single, magnitude N \maropartile"situated at the entroid of the moving bunh. Again, this is unrealisti, sine thelinearity requirement is never met exatly.Many e�ets di�erentiate bunh motion and single partile motion. Some ofthese, suh as spae harge fores, inluding beam-beam fores in olliding beamfailities, beam wall fores, and oherent synhrotron radiation, are further ompli-ated by the need to treat the harges both as soures (from whih fore �elds haveto be alulated) and dynamial objets whose trajetories need to be determined.Other multipartile topis, suh as feedbak and stohasti ooling, are ompliatedby the fat that external pikups and kikers are impliated in the bunh dynamis.To avoid these ompliations, in this hapter, partiles are assumed to notinterat with eah other, or with other \external" apparatus (not inluding themagnets and RF avities making up the basi lattie.) Even so, there are impor-tant multipartile e�ets, that go by names suh as �lamentation, deoherene,Landau damping, and beam ehos. Even though these phenomena are all based onessentially the same basi physis, the di�erent terms are used to distinguish amongseemingly di�erent observed phenomena. These are the topis of this hapter.7.2. Experimental ObservationAn example of �lamentation from CESR[18℄ is exhibited in FIG 7.1. This datawas obtained only by simulation, but signals observed in real life were in semi-quantitative agreeement. For this plot a bunh of eletrons was injeted o�-axisand traked for 1000 turns. The entroid displaement is alulated eah turn andreorded as a point on the plot. Sine this is an eletron beam, some damping, dueto synhrotron radiation, is expeted. But the observed damping time (seen from99
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Figure 7.1. Multipartile deoherene. Using the modeling pro-gram TEAPOT, an appropriately distributed \beam" onsisting of200 maropartiles, �E=E = 0:0006, is traked for 1024 turns andthe horizontal entroid oordinate is plotted eah turn.the plot to be about 700 turns) is some 10 times shorter than an be aountedfor by radiation damping. In this ase the nominal tune setting has Qx = Qy andthe hromatiities were large and highly unbalaned, Q0x = +5, Q0y = �20, (inonnetion with a study of an e�et alled \hromatiity sharing"). The data ofFIG 7.1 look very muh like what would be observed in single partile dissipativemotion with a damping time of 700 turns. The term \Landau damping", appliablein this ase, inludes the term damping even though there is no dissipation anywherepresent in the system. The e�et is also known as deoherene. In a bunh ofpartiles injeted o�-axis, if the bunh dimensions are smaller than the o�set, allpartiles have suÆiently the same amplitude that they eah ontribute the sameamplitude to the entroid signal. But there is inevitably a tune spread ; all it �Q,typially a part in a thousand or so. With �Q = 0:001, two partiles with identialstarting onditions, but with tunes di�ering this muh would, after 500 turns, havephase spae phase advanes di�ering by �. In this ondition their ontributionsto the entroid amplitude would anel. This would give the entroid motion theappearane of being damped, even though there is no atual dissipation present.This phenomenon is known as \deoherene", onveying the notion that partilesinitially in phase, gradually drop out of phase over multiple turns.The fundamental tune spread ausing the entroid damping visible in FIG 7.1is due to momentum spread. In the presene of large hromatiities this ausesthe large tune spread that auses the observed deoherene. This form of damping



7.3. ANALYTIC TREATMENT OF DECOHERENCE 101is present even if the lattie is perfetly linear. The result is the approximatelyexponential damping observed in the �gure. It will be seen in the next setion thatthe apparent damping due to deoherene is not neessarily exponential, whetherit is observed in the laboratory or in a simulation.Furthermore, beause of the relatively small number of partiles used in this(or any) simulation, the damping annot be expeted to be faithfully representedover times muh longer than are shown in the plot. For suh a small number ofpartiles as 200, one the apparent entroid motion has dropped to some \oor"value, it an be expeted to exhibit errati motion depending on the aidentalonstrutive and destrutive ombinations of the partiles present.The phenomenon of �lamentation is losely related to the deoherene justdesribed, in that the e�et is due to tune spread. The di�erent terminology isused to onvey the idea that the tune spread in the ase of �lamentation is dueto nonlinear fores (of the RF waveform in this ase). An example of longitudinal�lamentation was shown in the lower left of the sequene of plots in FIG 6.4 andFIG 6.5. These are phase spae plot that orresponds to the \mountain rangeplots" shown in the same �gures. Nonlinearity auses the longitudinal tune todepend on longitudinal amplitude. As a result the rate of revolution in phase spaehanges with inreasing phase spae radius. This auses the beam extremities to\shear" gradually as time advanes. Aording to Liouville's theorem, this proess,even though it depends on nonlinearity, should still preserve the loal density ofpartiles. This is not ontradited by the �gure. The �nal �gure in the sequene oplots ending with FIG 6.5 shows the same phase spae distribution a long time later,after the extremities have ompletely wrapped around many times. The wispy tailshave beome so narrow that they deserve to be alled �laments. This piture isstill onsistent with onservation of loal phase spae density. But this has beomeaademi beause the �laments are so skinny and so hopelessly entwined with areasinitially devoid of partiles. One ould say that vauum has been stirred into theuid. For all pratial purposes this has redued the density of partiles in phasespae. This still does not ontradit Liouville's theorem. But, for all pratial usesof the beam, its density has been diluted. The orresponding emittane inreasedue to �lamentation an be inferred from the data inserts shown in the �gures.7.3. Analyti Treatment of DeohereneThe deoherene and �lamentation phenomena mentioned so far an be anal-ysed theoretially. As well as knowing the distribution of amplitudes it is neessaryalso to know the dependene of the tunes on the transverse and longitudinal am-plitudes. Dependene of tunes on amplitude for the raetrak.sxf �le are shownin FIG 7.2,Phase spae evolution an be studied with plots like FIG 7.3, whih shows(x; p) betatron phase spae. Suh plots, showing a partile's position eah turn, arealso known as \Poinar�e plots". Atually, in order to suppress the dominant, smallamplitude evolution, this is a Poinar�e plot in a frame rotating at a rate suh thata small amplitude partile appears not to move at all. Vetors in the �gure show,therefore, hanges in position over and above what their linear motion would ause.The sales have been adjusted so that (linearized) motion in phase spae isalong irles entered on the origin, with phase advane per turn ��0. Saling p
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7.3. ANALYTIC TREATMENT OF DECOHERENCE 103to be a length, and assuming the beam is Gaussian and isotropi in phase spae,the beam distribution an be expressed either as PR(R) or as Px(x)Pp(p), depend-ing on whether polar or artesian oordinates are employed. The partiles arealso distributed with distribution PÆ̂(Æ̂) in Æ̂ whih is the maximum value (as thepartile osillates longitudinally) of its frational momentum deviation Æp=p. Thedistributions are given byPx(x) = 1p2�� exp�� x22�2 �;Pp(p) = 1p2�� exp�� p22�2 �; (7.1)Px;p(x; p) = Px(x)Pp(p) = PR(R)2�R ; or PR(R) = R�2x exp�� R22�2�:The last distribution an also be expressed as a joint probability distributionPR;�(R;�) = PR(R)=(2�). In every ase the probability of a partile lying ina di�erential interval of the subsripted variable(s) is obtained as the P -funtionmultiplied by a di�erential (or produt of di�erentials) of the indiated variable(s).To start the deoherene investigation a \kik" �p is administered to everypartile in the beam at i = 0 and hene also to the beam entroid. Motion ofa partile initially at point P is shown in FIG 7.3. If every partile advanes atthe same angular rate, the entroid does the same and the entroid radius remainsonstant. But, in general, sine �(R;�; Æ) depends on the loation of P, as well ason Æ, the partile motions \deoherere" ausing the entroid amplitude to \damp".Digression. There may or may not be a subsequent reoherene. The predomi-nant deoherene/reoherene ours through eah yle of synhrotron osillation.As the energy of a partile osillates due to synhrotron osillation, the partiletune is too small when the partile energy is positive (relative to the referenepartile). As a result its betatron phase aumulates negatively. On the otherhand, when the relative energy is negative the betatron phase aumulates posi-tively. During one omplete yle of synhrotron osillation the net betatron phaseaumulation is zero to exellent auray. At the instant the transverse kik isapplied the longitudinal phases are distributed uniformly. Thereafter, dependingon their starting longitudinal phase, some partiles initially gain betatron phaseand others lose betatron phase. This auses deoherene and (transverse) entroiddamping. At a later time, exatly one synhrotron period after the initial kik, ev-ery partile, whatever its initial longitudinal phase had been, will have ompletedexatly one yle of synhrotron osillation. As just shown, the exess betatronphase aumulation during this time will have averaged exatly to zero. As a resultthe bunh \unsrambles" itself, and reonstitutes the original just-kiked distribu-tion. This phenomenon is ommonly observed in most aelerator ontrol rooms.The reonstituted pulse is often referred to as an \eho". The e�et is simulatedin FIG 7.6. There are also situations in whih even more ompliated, even withnonlinearity-aused deoherene, that exhibit ehos. End of digression.To simplify the present disussion, let us neglet synhrotron osillation (eitherbeause the beam energy spread is negligible or beause we will be onerned withtimes long ompared to the synhrotron period). Averaging over the longitudinalmotion, any surviving (small amplitude, transverse) tune dependene is expressable
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Figure 7.4. On the left the betatron phase spae distribution isvisualized as a sum of distributions, uniform over disks of radii su-essively hanging in steps of �p. This permits deviations from theunkiked distribution to be represented by positive and negativedistributions uniform over the \lunes" shown on the right.as dependeny of phase advane �(Æ̂), where Æ̂ is the longitudinal Courant-Snyderinvariant expressed as the maximum energy o�set.We assume the transverse deoherene is due entirely to the \shearing" motionalong irles of di�erent radius in phase spae for di�erent values of Æ̂. This negletsthe small e�et that, beause of nonlinearity at large R, the transverse phase spaeurves, even while remaining regular, beome distorted (though not haoti).For points lose to the origin in transverse phase spae, and having small Æ̂,the shear is negligible and the distribution rotates undistorted, as if rigid. To takeadvantage of this, FIG 7.3 is a snapshot (of the i'th turn) from a frame of referenerotating at rate �0. The e�et of kik �p is to hange the initial phase spaeloation of point P to (approximately)R0 = R+�R = R+�p sin�0; �0 = �+�� = �+ �p os�0R : (7.2)After the kik, the partile tune is �0 +��(R0; Æ̂), and its positions on subsequentturns are indiated by short arrows in FIG 7.3. After i turns its oordinates are�xi(�p;R;�; Æ̂)pi(�p;R;�; Æ̂)� = R0 os�� i�os�0sin�0�+R0 sin�� i�� sin�0os�0 � : (7.3)The entroid oordinates are given then by�xi(�p)pi(�p)� = Z 10 dR Z 2�0 d� Z 10 dÆ̂�xi(�p;R;�; Æ̂)pi(�p;R;�; Æ̂)�PR;�(R;�)PÆ̂(Æ̂): (7.4)These formulas are impratial for alulation beause of the ompliated depen-dene of �0 on position P. Sine the trigonometry of FIG 7.3 breaks down near theorigin, we assume �p << R: (7.5)



7.3. ANALYTIC TREATMENT OF DECOHERENCE 105Even with assumption (7.5), it is not legitimate to approximate �0 by �. Ifthis approximation is made, Eqs. (7.3) and (7.4) give a seriously inorret answereven for �� = 0 and i = 0. This failure is at least partly due to the extravaganeof not taking advantage of the strong tendeny for anellation in pairs of partilessymmetri about the origin.To take advantage of this anellation, we reformulate the alulation by fol-lowing instead the evolution of deviations from the unperturbed distributions assuggested by FIG 7.4. (For the time being we suppress indiations of Æ dependenyfrom the formulas, sine they will be easily restored later.) Sine volumes in theplot on the left orrespond to probabilities, the units along the vertial axis arelength�2 and the total \volume" is 1. Planning eventually to apply kik �p to thebeam, the unkiked beam distribution an be re-expressed in terms of the partiulardeetion �p that will be applied.The volume shown in FIG 7.4 an, on the one hand, be visualized as nested\ollars" of inner radius R � �p=2, wall thikness �p. The height of a ollar isonstant and an be evaluated along the x-axis to be Px(0)Pp(R). On the otherhand, the volume an be visualized as the pile of staked disks shown in the �gure,with radius R +�p=2 anddisk thikness = Px(0)�� dPp(p)dp �p=R�p = R2��4 e� R22�2 �p = PR(R)�p2��2 : (7.6)When the beam is displaed by �p along the p axis most of the probabilityin any partiular one of the staked disks, for example the one with radius R,an be regarded as unhanged; the entire hange an be asribed to an inreasein probability density in the positive-p \lune" shown on the right in FIG 7.4 anda orresponding redution in the negative-p lune. (Though the latter probabilitydensity is negative the total probability density in the region remains positive.)Sine the entire deviation in this region omes from this partiular disk and isaounted for by these lunes, and the subsequent shearing motion respets ringboundaries, it is suÆient to work out the subsequent evolution on a ring-by-ringbasis. From these distributions the ring entroids will then be found and �nally theoverall entroid loation.Toward this end the lune (two dimensional) density an be squashed into anangular (one dimensional) distribution. Furthermore the negative lune an bedropped, ompensating by doubling the positive-lune probability. With the areaof one lune being 2R�p, the volume it represents is equal to the lune area times thedisk thikness. Inluding both lunes, this volume is equal to 4R(�p)2PR(R)=(2��2).Sine volumes represent probabilities, this quantity will be referred to as \deviationprobability". Even though not normalized, this volume an be used for entroidalulations as if it is a normalized probability distribution, sine the extra volumeneeded to yield unit total probability ontributes no entroid shift.Letting P devR dR stand for the deviation probability in range dR we haveP devR (R) = 2�p��2 RPR(R): (7.7)Beause the shearing motion preserves the radius in phase spae, P devR is indepen-dent of turn index i. When distributed in x, the just-kiked deviation probabilityP devR (R)dR is uniform. Therefore, when distributed in �, whih is related to x byx = R os�, the distribution is proportional to dx=d� = R sin�. We therefore



106 7. DECOHERENCE AND FILAMENTATIONde�ne a (normalized) angular probability distribution,P�;0(�) =8><>:0 for � < 0(1=2) sin� for 0 < � < �0 for � < � : (7.8)This is a universal initial angular distribution, independent of R.Then the joint probability distribution P devR;�, de�ned so that P devR;�dRd� standsfor the deviation probability in range dRd�, an be fatorizedP devR;�(R;�; i) = P devR (R)P�(�; R; i): (7.9)Initially it is given byP devR;�(R;�; i = 0) = P devR (R)P�(�; R; i = 0) = �p��2RPR(R) sin�: (7.10)Exept for the eventual integration over R, all that is required is to evaluate an-gular distribution P�(�; R; i) as it evolves away from P�;0(�)|a one dimensionalalulation. Furthermore the R dependene allowed for notationally by the seondargument of P�(�; R; i), will be present only to the extent the betatron motion isnonlinear.The entroid oordinates are obtained as the averages of x = R os� andp = R sin� weighted by P devR;�(R;�; i);�xi(�p)pi(�p)� = Z 10 RP devR (R)dR Z d� P�(�; R; i)�os�sin�� : (7.11)Here the limits of the � integration are not indiated. They an safely be set largesine, for �nite i, the integrand vanishes exatly outside a �nite range. At i = 0the non-vanishing range is from 0 to � and for other values of i the range needs tobe extended only by ��maxi where ��max is the maximum possible tune deviationfrom nominal.To hek for onsisteny, let us alulate the i = 0 entroid loation;p0(�p) = Z 10 RdR Z �0 d� P devR;�(R;�; i = 0) sin� = �p 4� Z �0 sin2�2 d� = �p;(7.12)as expeted.The only dependene on i in Eq. (7.11) is introdued via�i = �0 +��(R; Æ̂) i; (7.13)whih, for a partile with initial phase �0, gives its phase after i turns. Anyontribution to ��(R; Æ̂) that is independent of R and Æ̂ auses no shearing andhas been subsumed in �0. The leading dependene of �� is then given by��(R; Æ̂) = r1R+ r2R2 + � � �+ d1Æ̂ + d2Æ̂2 + � � � : (7.14)After i turns the distribution originally given by P�;0, having preessed throughangle ��(R; Æ̂) i, will have beome P�;i(�; R; Æ̂) = (1=2) sin(� ���(R; Æ̂) i); (andzero outside the entral lobe.) This, along with Eq. (7.11), is exat in the small kiklimit where approximation (7.5) is valid, and the dependene is simple enough foreasy and aurate numerial evaluation. But, beause of various other unertainties,great preision is rarely justi�ed. This makes it sensible to approximate the angulardistribution in a way that will simplify subsequent alulations. Also we take the



7.3. ANALYTIC TREATMENT OF DECOHERENCE 107opportunity to introdue a more onvenient azimuthal angle � in terms of whihthe starting distribution is symmetri about � = 0;� = �� �2 : (7.15)The approximate form to be used isP�;i(�; R; Æ̂) � 1p2���t exp(� (����(R; Æ̂) i)22�2�t ): (7.16)This form eliminates the need for the multiple ases of Eq. (7.8) and permits anin�nite � integration range. The quantity ��t is simply a dimensionless number(an angle in radians) hosen to make the approximation in Eq. (7.16) as aurateas possible. The value ��t = (2�)�1=6 = 0:736 would math the quadrati variationat � = �=2, but we hoose insteadexp�� �fit2 � = �4 ; or ��t = 0:695; (7.17)whih auses Eq. (7.12) to be satis�ed, thereby avoiding a (small but inelegant)error in the just-kiked entroid loation. Substituting Eq. (7.16) into Eq. (7.11)yields�xi(�p; Æ̂)pi(�p; Æ̂)� = �p Z 10 dR 2��4R3e� R22�2 Z 1�1 d� 1p2���t e� (����(R;Æ̂) i)22�2fit �� sin�os� �(7.18)= �p 2��4 1p2���t Z 10 dRR3e� R22�2 �� sin�� ios�� i �Z 1�1 d� os� e� �22�2fit (7.19)= �p 12�4 Z 10 dRR3e� R22�2 �� sin��(R; Æ̂) ios��(R; Æ̂) i � (7.20)where the dependene on Æ̂ has been restored to the notation. This formula, with��(R; Æ̂) expressed, for example, as in Eq. (7.14), is the main formula desribingthe e�et of deoherene due to R-dependent tune aused by nonlinear betatronmotion. For small i, evaluating the integral numerially is easy. For large i, themethod of stationary phase may be appliable.[19℄Sine there has been no averaging over Æ̂ as yet, Eq. (7.20) should also bevalid with Æ̂ replaed by Æ. The major e�et of this would be evident in FIG 7.3where the phasor amplitudes would vary sinusoidally beause of hromatiity andsynhrotron osillation. Whatever shearing this auses is exatly undone over aomplete longitudinal yle, ausing periodi deoherene/reoherene eah periodof synhrotron osillation. By performing these alulations it would be possible toompare to a formula due to Meller et al.[20℄ but this has not been done. Thefeature distinguishing the present alulation from Meller's is that he assumedno systemati dependene of tune on Æ̂. It is not easy to ompare formulas herewith his paper sine the order of integation is di�erent and he does not make theapproximation Eq. (7.16). (This should ause only small numerial di�erenes.)We ontinue, but now keeping just the term ��(R; Æ̂) = d1Æ̂ (whih permitsthe R integration to be performed) and assume that Æ̂ is distributed aording toPÆ̂(Æ̂) = Æ̂�2Æ exp�� Æ̂22�2Æ �; (7.21)
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Figure 7.5. Time evolution of (frational) entroid positionx=�p, slope p=�p, and px2 + p2=�p after initial deetion �p,viewed in a frame of referene rotating at the small amplitude tune,as given by Eqs. (7.23-7.25). An exponentially deaying funtion1:2 exp(�0:38d1�Æi) is also shown for omparison.and average over Æ̂ to obtain1pi(�p)�p = 1�2Æ Z 10 dÆ̂ Æ̂ exp�� Æ̂22�2Æ � os(d1Æ̂ i) (7.22)= 1� (d1�Æi)2 + 13(d1�Æi)4 � 17:5:3(d1�Æi)6 + 19:7:5:3(d1�Æi)8 + � � � ;(7.23)andxi(�p)�p = � 1�2Æ Z 10 dÆ̂ Æ̂ exp�� Æ̂22�2Æ � sin(d1Æ̂) i = �r�2 (d1�Æi) exp�� (d1�Æi)22 �:(7.24)The most diretly observable quantity is the \deoherene fator",Fi(d1�Æi) =s�xi(�p)�p �2 + �xi(�p)�p �2: (7.25)These funtions are plotted in FIG 7.5. As explained previously, the quantitiesxi and pi tend to vary slowly beause they refer to a frame of referene rotating1Formula (7.23 is poorly onvergent and an only be used for values of the argument lessthan 2 or so.



7.3. ANALYTIC TREATMENT OF DECOHERENCE 109at rate �0. The orresponding invariant amplitude qxi2 + pi2 varies even moreslowly. But when it is viewed as a vetor in a stationary frame it rotates rapidlyand is interpreted as the betatron osillation of the entroid. The magnitude of theinvariant amplitude is the same in stationary and rotating frames. This was thebasis for the statement made above that the \deoherene fator" Fi is the theoret-ial quantity that an most easily be orrelated with experimental observations.2From FIG 7.5 it an be seen that the time evolution of xi and pi are very di�erent,the latter falls o� in more or less Gaussian fashion while the former rises initially,then falls. Neither of these behaviors seems deserving of the name \damping", butthe funtion Fi falls o� more nearly as the deaying exponential that is normallyassoiated with damping. To illustrate this point a pure exponential deay urvethat rudely mathes Fi is also shown in FIG 7.5.When damping rates are measured experimentally in the ontrol room, the ob-served response is usually not a pure exponential deay. Rather, an initial transient(that is hard to interpret and may be instrumental in nature) is followed by a urvewell �t by a pure exponential. An empirial reipe extrating damping rates hasbeen to selet the range over whih the log plot is most nearly linear as the signalfalls by 1=e|typially this is from about 0.8 to about 0.3 of the just-kiked signal.This is not very di�erent from the range over whih the exponential desribed inthe previous paragraph gives a tolerable �t to the theoretial response urve. Con-sidering the only-semi-quantitave \absolute" auray of the measurements and thelak of auray with whih the various parameters inuening the phenomenon areknown, we therefore judge the exponential �t shown in the graph to be a reasonablerepresentation of the theory, for omparison with the experimental data.We have obtained a simple presription for prediting the \damping rate" ��;dewith whih the entroid will be observed to damp after the beam has been pinged.By partile traking in the lattie under onsideration (CESR in our ase withparameters orresponding to FIG 7.1), for a partile with invariant longitudinalinvariant equal to the r.m.s. value Æ̂ = �Æ = 0:6 � 10�3, the tune shift is foundto be �Q(�Æ) � 1:5 � 10�3. Assuming the dependene linear, this �xes the d1oeÆient in Eq. (7.14); d1 = 2��Q(�Æ)�Æ : (7.26)Then the entroid amplitude varies as exp(���;det) = exp(�0:38�2��j�Q(�Æ)ji),where time t and turn number i are related by t = i=f0, with f0 = 0:39� 106Hz.Then we obtain ��;de = 2:39j�Q(�Æ)jf0 (7.27)When parameters appropriate to FIG 7.1 are used, the predited damping rateis 1160 s�1. This exeeds the rate inferred from the multipartile simulation by afator 1.7. Considering the various unertainties, this is probably as good agreementas an be expeted.
2Though more detailed information about the beam is measurable in priniple, we are mainlyonerned with signals from the beam position monitors whih ontain only information aboutthe entroid.



110 7. DECOHERENCE AND FILAMENTATION7.4. Simulation of Deoherene/Reoherene EhosMore than one of the deoherene phenomena mentioned above may be oper-ative at the same time. This is illustrated in FIG 7.6, whih was obtained usingthe deoherene simulator on the raetrak lattie. Initially there is deoherenein both horizontal and vertial motion due to the spread of tunes. That is, theentroid motion \damps". As disussed earlier, the entroid amplitude is expetedto reohere to give an eho after one omplete synhrotron period and to repeat thisyle at the synhrotron frequeny. This is visible in both x and y motion. Fromthe graphs it is lear that the situation is a bit more ompliated than this expe-tation. Espeially the < x > entroid does not return to its full starting amplitude.This presumably indiates the presene of (betatron)-amplitude dependene of thetransverse tunes. These phenomena are to be investigated in assignments givenbelow.Two views of the GUI used for this simulation are exhibited in FIG 7.7 andFIG 7.8. As shown in FIG 7.7 the requested hromatiities are Q0x = 20 andQ0y = �20 in the basi lattie desription. Modi�ed entries an be typed intothose two slots. From the raetrak.sxf �le one an infer that the names of thehromatiity sextupoles are sext1 and sext2. These names are to be typed intothe slots labeled b2f and b2d. Cliking on the setup button adjusts the strengthsof sextupoles with those names to ahieve the desired hromatiities. Suessfulompletion of this proess is printed.For simulating deoherene a bunh of, say, 1000 partiles is initialized, thenkiked transversely by the kiker element, and then traked for, say, 1000 turns.All three entroids < x >, < y >, and < s > are plotted every 10 turns. Thesevalues are plotted in FIG 7.6.The detailed simulation is ontrolled by the APDF �le. Two suh �les areshown in Table 7.1. How the kik is administered is governed by the line<link algorithm="UAL::USPAS::OneTurnKiker" elements="kiker" />whih is ommon to both APDF �les. Propagation around the ring an be donein element-by-element, kik ode, fashion. This alulation is governed by theteapot.apdf �le. Alternatively the traking an proeed by trunated power series(TPS) traking. This alulation is governed by the mapping.apdf �le. For thispropagationmethod the maps from every bpm to its adjaent bpm are �rst alulated,and then the map is used to evolve individual partiles. Not shown in the APDF �le(for now) is the trunation order, whih was 3, \otupole order", for the simulationshown in FIG 7.6.



7.4. SIMULATION OF DECOHERENCE/RECOHERENCE ECHOS 111

Figure 7.6. Beam ehos observed one synhroton period (andmultiples thereof) after a beam is kiked both horizontally andvertially in the raetrak lattie. Q0x = 20, Q0y = �20.
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Figure 7.7. Simulator window used for adjusting hromatiities.

Figure 7.8. Simulator window listing available propagators.



7.4. SIMULATION OF DECOHERENCE/RECOHERENCE ECHOS 113Table 7.1. Two APDF �les for simulating the same deoher-ene/reoherene phenomenon by two di�erent methods|element-by-element, and map traking.<apdf><propagator id="teapot" aelerator="ring"><reate><link algorithm="TEAPOT::DriftTraker" types="Default" /><link algorithm="TEAPOT::DriftTraker" types="Marker|Drift" /><link algorithm="TEAPOT::DipoleTraker" types="Sbend" /><link algorithm="TEAPOT::MltTraker" types="Quadrupole|Sextupole|Multipole|[VH℄kiker"/><link algorithm="TIBETAN::RfCavityTraker" types="RfCavity"/><link algorithm="AIM::Monitor" types="Monitor|[VH℄monitor" /><link algorithm="UAL::USPAS::OneTurnKiker" types="Kiker" /></reate></propagator></apdf><apdf><propagator id="mapping" aelerator="ring"><reate><link algorithm="TEAPOT::MapTraker" setor="Default" /><link algorithm="AIM::Monitor" elements="bpm" /><link algorithm="UAL::USPAS::OneTurnKiker" elements="kiker" /></reate></propagator></apdf>



114 7. DECOHERENCE AND FILAMENTATIONSimulation 7.1. Use the deoherene simulator to orrelate deoherene timewith momentum-dependent tune spread. One an adjust the tune spreads by adjust-ing the hromatiities. One an plot the tunes versus Æ by preparing initial partileonditions for various values of Æ.Simulation 7.2. By vastly reduing the number of bpm's in the raetraklattie, speed up the deoherene/reoherene simulation that uses map traking.Simulation 7.3. Investigate the dependene of deoherene time on initial kikamplitude. Sine the kik amplitude is not available from the GUI it is neessaryto \hard ode" the kik amplitude and reomplile that part of the ode.



CHAPTER 8General Transverse MotionA linearized treatment of transverse partile dynamis was given in Chapter 2.Here, starting from a more general formulation of the equation of motion, we inludethe possibility of nonlinear deetions. The next few setions spell out the bendinge�ets of the simpler magneti elements. Then the generalization from transfermatries to transfer maps, in order to inlude nonlinear e�ets, is disussed. Thefollowing setions disuss sympletiity-preserving evolution algorithms. Finally thedisussion of FFT beam diagnosis, started in Chapter 4, is extended to nonlineare�ets. 8.1. Magneti DeetionsThe magneti �eld of an ideal, eret, aelerator magnet an be expressed asB = By �01�+ �By�x �yx�+ 12 �2By�x2 � 2xyx2 � y2�+ � � � : (8.1)Though not indiated by the notation, the (onstant) oeÆients, By and its deriva-tives, are evaluated on the magnet enterline, in the interior of the magnet. Onlyx and y omponents are shown, sine the �elds are assumed to be transverse. Alsothe �elds are assumed to be independent of z (exept for vanishing outside themagnet). One an on�rm immediately that r �B = 0 and thatr�B = 0� x̂ ŷ ŝ�=�x �=�y 0Bx By 01A = 0: (8.2)In fat the form (8.1) amounts to starting with a �eld for whih only By is non-vanishing for x = 0, but is otherwise arbitrary, expanding it in powers of x, andthen extrapolating o� the x = 0 plane using the Maxwell equations to obtain they dependendene and Bx.Using the Lorentz fore law, the hange in veloity dv, as harge Q passeslongitudinal distane ds, is given bymQ dvds=v = v �B =By0� x̂ ŷ ŝvx vy vs0 1 01A+ �By�x 0� x̂ ŷ ŝvx vy vsy x 01A+ 12 �2By�x2 0� x̂ ŷ ŝvx vy vs2xy x2 � y2 01A+ � � � :(8.3)To treat suh a magnet as a single \short" element, while allowing for fringe �elds,it is neessary to integrate this formula from well before the magnet to well afterit. The e�et of passage of a partile through suh a magnet are \kinks", i.e.115



116 8. GENERAL TRANSVERSE MOTIONdisontinuities �x0 and �y0 in the slope oordinates x0 = dx=ds and y0 = dy=ds.For a dipole (the �rst term) the bend angle �� (assumed small) is determined by���10� = ��x0�y0� = ��(vx=vs)�(vy=vs)� = Z ds Byp=Q ��xy � ; (8.4)with the result that �� = Z ds Byp=Q: (8.5)This has negleted any variation of vs, x, or y as the partile passes the magnet.From the derivation this result might seem to provide only a rough approximationto the deetion. But, in fat, a thik magnet an be segmented into arbitrarilymany thin magnets. So this formulation an be the basis for aurate numerialintegration of partile orbits through (ideal) magnets. Beause By and p varyproportionally, �� has the desired property of being momentum-independent. Fur-thermore �� is dimensionless as an angle must be.For a quadrupole (the seond term of Eq. (8.3)), the strength (i.e. inverse foallength) q is determined byq��xy � = ��x0�y0� = ��(vx=vs)�(vy=vs)� = Z ds �By=�xp=Q ��xy � ; (8.6)with the result that q = Z ds �By=�xp=Q : (8.7)Like ��, q is a purely geometri quantity, an inverse length. It is independentof partile momentum and harge whih anel against By. The inevitability ofopposite-sign foal properties in the two transverse planes has also been exhibited.For an eret sextupole (the third term of Eq. (8.3) the strength S is determinedby 12 S�x2 � y22xy � = ��x0�y0� = 12 Z ds �2By=�x2p=Q �x2 � y22xy � ; (8.8)with the result that S = Z ds �2By=�x2p=Q : (8.9)Expressions like ��, q, and S are known as \�eld integrals" beause integration overa omplete element is implied. Higher pure multipole magnets are de�ned similarly.A potential soure of error to be aware of omes from the fator 1=n! that entersthe relation between multipole strength and �Bn=�xn. This fator omes from theTaylor series expansion formula. For the sextupole the fator is 1=2.In spite of the fat that suh magnet �elds violate Maxwell's equations, it isustomary to treat the �elds of ideal magnets as uniform within an e�etive or\magneti" length lm and dropping disontinuously to zero outside that length.1In this onvention the �eld By and its derivatives are evaluated at the longitudinalenter of the magnet and lm is adjusted to math the �eld integral over the magnet.For this reason lm tends to be lose to, but not exatly equal to the geometri lengthl. Repeating the disussion of thin elements made earlier, though these magnetistrength de�nitions have the appearane of being rude approximations, they anbe made inreasingly aurate by reduing lm. (This auray is vitiated by the1Within ADXF the notation for magneti length lm is ml whih is distint from the \geometrilength" l, notation l. But, by default, ml and l are taken to be equal.



8.2. ADXF AND SIF ELEMENT STRENGTHS AND DEVIATIONS 117inevitable presene of longitudinal �eld omponents, present when transverse �eldomponents depend on s. But in most ases the deetions aused by Bs areextremely small.)In this approximation the above formulas beome,�� = Byp=Q lm; q = �By=�xp=Q lm; S = �2By=�x2p=Q lm; � � � : (8.10)8.2. ADXF and SIF Element Strengths and DeviationsWithin \standard input format" SIF, whih has evolved into MAD input format,the strengths of magneti elements an be expressed using the formulas just derived.In partiular, for quadrupoles and sextupoles, the leading fators in Eqs. (8.10) areexpressed asK1 = 1B� �By�x � �By=�xp=Q ; K2 = 1B� �2By�x2 � �2By=�x2p=Q ; (8.11)where the onventional \B-rho" quantity is de�ned by either of these equations or,better motivated, by the �rst of formulas (8.10):(B�) � By lm�� = p=Q ; (8.12)where, as usual, rather than aneling fators, it is onvenient to retain the ombi-nation p=Q whih has S.I. units, namely volts.As already implied, the merit in grouping fators into B� is to redue strengthparameters to purely geometri terms. The dimensions of K1 and K2 are m�2and m�3 respetively. These dimensions are appropriate for longitudinally variable\thik element desription" for whih integration over the magneti element re-mains to be performed. Generally speaking, element strengths is SIF are expressedas loal strength funtions, like K1 and K2. The onvention in ADXF's generi ele-ment <element> is di�erent; strengths are represented by integrated (over length)values of loal strength funtions. Examples q and S were given earlier. As hasbeen mentioned before, this distintion is purely osmeti, and is unrelated to a-tual preision of representation. Atually, for bakward ompatibility, ADXF alsosupports a MAD-like syntax whih, other than being expressed in XML is equivalentto MAD8.The main way in whih ADXF extends MAD8 is that pre-existing elements anbe assigned new attributes suh as magneti �eld deviations. A simple example �leshowing the syntax for inluding deviations is eq tune fodo.adxf. In ADXF a dis-tintion is drawn between uninstalled elements (in Etienne Forest's PTC terminol-ogy they are alled \on-the-benh elements") and installed elements. The latter are,of neessity, fully-instantiated, meaning they have their own individual names, posi-tioning, and strength deviations. The strengths shown in the eq tune fodo.adxf,say for quadhf elements, are uninstalled properties, shared by all ourenes ofquadhf elements in the lattie. Within ADXF there is an \inheritane" mehanismin whih an individual installed element, with its own individual name, an bereferred to a design element, suh as quadhf, from whih it inherits parameters.Suh an installed element an be assigned parameters that override or augment theuninstalled parameters.This an be illustrated by the following ode fragment



118 8. GENERAL TRANSVERSE MOTION<elements><marker name="mk1"/><sbend name="bend" l="lq" angle="deltheta"/><quadrupole name="quadhv" l="lq" k1="kq1"/>...</elements>whih amounts to re-expressing MAD input language as XML, with an exampleexhibiting inheritane:<elements><sbend name="d0mp08" l="3.58896" angle="-0.0151186"/><element name="bi8-dh0" design="d0mp08"/><mfield b="0 0 0.005476 0.033503"a="0.0 -0.010166 0.024366"/></element></elements>where the "bi8-dh0" element is based on the "d0mp08" design element, but with�eld deviations desribed within the <m�eld> tag whih is assoiated with mag-neti �eld attributes.In ADXF, as in most lattie desriptions, magneti �eld deviations are expressedas multipole series. For a bending magnet the magneti �eld, as well as the e�etof transverse positioning deviations (�x;�y), are expressed as a (omplex) series:(By + iBx)lm = B0lm MXn=0(bn + ian)�(x��x) + i(y ��y)�n: (8.13)The maximum multipole index M is usually �xed at a moderately large value,suh as 10, but with dynami memory alloation M an be made larger, if desired.When trunated power series (TPS) are used a highest retained power is de�ned.Multipole terms with index higher than this are simply ignored in TPS alulations.Field expansions for Bx and By individually are obtained by separating Eq. (8.13)into real and imaginary parts. The fator lm has been intentionally left as a om-mon fator on both sides of this equation. Note that this representation inludesthe possibility of arbitrary roll angles around the longitudinal axis, even inludingpurely vertial bends. The atual fators expressing dipole �eld deviations in theADXF �le are ~bn = B0lmbn; and ~an = B0lman: (8.14)In partiular, for an ideal thin setor bend, ~b0 = ���. For an arbitrary setor bendmagnet this formula beomes �� = �2 sin�1 ~b02 : (8.15)Note that, like similar quantities introdued previously, ~b0 is a \�eld integral"quantity. Bend �elds that depend on longitudinal oordinate s an be representednumerially and aurately by longitudinal segmentation.The oeÆients in multipole series (8.13) an be related to other onventionalmagnet strength parameters as shown in Table 8.1. Real and imaginary oeÆientsRn and In are de�ned by (x+ iy)n = Rn + iIn: (8.16)



8.3. NONLINEAR MAGNETIC FIELD EXAMPLE 119Table 8.1. Deetions aused by standard magnets and notationsfor their strengthsn Rn In ~bn ~an �x0 = � ~By �y0 = ~BxHorz. bend0 1 0 ��x 0 ���x 0Vert. bend 0 ��y 0 ��yEret quad1 x y q = 1=f 0 �qx qySkew quad 0 qs = 1=fs qsy qsxEret sext 2 x2 � y2 2xy S=2 0 �S2 (x2 � y2) S2 2xySkew sext 0 Ss=2 Ss2 2xy Ss2 (x2 � y2)Eret ot 3 x3 � 3xy2 3x2y � y3 O=6 0 �O6 (x3 � 3xy2) O6 (3x2y � y3)Skew ot 0 Os=6 Os6 (3x2y � y3) Os6 (x3 � 3xy2)Eret dea 4x4 � 6x2y24xy(x2 � y2) D=24 0 � D24 (x4 � 6x2y2 + y4) D244xy(x2 � y2)Skew dea +y4 0 Ds=24 Ds24 4xy(x2 � y2) Ds24 (x4 � 6x2y2 + y4)The fators 1!, 2!, 3! entering the de�nitions of quad strength q, sextupole strengthS, otupole strength O, et. are onventional. Notie, for example, the relation toSIF syntax; ~b2 = S2 = K2 � L2 : (8.17)Formulas giving transverse kinks are�x0 = � ~Byjn = �~bnRn + ~anIn; (8.18)�y0 = ~Bxjn = ~bnIn + ~anRn:Multipole expansions to express �eld nonuniformity are reasonably standardfor dipoles.2 But magnet types other than dipoles have vanishing �elds on axis,whih makes it neessary to replae the fator B0 if an expansion like Eq. (8.13) isstill to be used. Otherwise the oeÆients, as measures of frational deviation, anbe plaed in one-to-one orrespondane with dipole �eld multipoles, but with theindies shifted by one. A ommon hoie for an (approximately) eret quadrupoleis to write(lmBQy ) + i(lmBQx ) = (lm �BQy�x )�x+ iy + 10�4 MXn=2(bQn + iaQn ) (x+ iy)nRn�1r �; (8.19)where Rr is a referene radius, suh as 1 m. The value of Rr and the fator 10�4are normally hosen suh that the numerial values of aQn and bQn are of order 1for \bad", low order, multipoles and muh less than 1 for high order multipoles inwell-designed magnets.8.3. Nonlinear Magneti Field ExampleThe outline of a typial horizontal steering magnet, viewed from downstream,is shown in FIG 8.1, whih also shows the same magnet rotated to steer vertially.The measured, midplane, vertial magneti �eld By is plotted in FIG 8.2; it hasthe form By(x; y = 0) = By0(1 + b2x2 + b4x4); (8.20)2Atually expansion (8.13) is standard only in Ameria. In Europe, oeÆients are de�nedinitially in an expansion of a vetor potential whih is then di�erentiated to obtain a series similarto Eq. (8.13) but with fators of n! and indies shifted by 1.
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Figure 8.1. A horizontal steering dipole and the same magnetrotated so that it steers vertially. The median-plane �eld andits multipole approximation is shown in FIG 8.2. The analytidesription of the rotated �elds is given in the text.where By0 is the nominal value of By. For this magnet the dominant multipoleimperfetion oeÆient happens to be deapole b4. Referring to Table 8.1 it an beseen that this form an be ontinued o� the median plane byBy(x; y) = By0(1 + b2(x2 � y2) + b4(x4 � 6x2y2 + y4)): (8.21)This also yields the other �eld omponent;Bx(x; y) = By0(b22xy + b44xy(x2 � y2)): (8.22)Note that the �eld uniformity of the atual magnet is somewhat better at smallamplitudes than either multipole would give by itself. This illustrates the notunommon possibility that trunation of the multipole series an, by defeatingdesirable anellation, yield overly pessimisti �eld values. Also plotted in FIG 8.2is the \wrong �eld omponent" Bx(x; y = 10) plotted as a funtion of x, along aline displaed to positive y = 10mm.If the steering magnet is rotated by 90 degrees (anti-lokwise to an observerlooking from downstream, so that positive horizontal deetion beomes positivevertial deetion) the new multipole expansion an be obtained from series (8.21)and (8.22) by transformations suggested by the labels on FIG 8.1,�Bx(x; y) = (�Bx0)(1 + b2(y2 � x2) + b4(y4 � 6y2x2 + x4)); (8.23)By(x; y) = (�Bx0)(b22y(�x) + b44y(�x)(y2 � x2));where the nominal �eld is now Bx0 with sign opposite to By0. Hene we haveBy(x; y) = Bx0(b22xy � b44xy(x2 � y2)); (8.24)Bx(x; y) = Bx0(1� b2(x2 � y2) + b4(x4 � 6x2y2 + y4)):Renaming the original multipole oeÆients b2;old and b4;old, to make this formmath expansion Eq. (8.13) it is neessary to introdue skew oeÆients a2 and a4
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Figure 8.2. Midplane magneti �eld By in a transversely-limited eret dipole magnet. Curves with sextupole or deapole\turned o�" are also plotted, as well as a urve showing the de-apole ontribution to the o�-median-plane, \wrong �eld ompo-nent" Bx(x; y = 10mm) (displaed upwards by 250Gauss for plot-ting purposes.). The multipole oeÆients are b2 = 6:99m�2 andb4 = �1:46 � 105m�4. When the same magnet is used for verti-al steering the non-vanishing oeÆients are a2 = �6:99m�2 anda4 = �1:46� 105m�4. The �eld alulation is due to Sasha Tem-nyk.into Eq. (8.18);By(x; y) = Bx0(�a22xy � a44xy(x2 � y2)); (8.25)Bx(x; y) = Bx0(1 + a2(x2 � y2) + a4(x4 � 6x2y2 + y4)):If the �eld of the eret magnet is desribed by the series in Eq. 8.13 with theparameter set (B0 = By0; b2; a2 = 0; b4; a4 = 0) then the �eld of the same magnet,anti-lokwise rotated by 90 degrees, will be desribed by the same series (8.13) withthe parameters set (B0 = Bx0; b2 = 0; a2 = �b2;old; b4 = 0; a4 = b4;old). In general,the multipole oeÆients an and bn for a rotated magnet are linearly related to theold an and bn, whih oeÆients depending on the angle of rotation.8.4. TRANSPORT Matrix Elements8.4.1. \Canonial" Coordinate De�nitions. A notation for desribing loworder transfer map elements was originated by Karl Brown, at Stanford, in hisprogram alled TRANSPORT. This program was initially devoted to spetrometer



122 8. GENERAL TRANSVERSE MOTIONdesign but the notation has been adopted for aelerator latties, and the elementsreferred to as \TRANSPORT elements" even though, by now, their de�nitionshave been slightly hanged. The details though purely onventional, have to beunderstood for any inveestigation to higher than linear order. In TRANSPORTnotation the general spatial motion of a point partile in a lattie is desribed byit 6 displaements from an ideal, or design, or referene partile;x = 0BBBBBB�x1x2x3x4x5x6
1CCCCCCA � 0BBBBBB�xx0yy 0̀Æ

1CCCCCCA ; (8.26)where ` is longitudinal deviation from bunh enter and the other omponentshave been de�ned earlier. Small amplitude propagation from point (0) to generaldownstream point in a lattie an be approximated by the teading terms in a Taylorseries; xi = 6Xj=1 Rijxj(0) + Xj=16 6Xk=j Tijkxj(0)xk(0): (8.27)One detail, now obsolete, was that by TRANSPORT onvention, to redue storagerequirements and evaluation time, Brown hose to keep only \above diagonal" el-ements of Tijk. i.e. the k summation starts at k = j. This exploits the fatthat xj(0)xk(0) = xk(0)xj(0). So, when omparing matrix elements, one has tohek whether the orresponding o�-diagonal elements are symmetri, or have hadabove-diagonal elements doubled and below-diagonal elements dropped.A more signi�ant distintion between onventional matrix element de�nitionsonerns the hoie of omponents for x. In order for Hamiltonian dynamis to beapplied most diretly to partile propagation, true \anonial" oordinates shouldbe used. But, to \geometriize" lattie theory, one divides all momentum ompo-nents by the total momentum p0, yielding a form of \saled" phase spae. (This,basially, is the soure of the  fator in the de�nition of invariant emittane.) InUAL the longitudinal spatial oordinate is usually referred to as �t whih has unitsof length, with the sign adjusted so oordinate inreases toward the front of thebunh. Following MAD, whih follows MARYLIE, the longitudinal \momentum" istaken to be �E=(p0). Only by hoosing these oordinates to be anonial an therequirements of sympletiity be exploited eonomially. All these de�nitions re-due to the original TRANSPORT de�nitions in the small amplitude, fully relativistilimit. x = 0BBBBBB�x1x2x3x4x5x6
1CCCCCCA � 0BBBBBB� xpx=p0ypy=p0�t�E=(p0)

1CCCCCCA ; (8.28)From Hamiltonian point of view the �fth omponent is time, but for onveniene thisomponent is expressed as a distane by multipliation by . For fully-relativistimotion this is, in fat, longitudinal displaement from referene position. The atualnumerial values of the matrix elements depend on what onventions have entered



8.4. TRANSPORT MATRIX ELEMENTS 123the oordinate de�nitions. Fortunately the Rij elements are largely independent ofthese hoies and onversion of the Tijk elements is fairly straightforward.8.4.2. Linear Matrix Elements in a \Toy" Lattie. To illustrate theevaluation of matrix elements, and to hek the UAL ode, matrix elements for theeq tune fodo \toy" lattie illustrated in FIG 3.1 will be worked out and omparedwith output from the ode. Aording to Eqs. (3.11) and (3.12) the transfer matriesthrough one omplete full ell are given byM (x)11 = � 1� 2q2l2 2l(1 + ql)�2q2l(1� ql) 1� 2q2l2� =  os�1 �(x)1 sin�1� sin�1=�(x)1 os�1 ! ; (8.29)M (y)11 = � 1� 2q2l2 2l(1� ql)�2q2l(1 + ql) 1� 2q2l2� =  os�1 �(y)1 sin�1� sin�1=�(y)1 os�1 ! ;where expressions for �(x)1 and �(y)1 were given in Eqs. (3.16).The diagonal R-matrix elements desribing propagation through the fullellan be read o� by inspetion;R11 = R22 = R33 = R44 = os�1; (8.30)and, beause Æ is onserved R55 = R66 = 1: (8.31)O�-diagonal elements areR12 = sin�1�(x)1 ; R21 = � sin�1=�(x)1 ; (8.32)R34 = sin�1�(y)1 ; R43 = � sin�1=�(y)1 :Sine the deetion in sextupoles is quadrati in x and y the sextupoles do notontribute to R. The deetions in quads depend on Æ but they are also linearin x and y, so quads do not ontribute to R55 and R66. But the deetion in thebending element (here treated as if at a single point) is (inversely) proportional tomomentum. It is left as an exerise to show thatR16 = 2l(1 + 12 lq)��; R26 = (2� lq � l2q2)��: (8.33)Working out these formulas also makes a good start toward working out the Tijkelements.One an hek theRmatrix elements with the values shown in Table 8.2. (Notethat, as displayed (for programming onveniene) this printout atually reads asthe transpose RT .) For this data the relevant numerial values werenhalf := 200lhalf := 10q := 0.061909deltheta := 0.031415ellmu := 1.33517s1 := 0.05767s2 := -0.10939betax1 := 33.302betay1 := 7.8345



124 8. GENERAL TRANSVERSE MOTIONTable 8.2. Rij elements for a weakly-oupled system0.231876 -0.029239 0.000000 0.000000 -0.031317 0.00000032.36138 0.231876 0.000000 0.000000 -0.822722 0.0000000.000000 0.000000 0.233472 -0.124089 0.000000 0.0000000.000000 0.000000 7.619439 0.233472 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 1.000000 0.0000000.822722 0.031317 0.000000 0.000000 -0.012908 1.000000Problem 8.1. Adjust the input parameters to eq tune fodo.adxf to repliatethe R matrix listed as Table (8.2). The value nhalf=200 has been hosen to be largeenough to make this a big aelerator, to de-emphasize the dipole fousing e�et.Give two matrix elements that are very nearly equal, but would be exatly equal,if there were no bending elements in the FODO ell. The surviving x; z oupling�gures prominently in the following problems.Problem 8.2. Use formulas in this setion to derive all R matrix elementsexept R5i, i=1..6. Note that R66=1 and R6i=0 for i6= 6 sine magneti elementsannot hange the partile energy or, therefore, Æ.Problem 8.3. Using any matrix proessing devie you have available, suh asprogrammable hand alulator or spreadsheet program, to alulate the determinantdetM. Is this orret? If, as a last resort, you hoose to work out the determinantby brute fore alulation with a matrix-deprived alulator, be sure to observe thatthere are no o�-blok-diagonal elements oupling either x or z to y. This means they elements an be treated as a 2� 2 matrix and the x and z omponents as 4� 4.Problem 8.4. Refer bak to formulas in the setion 5.1, \Analysis of a 4� 4Sympleti Matrix". Those formulas emphasized oupling between x and y but thesame formulas apply to the x and z oupling in the matrix M under study. Simplysuppress the third and fourth rows and olumns. Sine any elements dropped havingindies orresponding to x or z vanish, the remaining 4� 4 matrix an be analysedas in that setion. Evaluate the elements of the o�-diagonal submatries B and Cand show that the oupling terms of our (now 4� 4) matrix M do not shift eitherhorizontal or longitudinal tunes.Problem 8.5. Use Eq. (5.3) to derive M�1 and on�rm the result to be orretby evaluating M�1M. This proves (or not) that M is sympleti. Unit determinantis a neessary, but not suÆient ondition for sympletiity.Problem 8.6. Previously all but the elements R5i, i=1..6 have been hekedanalytially. Use sympleity to determine the R51, R52, and R56 elements.8.4.3. Seond Order Matrix Elements For Individual Elements. Inworking out the Tijk elements for the full FODO ell one must �rst have seondorder expressions for the individual elements. For a thin quad the deetions are�x0 = � q1 + Æ x � �qx+ Æ qx; �y0 = q1 + Æ y � qy � Æ qy: (8.34)These formulas yield seond order thin quad elementsT216 = q; T436 = �q: (8.35)
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5Figure 8.3. Labeling of points in a full ell of the eq tune fodo lattie.Referring to Table 8.1, for a thin sextupole the deetions are given by�x0 = �S2 (x2 � y2); �y0 = Sxy; (8.36)whih produe T211 = �S2 ; T233 = S2 ; T413 = S: (8.37)To quadrati order in Æ the deetions in a thin dipole are given by�x0 = � ��1 + Æ = ��� +�� Æ ��� Æ2; �y0 = 0; (8.38)whih give T266 = ���; (8.39)as the only non-vanishing seond order matrix element.8.4.4. Conatenation of Matrix Elements. Even for the simplest possiblenontrivial lattie (namely the eq tune fodo full ell we are working with) it is fairlylaborious to work out even seond order elements. (This is known as \onatenat-ing" the maps sequentially.) Still it is worth working out a few to get a feel for whatis involved. Within UAL this onatenation is performed using di�erential algebra(DA) on trunated power series (TPS) but here a more elementary approah is tobe used for alulating some of the elements.Labeling of intermediate points is given in FIG. 8.3. Let us work on only hor-izontal motion. To obtain the subsequent e�et of a deetion at one point it isuseful to de�ne an \inuene funtion" or \sine-like funtion" Gx(j; i) that gives thee�et at element position j of unit deetion at position i. As this funtion propa-gates through subsequent elements it neglets all but linearized deetions. Extradeetions at downstream points will eah launh their own sine-like ontributions.



126 8. GENERAL TRANSVERSE MOTIONFor our lattie it is straightforward to work out all needed Gx(j; i) entries.Gx(5; 1) = 2l(1 + ql); G0x(5; 1) = 1� 2q2l2;Gx(5; 2) = 32 l + ql2; G0x(5; 2) = 1� 12ql � q2l2; (8.40)Gx(5; 3) = l; G0x(5; 3) = 1� ql;Gx(5; 4) = 12 l; G0x(5; 4) = 1� 12 ql;Gx(5; 5) = 0; G0x(5; 5) = 1: (8.41)De�ning �x0(i) to be the exat deetion at loation i, propagation from 1 to 5 isgiven by the exat equationsx(5) = os�x(1) + �(x)1 sin�1 x0(1) + 5Xi=1 Gx(5; i)�x0(i); (8.42)x0(5) = � 1�(x)1 sin�1 x(1) + os�1 x0(1) + 5Xi=1 G0x(5; i)�x0(i):Here a sine-like ontribution is added for eah perturbation (i.e. at sextupoles) and(if Æ 6= 0) at bends. These equations are deeptively simple. The exat deetions�x0(i) an only be obtained by exatly aounting for all preeeding deetions.But, sine we are satis�ed to alulate only quadrati terms, it is easy to drop termsthat don't ontribute. Eqs. (8.42) are also somewhat ambiguous as to the treatmentof momentum dependene. Certainly the deetions depend on momentum, but itis not lear whether Æ is to be treated as a parameter in a 2D approah or as aomponent of x. We will follow the latter, 3D approah.We plan (here) to keep only linear terms, x, x0, and Æ, and quadrati terms x2,xx0, x02, Æ2, xÆ, and x0Æ. Of ourse there is also the possibility of a onstant termappearing. Even though it is not mathematially onsistent, let us refer to suh aonstant term as also being \linear". The only possible justi�ation for doing thisis that the presene of suh a term really implies a shift of the equilibrium orbitwhih ould be used to suppress this term.There is an important physial distintion between \geometri" terms x2, xx0,and x02 and \hromati" terms Æ2, xÆ, and x0Æ. The former terms are nonlinearfuntions of the dependent variable x. They have the property of beoming arbi-trarily large as x or x0 beomes large. Suh terms inevitably ause motion to beunstable at suÆiently large amplitude. (The only exeption to this behavior iswhen the nonlinear term is, by itself, unphysial. This an our when a fore thatis well-behaved at large amplitude, suh as a beam-beam fore, is approximatedby a term, suh as a ubi, whih diverges at large amplitude.) This leads to theonept of \dynami aperture" that will be pursued later on. The hromati termsatually leave the theory linear. All suh terms ould be inorporated exatly bytreating Æ as a parameter rather than as a oordinate. This ould be regardedto be a more elegant, though less straightforward, approah. The leading e�etof hromati terms is to ause the equilibrium orbit to be displaed more or lessproportional to Æ and to ause the tunes to depend on momentum. In pratie, the



8.4. TRANSPORT MATRIX ELEMENTS 127optial degradation due to Æ is often at least as serious as the degradation due tononlinear terms.Suppressing the (0)'s from the initial displaements, Eqs. (8.42) an be ex-pressed in terms of R-matrix elementsx(5) = R11 x+R12 x0 +R16 Æ + 5Xi=1 Gx(5; i)�x0(i); (8.43)x0(5) = R21 x+R22 x0 +R26 Æ + 5Xi=1 G0x(5; i)�x0(i):Apart from having introdued the term linear in Æ the only new feature of theseequations is that we need retain only quadrati terms in the �nal summations.To alulate to this auray it is adequate to alulate them using the followingunperturbed (i.e. �rst order auray) trajetory.x(1) = x;x(3) = (1� ql)x+ lx0 +�� l2 Æ; (8.44)x(5) = (1� 2q2l2)x+ 2l(1 + ql)x0 + 2l(1 + 12ql)�� Æ:The seond order deetions at the various points in the ell are�x0(1) = q x(1) Æ � S12 x2(1);�x0(2) = ��� Æ2;�x0(3) = � 2q x(3)Æ � S2 x2(3); (8.45)�x0(4) = ��� Æ2;�x0(5) = q x(5) Æ � S12 x2(5):To get an element T1jk or T2jk for the full ell we substitute into Eq. (8.45) fromEq. (8.44) and then substitute the result, along with Eq. (8.40), into Eq. (8.43).Then the Tijk elements are obtained by mathing terms. For example the oeÆientof x2 in the expansion of x(5) isT111 = �S1 l(1 + ql)� S2 l(1� ql): (8.46)



128 8. GENERAL TRANSVERSE MOTIONAll seond order elements for x and x0 are:T111 = � S1 l(1 + ql)� S2 l(1� ql)2;T122 = � S2l3;T166 = � 2�� l(1 + ql)� 14S2��2 l3;T112 = � 2S2 l2(1� ql);T116 = 4q2l2 � S2�� l(1� ql);T126 = � 2ql2 � S2�� l3; (8.47)T211 = � S2(1� 3q2l2 + 2q4l4);T222 = � S2 l2(1� ql)� 2S1 l2(1 + ql)2;T266 = ���(2� 2ql� 3q2l2)� 14S2 l2��2(1� ql)� 2S1 l2��2(1 + 12ql)2;T212 = � 2S2 l(1� ql)2 � 2S1 l(1� 2q2l2)(1 + ql);T216 = 4q2l(1� 32ql)� S2�� l(1� ql)2 � 2S1 l��(1 + 12ql)(1� 2q2l2);T226 = 4q2l2 � S2 l2��(1� ql)� 4S1 l2��(1 + ql)(1 + 12ql):As mentioned earlier, some of these elements depend on the detailed de�nition ofthe omponents of x. Unless adjusted appropriately these elements will thereforenot agree well with values alulated by UAL.Problem 8.7. Using formulas (8.47), hek several entries in the Tijk tableresulting from the proessing the eq tune fodo lattie. Be sure that all parametersare idential to the parameters used in the earlier problem set in whih Rij elementswere derived. It may be neessary to modify the ode to ause the Tijk elements tobe evaluated and printed.



8.5. TRUNCATED POWER SERIES AND LIE MAPS 1298.5. Trunated Power Series and Lie Maps8.5.1. Funtion evolution. Trunated power series play an important rolein UAL. They are used to approximate the \maps" that express \output" partileoordinates (at a later plae in the ring) in terms of \input" partile oordinates(at an initial plae in the ring). When trunated to linear order these power seriesredue to the elements of the traditional, Courant-Snyder, transfer matrix desrip-tion of the aelerator lattie. Historially, most of aelerator physis has been(very suessfully) based on analysis performed in this linear limit. But e�etsappearing already at a \next order of approximation" suh as hromatiity andamplitude-dependent detuning, have ways of intruding, even in elementary on-texts, and nonlinearity beomes inreasingly important as amplitudes are inreasedto ahieve higher beam urrent. As soon as any nonlinearity whatsoever is allowedto enter the desription the issue of sympletiity, or rather lak thereof, rears itshead. Espeially for hadron aelerators, for whih there is essentially no truedamping, any anti-damping arti�ially and erroneously introdued through non-sympletiity an ruin an aelerator simulation program's ability to predit thelong term future.Sympleti maps (typially nonlinear) are also known as Lie maps. Onetherefore seeks to desribe partile trajetories in an aelerator by a Lie map.As with all physis, suh a desription an only be approximate. For one thingthe idealized model of the aelerator, on whih the \idealized map" is based,is undoubtedly inaurate and inomplete. Aepting this as inevitable, possiblefurther inauray results from the omputer program's representation of the map.It is the latter soure of inauray that is the subjet of this setion. Maps based ontrunated power series an only approximate idealized maps. For reasons explainedin the previous paragraph, failure of sympletiity is expeted to be more seriousthan other inauray. An important goal of UAL is to preserve sympletiity, orrather to keep the inevitable failure of sympletiity ontrollably small.There is no shortage of exellent referene material onerning Lie maps; for ex-ample Dragt[24℄ and Forest[25℄. Beause the subjet is abstrat, and is sometimesonsidered impenetrable, this setion tries to give a self-ontained, elementary dis-ussion of the general ideas. To redue omplexity the disussion will be restritedto two dimensional (x; p) phase spae, with p used instead of px. All results gener-alize naturally to higher dimensions.If (x0; p0) represents input partile oordinates, the sort of map M010 underdisussion expresses output oordinates (x1; p1) as funtions of input oordinates(x0; p0). (The prime onM010 will be explained shortly.) For linear maps this mapredues to a 2 � 2 matrix, the traditional transfer matrix of standard aeleratortheory. If nonlinearity is present it is natural to introdue a \generalized transfermatrix"M010 in whih the four matrix elements are nonlinear funtions of x0 andp0. Usually these nonlinear funtions are expressed as trunated Taylor seris. Likeit or not, this is the representation one is fored to use in a omputer representationof the map.Consider an arbitrary funtion f(x; p)|one may think of f as expressing thedependene on position in phase spae of some physial quantity. A partile tra-jetory de�nes an evolution of the partile oordinates and it is natural to inquireabout the orresponding evolution of f . One has to be aware of the ambiguity a-ompanying the distintion between funtion form and funtion value. For example,



130 8. GENERAL TRANSVERSE MOTIONsuppose transformationM010 yields forward formula x1 = x1(x0; p0) = ap0 + bp0and bakward formula x0 = x0(x1; p1) = x1 + dp1, and that the value of funtionf is de�ned to be \the �rst omponent squared"; at input this is x20, at output itis x21. An assignment one might have reeived in alulus lass was to �gure outthe value of x20 from knowledge only of x1 and p1. Expressed in terms of outputoordinates the input value of f is (x0(x1; p1))2 = (x1 + dp1)2. From a physiist'spoint of view, this is tortured usage. By the \evolved value of f" one presumablymeans x21, the square of the �rst omponent, evaluated at the evolved loation.This is the way funtions of oordinates are to be interpreted; for examplex21 = f(x1; p1) = f(M010(x0);M010(p0)) = (ax0 + bp0)2: (8.48)Sine the form of the funtion does not hange, to evaluate this evolution, asEq. (8.48) shows, it is adequate to have formulas for the evolution of individualomponents. This is the funtionality provided by the vetors of trunated powerseries provided, for example, by UAL. But, for theoretial purposes, a slightly moreabstrat generalization of transfer matries is preferable. Let us de�ne transfermapM10 as operating on funtions (of loation phase spae) rather than atingindividually on the omponents. That isf1 =M10f0; (8.49)whih is de�ned to mean the same thing as Eq. (8.48). Forest allsM a \ompo-sitional map". It is a one-omponent map ating in an in�nite dimensional spae(of funtions de�ned on phase spae.) Note that it is the value of the funtion thatevolves; the form of the funtion does not hange. Sine x0 and p0 an, individu-ally, be thought of as funtions of the (x0; p0) pair, the speialization bak to therepresentation by a vetor-organized set of nonlinear funtions is immediate. Sothere is no \physis" in Eq. (8.49) to distinguish it from Eq. (8.48).Assuming, as we are, that the physial elements in the lattie are known per-fetly, the equations of motion an, in priniple, be used to determine x(s); p(s),the dependene on longitudinal oordinate s of a partile trajetory. Commonlythe equations of motion are written in Hamiltonian form and knowing the equationof motion is sometimes expressed as \knowing the Hamiltonian". Beause of theomplexity of aelerator latties it is almost never pratial to solve the equationsof motion analytially and it is rarely pratial to solve them numerially. Ratherthe map through a setor of the lattie is formed by onatenating the maps of theindividual elements in the setor. This usually involves trunation of power series.8.5.2. Taylor series in more than one dimension and Lie maps. TheTaylor series representation of one dimensional funtions is seond nature to mostsientists (perhaps beause learned about in high shool as the binomial theorem?)The funtion of Lie maps is to generalize this desription to more than one dimen-sion.The theory of funtion evolution, as invented by Lie, has been applied a enturylater, in the ontext of elestial mehanis, by Hori[26℄ and, in the ontext ofaelerator mehanis, by Dragt.[27℄ The disussion here more nearly follows Horithan Dragt.Let (x; p) be oordinates in 2D phase spae, and f(x; p) be a funtion thatis arbitrary (exept for possible requirements suh as smoothness and absene of



8.5. TRUNCATED POWER SERIES AND LIE MAPS 131vanishing derivatives.) We wish to express the value of f at some phase spae pointin terms of the values of its derivatives at some other point.We know how to do this in 1D|use a Taylor series. We therefore try to reduethe 2D problem to 1D. Toward this end we draw a family of smooth urves in phasespae (to be referred to as a \ongruene" of urves) that have properties: (a) thereis a urve through every point, (b) no urve rosses any other in the region underdisussion, and () there is a funtion S(x; p), not neessarily unique, suh thatx(�); p(�) (the oordinates of the urve as funtions of a running parameter �) aresolutions of the equations dxd� = �S�p ; dpd� = ��S�x : (8.50)The funtion S(x; p) is suh that its derivatives on the right hand side of thisequation de�ne, at every point (x; p), the diretion of the tangent to the urvepassing through that point. Note that S is a priori an arbitrary funtion, unrelatedto the dynamis under study.Along any one of the urves of the ongruene, the value of arbitrary funtionf an be expressed, as a funtion of � , by f(x(�); p(�)). One an de�ne an along-the-urve derivative operatorf�; Sg � dd� �����S = dxd� ��x + dpd� ��p = �S�p ��x � �S�x ��p: (8.51)In this notation the � is a \plae holder" indiating the operator f�; Sg is \waitingfor" a funtion, suh as f , for its argument. (Exept for hange in sign/order-of-arguments, f�; Sg is the same as the funtion for whih Dragt introdued thenotation : S :.) When ating on funtion f , the result is ff; Sg � : S : (f), whihan be reognized as the \Poisson braket" of f and S.Now we an exploit our ongruene of urves for its advertised purpose ofrelating values of f at separated points This is espeially easy if the points happenlie on the same urve beause, on that urve, the funtion depends only on the singlevariable � . In this ase, let the parameters of the points that are to be related be �and �+�. It may be helpful oneptually to regard � as being \small", and this maybe appropriate when disussing the onvergene of the series, but no suh formalrequirement is assumed. Expressing the Taylor series in new, unonventional form,we havef(� + �) = (1 + � f�; Sg+ 12!�2 ff�; Sg; Sg+ 13!�3 fff�; Sg; Sg; Sg+ � � � )f(� + �)������=0;(8.52)As usual the derivatives on the right hand side must be evaluated for general � butthen � is set to zero. This is known as the Lie map orresponding to funtion S.Reognizing the terms in this series as orresponding to an exponential funtion,this series is traditionally abbreviated tof(� + �) = e� f�;Sg f(�); (8.53)but, to evaluate the series numerially, expansion Eq. (8.52) is what is required.Furthermore the evaluation has to be trunated at some point. Any di�erentialalgebra pakage, suh as COSY[28℄ or the ZLIB module of UAL, an alulate



132 8. GENERAL TRANSVERSE MOTIONderivatives of funtions, and an therefore evaluate the Poisson braket expressionsappearing in Eq. (8.52).This setion has been about alulus, no more, no less. There has been nomehanis, Hamiltonian or otherwise. If the signs in Eq. (8.50) had been hosendi�erently, say both positive, the analysis would have gone through unhanged,exept for the swithing the sign in the braket expression, whih would thereforeno longer deserve be alled a \Poisson braket".8.5.3. Sympletiity of Lie map. Hori[26℄ gave a di�erent interpretation toEq. (8.53), regarding it as a hange of variable rather than as an evolution equation.To enourage this interpretation let us replae (x0; p0) by (�; �) and (x1; p1) by (x; p)and interpret the equation as a hange of variables from (�; �) oordinates to (x; p)oordinates. The oordinates (�; �) are assumed to be \anonial"|this meansthat their Poisson brakets rekoned using some known-to-be anonial startingoordinates, all them (x0; p0), have the appropriate, 0 or 1 values. Copying fromEq. (8.52) and restoring the 2D arguments of f ;f(x; p) = (1+� f�; Sg+ 12!�2 ff�; Sg; Sg+ 13!�2 fff�; Sg; Sg; Sg+� � � )f(�; �)�����0: (8.54)Here S is, as before, an arbitrary funtion, and evaluation of the derivatives on theright hand side depends upon the ongruene of urves determined by Eqs. (8.50).(The rypti subsript 0 is supposed to onvey this.)It was mentioned earlier that either one of the oordinates, say �, is a satisfa-tory version of the funtion f . Plugging this into Eq. (8.54) yieldsx = (1 + � f�; Sg+ 12!�2 ff�; Sg; Sg+ 13!�2 fff�; Sg; Sg; Sg+ � � � )������0; (8.55)and a similar formula relates p to �. By restoring the single variable, along-urveparameterization (and for brevity, arraying formulas as omponents of a vetor)these equations an be written in a more useful form;��(� + �)�(� + �)� = �xp� = (1+� f�; Sg+ 12!�2 ff�; Sg; Sg+ 13!�2 fff�; Sg; Sg; Sg+� � �)��(� + �)�(� + �)� ������=0(8.56)This shows that the pair (x; p) are, exept for \translation" along a urve of theongruene, the same as the pair (�; �).This has still been \just alulus", but let us now use the assumption that (�; �)are anonial variables of a Hamiltonian system. Then Eq. (8.56) provides a hangeof variables to new variables (x; p). Now the amazing part; sine the (�; �) variablesare, by hypothesis, anonial through the region under disussion and (x; p) are just\translations" of (�; �), transformation (8.56) is neessarily anonial.Hori[26℄ goes on to develop a perturbation theory based on this formulism.He regards the funtion S as a kind of \generating funtion" (though it must notbe onfused with a \Goldstein" generating funtion) and goes on to develop aniterative proedure to determine S and new oordinates in asending powers of a\small parameter" of the perturbation. None of this is relevant for UAL. Whatis relevant is that transformations generated by Lie maps are sympleti. Byontrolling the number of terms retained in the power series evaluation one anontrol (or even make negligible) the degree of nonsympletiity.



8.5. TRUNCATED POWER SERIES AND LIE MAPS 1338.5.4. Hamiltonian maps. Returning to the trajetory evolution interpre-tation of our equations, the Taylor series derived so far might seem to be uselessfor the following reason: it relates only phase spae points lying on the same urveand no presription has been given for hoosing the funtion S(x; p) suh that twoarbitrarily hosen points lie on the same urve. But, as it happens, we do not haveto insist that the points be arbitrarily hosen. We are interested in points lying ona single partile trajetory. One visualizes this trajetory as a three dimensionalurve in the (x; p; t) spae, where t is time, or if one prefers, a longitudinal oordi-nate. Projeted onto the (x; p) plane the urve passing through input point (x0; p0)neessarily passes through output point (x1; p1). The orbit is determined by solvingHamilton's equations; dxdt = �H�p ; dpdt = ��H�x : (8.57)where H(x; p) is the Hamiltonian funtion. Notie that these equations are iden-tial to Eqs. (8.50) if the funtion S in those equations is replaed by H (and �by t.) This magially eliminates both limitations of the formalism of the previoussetion. The map has beomef(t0 + t) = et f�;Hg f(t0): (8.58)(As explained above, when written in this form, the notation is too ompressedfor the required operations to be exhibited expliitly, as they are in Eq. (8.52).)Replaing f by the individual oordinates, as before, yields�x(t0 + t)p(t0 + t)� = et f�;Hg �x(t0)p(t0)� : (8.59)Generalized to six dimensions and trunated to arbitrary order, Eq. (8.59)is a form in whih the evolution of a partile trajetory an be simulated in aomputer. If Hamiltonian H is only approximate the evolution it produes an beonly approximate, but any failure of sympletiity an be redued by keeping moreterms in the expansion.8.5.5. Disrete maps. Eq. (8.59) represents a ontinuous mapping|the ex-pliit appearane of t invites taking the limit t ! 0. Similarly the ourene offator � in Eqs. (8.56) invites the limit �! 0 and a ontinuous interpretation. But,if the � fator is subsumed into the S funtion, Eqs. (8.53) represents a disretemap, potentially propagating the partile oordinates through a setor of arbitrarylength.For example onsider the funtionS = S30x3 + S31x2p+ S32xp2 + S33p3: (8.60)Substitution into Eq. (8.56) yields propagation (x; p)! (x0; p0)x0 = x+ fx; Sg+ � � � = x+ S31x2 + 2S32xp+ 3S33p2 + : : : ; (8.61)p0 = p+ fp; Sg+ � � � = p� 3S30x2 � 2S31xp� S32p2 + : : : :This map is speial in that it is an identity map to linear order. It ould thereforenot represent arbitrary propagation through a general setor. But, after \fatoringout" the linear part of a general map the remaining part an be redued to Eq. (8.60)by trunation to quadrati order.Perhaps the proedure just mentioned an be reversed? Suppose that prop-agation formulas (8.61) have been determined by applying some integrator to an



134 8. GENERAL TRANSVERSE MOTIONarbitrary lattie setor. If the setor has more than a few nonlinear elements suha determination would have required trunation, for example to quadrati order,as in Eq. (8.61). The integrator will therefore have determined the oeÆients inexpansions x0 = x+X20x2 +X21xp+X22p2 + : : : ; (8.62)p0 = p+ P 20 x2 + P 21 xp+ P 22 p2 + : : : :For these equations to be onsistent with Eqs. (8.61) the six equations obtained byequating oeÆients must be satis�ed. Regarding the four S3i oordinates as theunknowns, they an be determined from just four of the equations. The remainingtwo equations will not, in general, be satis�ed. But, if the integrator determiningseries (8.62) were sympleti (to the order of terms retained), then these equationswould be redundant and the redundant equations would neessarily be satis�ed.These equations an therefore be applied as a hek on the sympletiity of theintegrator.Assuming the integrator is sympleti, so that the redundant equations (to qua-drati order) are satis�ed, the funtion S will have been determined to ubi order.A funtion S determined in this way an be alled a \pseudo-Hamiltonian". Byusing this funtion in Eq. (8.56), and retaining more terms in the series, propagationformulas for the oordinates an be obtained to higher than quadrati order. Suhformulas would be useless for studying large amplitude features suh as resonantislands, onset of haos, or dynami aperture. But for \intermediate" amplitudetrajetories the formulas an represent propagation that is both \orret to qua-drati order" (for example modeling hromatiity) while being sympleti to higherthan quadrati order.This proedure an be illustrated by expliit example. Consider a mapx2 =Mx1 �M(1) x1; (8.63)where M(1) is the neessarily sympleti, linearized matrix approximation of themap. (Sine x represents the omponents as a vetor, we may as well take it torepresent the oordinates in 6D phase spae.) De�ne fM suh thatx2 = fMM(1) x1; or fM =MM(1)�1: (8.64)Suppose that M has been obtained to some order of auray, say M(2). Then fMis known to orresponding order. Let S be determined suh thatfM(2) =M(2)M(1)�1 = 1 + f�; Sg: (8.65)De�ning fM(3) = 1 + f�; Sg+ 12 ff�; Sg; S; g; (8.66)then M � fM(3)M(1); (8.67)is sympleti to higher order than was fM(2).Quadrupole end �eld orretion is an example of this proedure. Sine thelongitudinal interval for this orretion was taken to have zero length, terms beyondthe �rst vanish beause they are proportional to higher powers of �.



8.6. THIN AND THICK ELEMENTS, AND SYMPLECTICITY 1358.5.6. Bunh Evolution Using Maps. In Setion 7.4, whih disussed adeoherene/reoherene simulation, it was shown that partile evolution ould bedesribed either by element-by-element traking, or by map traking. It would bejust as logial for that example to appear here as there.Simulation 8.1. Run the deoherene/reoherene example using the map trak-ing option for various order of trunated power series (TPS). For the results shownin FIG 7.6 the order was 3, whih is also known as \otupole order".8.6. Thin and Thik Elements, and Sympletiity8.6.1. Pure Kiks. Elements that are thin enough that they an be repre-sented by disontinuous slope hanges (or kinks) at �xed position s are known as\kiks" and omputer odes that employ only kiks are known as \kik ode". Therationale for the existene of kik odes is that, onsistently employed, they preservesympletiity. The transfer matrix for suh an element isMkik = � 1 0f(x) 1� ; (8.68)where f(x) is an arbitrary funtion of transverse position x. The Jaobean for thismatrix is 1, independent of x. Unity determinant (for all x is the neessary andsuÆient ondition for a 2� 2 matrix to be sympleti. Furthermore a 4 � 4 kikan be deomposed into a produt of two 2� 2 kiks. It follows that kiks alwayspreserve sympletiity.Another way of assuring that a transformation is sympleti is to derive itexatly, rigorously respeting Maxwell's equations and Newton's law (appropriatelygeneralized to relativisti mehanis).8.6.2. Pure Drifts. Sine kik elements are unphysial idealizations, onewould greatly prefer to represent aelerator elements by sympleti, thik elementmatries. Unfortunately the number of element types for whih suh matries areknown is quite small. Even the transfer matrix for a driftMdrift = �1 `0 1� ; (8.69)is sympleti only for appropriate transverse oordinates. This matrix orrespondsto the exat transformation equations for a drift, whih arex1 � x0` = dxds ���0; dxds ���1 = dxds ���0; px1 = px0: (8.70)Assuming (unrealistially) that there is no vertial momentum, and realling thatpx is the atual transverse momentum divided by the total momentum p0, one seesfrom a momentum vetor diagram thatdxds = pxp1� p2x : (8.71)But, knowing that x and px are anonially onjugate variables, one sees that xand dx=ds annot be. So, without taking are to inlude the square root fator,even a drift an be non-sympleti. Beause px << 1, one is sometimes justi�edin negleting the denominator fator. But in a hadron aelerator, where partiles



136 8. GENERAL TRANSVERSE MOTIONrotate for billions of turns, even the tiniest of failures of sympletiity an givetotally wrong results.8.6.3. Drift-Kik Split. We have seen that pure kiks are naturally sym-pleti and that, with are, drifts an be treated sympletially. For a purelynumerial alulation of a partile trajetory in an arbitrary magneti �eld it isnatural to introdue \sympleti integration algorithms" in whih the deetionsare onentrated in (in�nitely) thin elements and the thik dimension is �lled upwith drifts. The simplest suh algorithm is known as drift-kik split. A thik ele-ment is segmented into two or more drifts with a kik sandwihed at eah interfae.This approah was introdued in TEAPOT[6℄ and it is doumented further in theTEAPOT manual. This ode has been ported to C++ as one of the propagationalgorithms available in UAL.8.6.4. Sympleti Propagation Through Setor Bends . Other than fordrifts, the only stati magneti elements for whih exat, thik element equationsare available are uniform �eld magnets. The trajetories are perfet irles or, inthree dimensiona, helies. Even in this ase, �nding the exat exit oordinatesrequires the use of quite ompliated geometry. In the following alulation wehave the temerity to work out in detail a result due to E. Forest, whih he states(without derivation) in his Beam Dynamis book.To meet the \exatness" requirement for a thik element one needs analytiexpressions for output oordinates as funtions of input oordinates. To meet therequirement of polymorphi desription with oordinates given either as numbersor as trunated power series (TPS), these formulas need to be expliit and free frombranhed evaluation routes. For a �nite setor bend of angle�� these onditions aremet by the following formulas, whih relate to the geometry exhibited in FIG 8.4.These formulas are given as Eqs. (12.18) of Forest's book.To redue omplexity a bit the �gure illustrates pure radial (typially hori-zontal) motion. (i.e. in the plane of symmetry of the magnet.) This an also beregarded as the projetion onto the magnet midplane of a ompletely general orbitof momentum p0(1+ Æ). By onventional de�nition of transverse \momentum" o-ordinate px, if the nominal momentum is p0, then the atual transverse momentumis pxp0. With vertial momentum (saled the same way) given by py, the totalin-plane momentum is pk =q(1 + Æ)2 � p2y (8.72)whih is independent of s. Using this, (radial) entrane angle �x and the exit angle�x(s) are given in terms of momentum omponents bysin �x = pxpk ; sin �x(s) = px(s)pk : (8.73)The oordinate s, ar length along the design orbit, satis�es� = � s� ; (8.74)where � is the design bend radius. As shown in the �gure, the exit momentumomponents, expressed in the appropriate loal exit frame, arepx(s); py(s) = py; ps(s) =q(1 + Æ)2 � p2y � p2x(s): (8.75)
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Figure 8.4. Shown along with the entral trajetory is the pro-jetion of a general trajetory onto the midplane of a setor bendof nominal bend angle ��. With the total partile momentumbeing (1 + Æ)p0, where p0 is the entral momentum, the saledmomentum is 1 + Æ. (A vetor of magnitude p0 would have unitlength in the �gure.) Sine vertial and horizontal motion is un-oupled it is valid to regard the projeted urve as the trajetoryof a partile atually lying in the midplane of the magnet but hav-ing momentum pk = q(1 + Æ)2 � p2y. This quantity is onservedalong the orbit. The radial oordinates at the magnet faes aredisplaement x and (in units of p0) radial momentum px.Expressed in the entrane frame oordinates, with origin at the apex of the setorbend, the oordinates (Z;X) of the enter of urvature of the displaed trajetoryare (Z; X) = (�px; x+ �(1� ps)); (8.76)and the equation of the exit fae of the setor bend isz os� + x sin� = 0: (8.77)



138 8. GENERAL TRANSVERSE MOTIONThe perpendiular (direted) distane from the enter of urvature to this line isd = Z os� +X sin�: (8.78)From the right triangle with vertex at (Z;X) we get output angle �x(s) to be givenby sin �x(s) = d�pk : (8.79)In view of the seond of Eqs. (8.73), after simpli�ation, this gives the loally-radialoutput momentum omponent to bepx(s) = px os� + � x� + 1� ps� sin�: (8.80)Notie that this has automatially re-expressed the radial momentum in the loalFrenet frame of referene appropriate at the exit fae of the magnet. This is Forest'sEq. (12.18.b). It meets the exatness requirement as well as the TPS desriptionrequirement by giving one output oordinate as an expliit analyti funtion of theinput oordinates. Subsequent formulas an be regarded as expliit even if theydepend on px(s). In partiular, ps(s) is given by the third of Eqs. (8.75). As hasbeen impliit in the disussion so far, the frational momentum maps aording toÆ(s) = Æ.The atual ar length l(s) and the visible-in-�gure ar length lk(s) are relatedby lk(s)=l(s) = pk=(1 + Æ). The total bend angle # an be determined either interms of lk(s) and radius of urvature or in terms of the angles visible in the �gure;l(s)�(1 + Æ) = lk(s)�pk = �# = ��� �x(s) + �x: (8.81)Solving for l(s) yieldsl(s) = �(1 + Æ)���� sin�1 px(s)pk + sin�1 pxpk �: (8.82)Vertial evolution is given similarly byy(s) = y + py����� sin�1 px(s)pk + sin�1 pxpk �: (8.83)All that remains is to determine x(s) using the same output right triangle;� + x(s) = �pk os �x(s) + Z sin(��) +X os�: (8.84)Re-expressed, this beomesx(s) = ��� 1 + ps(s)� px sin� + � x� + 1� ps� os��: (8.85)All of the needed output oordinates have now been obtained.8.7. Identifying Soures of Nonlinearity by Spetral AnalysisThis setion an be regarded as an extension, to nonlinear motion, of hap-ter 4, in whih analysis of diagnosti instrumentation was disussed. The presentemphasis is on identifying soures of nonlinearity. The idea is to orrelate peaksobserved in spetra, derived from multiturn BPM output, with the soures whihould produe them. These spetra an be obtained using a hardware spetrumanalyser or by Fourier transformation of digitized BPM turn-by-turn data.



8.7. IDENTIFYING SOURCES OF NONLINEARITY BY SPECTRAL ANALYSIS 139Table 8.3. Fourier Expansions and Labels for Nonlinear Motion��mxmy � os((mx�x +my�y)2�t); ��mx�my � ��mxmy + ��mx�my ; 1 = ��00x = ax os(2��xt) = ax��10y = ay os(2��yt) = ay��01x2 � y2 = a2x2 ��20 � a2y2 ��02 + a2x � a2y2 ��002xy = axay��1�1x3 � 3xy2 = a3x4 ��30 � 3axa2y4 ��1�2 + 3a3x � 6axa2y4 ��103x2y � y3 = � a3y4 ��03 + 3a2xay4 ��2�1 � 3a3y � 6a2xay4 ��01x4 � 6x2y2 + y4 = a4x��40 � 6a2xa2y8 ��2�2 + a4y4 ��04+ 4a4x � 12a2xa2y8 ��20 + 4a4y � 12a2xa2y8 ��02 + 3a4x � 12a2xa2y + 3a4y8 ��004x3y � 4xy3 = 4a3xay8 ��3�1� 4axa3y8 ��1�3 + 12a3xay � 12axa3y8 ��1�1 (8.86)For suÆiently small amplitudes all nonlinear terms beome negligible and themotion is desribed approximately by the pure (unoupled by preferene) beta-tron motions xt = ax os(2��xt) and yt = ay os(2��yt) for t = 0; 1; : : : . These\fundamental osillations" an be regarded as the \zero'th" approximation to themotion. These time dependenies, and the time dependenies they produe whennonlinear elements are present, are shown in Table 8.3. Like quantum numbers inspetrosopy, integers mx and my an be used to label observed lines. The notation��mxmy in the table, having x-harmoni number mx on top and y-harmoni numbermy on the bottom, is intended to help in assigning labels to spetral lines. Whenlongitudinal motion is inluded another, similar index, ms, is introdued.A nonlinear element an be treated perturbatively, with the deetion it ausesproportional to a quadrati or higher power of the fundamental osillations am-plitudes. Sine the small amplitude motion is harmoni these extra ontributionsare periodi with the same periods, and they an be expessed as \nonlinear har-monis", also known as \higher harmoni frequenies" of the fundamental osilla-tions. Exploiting this feature, a sextupole deetion proportional to x2 appearsas a double-frequeny motion|though with aliasing this line may appear at aninitially-unexpeted loation. Otupole deetions proportional to x3 ause tripled(and other) lines. Other nonlinear deetions, for example proportional to xy, analso ause \mixing" (sum and di�erene frequenies).The power of Fourier expansion is to \linearize" this weakly nonlinear motion.In lowest order of perturbation theory, a nonlinear element ontributes as if linear,but driven at sum and di�erene frequenies of the fundamental frequenies. Higherorder perturbation theory an be desribed by iterating this proedure, but the



140 8. GENERAL TRANSVERSE MOTIONpossible harmonis proliferate badly, and the spetra rapidly beome uniterpretableas the basi amplitudes inrease. Eventually the motion beomes haoti.There is one ase in whih proeeding to seond order perturbation theory isjusti�ed. It is the (quite ommon) ase in whih a nonlinear element has no e�etin lowest order. An example of this is the absene of tune shift due to sextupolesin lowest order. To alulate amplitude-dependent tune shifts it is neessary toinlude otupoles in �rst order and sextupoles in seond order.Observing whih peaks are present, and with what strength, and then orre-lating with Fourier expansions of partiular multipole �elds an give lues as towhih �elds are ausing the motion to be nonlinear. Conversely the importaneof nonlinearities known (from magneti measurements) an be assessed. For in-terpreting spetra in this way it is neessary to write Fourier expansions of themultipole expressions for deetions �x0 and �y0 appearing in Table 8.1. Thefollowing formulas are needed for those expansions:Sine the fators ax and ay are presumeably, in some sense, \small", the dom-inant lines tend to be those having minimal powers of these fators.The onvergene (i.e. the extent to whih sueeding terms beome less im-portant) of the multipole series as a formula for magneti �eld at displaement axan be assessed by the numerial value of ratios (bn+1an+1x )=(bnanx) = (bn+1=bn)ax.But to estimate the absolute inuene on aelerator performane of a partiularmultipole an estimator like that alulated in Problem 8.10 is needed. In pratie,as mentioned before, there is a strong tendeny for lower powers of an and bn todominate.Example spetra extrated for the toy lattie general fodo rf are shown inFIG 8.5. These plots were obtained by using the graphis program xmgrae topost-proess turn-by-turn data produed by UAL. (This uses the PERL interfaethat is being in the proess of being phased out.) The ode is run by$ d /home/ualusr/USPAS/ual1/examples/UI_Xmgr$ perl shell_USPAS.plThe lower three graphs show the horizontal, vertial and longitudinal turn-by-turndata and the upper graphs are the orresponding tune spetra. Low order tune linesare shown, labeled with triplets (mx;my;mz). The fundamental lines are shownby solid vertial lines. They are loated by �rst �nding the maxima in the threespetra. From these tunes, tune ombinations are formed as mx�x+my�y +ms�s,where mx, my, and ms are small integers. Furthermore the tune lines have to be\unaliased" into the range from 0 to 0:5. (This amounts to �nding the absolutedeviation from the nearest integer.)Some features that an be observed in these spetra are:� The fundamental tunes are Qx = 0:26, Qy = 0:28, Qs = 0:08.� There is a strong 1; 0; 0 signal visible in the longitudinal spetum. This isevidene of oupling between horizontal and longitudinal.� A reiproal 0; 0; 1 line is visible in the horizontal spetrum.� The vertial signal is almost pure harmoni. Absene of 1; 0; 0 signalimplies the absense of x; y oupling.� There is a weak 2; 0; 0 line in the horizontal spetrum. This is due to thepresene of hromatiity sextupoles.� The line 1;�1; 0 in the vertial spetrum omes, presumably, from thesame soure.



8.7. IDENTIFYING SOURCES OF NONLINEARITY BY SPECTRAL ANALYSIS 141Similar plots an be obtained using the UAL player.
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Table 8.4. Spetral lines in X-spetrum (horizontal) aused by partiular multipoles. ax and ay are \fundamental"amplitudes. There are also numerial fators, of order one, not shown.mx 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0my 0 0 1 0 �1 2 0 �1 �2 3 0 �1 �2 �3 4b0 1a0b1 axa1 ayb2 a2x; a2y a2x a2ya2 axayb3 a3x; axa2y a3x axa2ya3 a2xay; a3y a2xay a3yb4 a4x; a2xa2y; a4y a4x; a2xa2y a2xa2y; a4y a4x a2x; a2y a4ya4 a3xay; axa3y a3xay axa3yTable 8.5. Spetral lines in Y -spetrum (vertial) aused by partiular multipoles. ax and ay are \fundamental"amplitudes. There are also numerial fators, of order one, not shown.mx 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0my 0 0 1 0 �1 2 0 �1 �2 3 0 �1 �2 �3 4b0a0 1b1 aya1 axb2 axaya2 a2x; a2y a2x a2yb3 a2xay; a3y a2xay a3ya3 a3x; axa2y a3x axa2yb4 a3xay; axa3y a3xay axa3ya4 a4x; a2xa2y; a4y a4x; a2xa2y a2xa2y; a4y a4x a2x; a2y a4y
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144 8. GENERAL TRANSVERSE MOTIONProblem 8.8. Show that the e�et of losed orbit displaements �x and �yare to produe \feed-down" suh that the presene of multipole oeÆients bn andan leads to multipolesb(�x)n�1 = �nbn�x; a(�x)n�1 = �nan�x; b(�y)n�1 = nan�y; a(�x)n�1 = �nbn�y:(8.87)Problem 8.9. The Courant-Snyder invariant � of a partile exeuting onedimensional betatron osillations is given by xx2 + 2�xxx0 + �xx02. With properaxis-saling, if the motion is linear, the point in phase spae with oordinates (x; x0)lies on a irle and rotates at uniform rate. The e�et of a deetion x0 ! x0+�x0will sometimes be to inrease � and sometimes to derease it. Show however thaton the average there is a net inrease given by< �� >= �x(�x0)2: (8.88)Problem 8.10. Consider the one dimensional motion of a partile with am-plitude ax through a bending element that bends the entral trajetory through angle��. The �eld nonuniformity of the magnet is desribed by a multipole oeÆientbn. Show that he deetion su�ered is bnanx�� times an osillatory fator in therange from �1 and 1. Continuing to drop a numerial fator of order 1, show thatthe average frational inrease in the Courant-Snyder invariant in passing throughthe magnet is < �� >� � (bnan�1x �x��)2 � (bn��)2�n�12x � n+12x Nn�1x : (8.89)where ax is quoted as N�x where �x is the horizontal beam emittane and �x =p�x�x is the r.m.s. horizontal beam size. This formula is not valid for n = 1. Whynot?Problem 8.11. Chek all (or at least many of) entries in Table 8.4.Problem 8.12. An eret quadrupole is misaligned from its design orientationby a small roll angle �� << 1 around the longitudinal axis. In its natural (x0; y0)oordinates, the quadrupoles multipole expansion isBy0 + iBx0 = b01(x0 + iy0); (8.90)and in the design lattie oordinates it isBy + iBx = (b1 + ia1)(x+ iy): (8.91)Show, to lowest order in ��, thatb1 = b01; a1 = �2b01��: (8.92)In modeling the e�et of a misaligned quad the fator of 2 in Eq. (8.92) must notbe overlooked. A mnemoni for remembering this fator is that a quadrupole needonly be rotated through angle �=4 (not �=2) for pure b1 to beome pure a1.Problem 8.13. Perform the numerial alulations (aounting for aliasing ifneessary) to aount for the loations of spetral lines labeled 200, 001, 10-1, and10+1, in the Qx plot of FIG 8.5.



CHAPTER 9Colliding Beams9.1. The ollider.adxf lattieThe ollider.adxf lattie is derived from the general fodo lattie, via theraetrak lattie. The long straight setions of raetrak are replaed by \lowbeta optis" appropriate for ahieving maximum luminosity from given beam ur-rents. The elements making up the irtoar transition setion are shown in FIG 9.1,and their parameter values are listed next; the initial numerial values are suh thatlfa=1.0 m.<onstant name="lfa" value="sale*20*nhalf/100"/><onstant name="l01" value="1.397753023209*lfa"/><onstant name="l12" value="1.497222048429*lfa"/><onstant name="l23" value="12.177703590031*lfa"/><onstant name="l34" value="5.0*lfa"/><onstant name="l45" value="5.0*lfa"/><onstant name="l56" value="5.0*lfa"/><onstant name="lqir" value="0.001"/><onstant name="qir1" value="-1.05/lfa"/><onstant name="qir2" value="0.5494/lfa"/><onstant name="qir3" value="-0.33/lfa"/><onstant name="qir4" value="0.1837/lfa"/><onstant name="qir5" value="-0.2389/lfa"/><onstant name="qir6" value="0.1194/lfa"/><setor name="irtoar"><frame ref="mkst"/><frame ref="dr01"/><frame ref="quadir1"/><frame ref="dr12"/><frame ref="quadir2"/><frame ref="dr23"/><frame ref="quadir3"/><frame ref="dr34"/>
l 01 l12 l34 l45l23 l56

1
Q

2
−Q

3
Q −Q

64−Q
5

Q

*

x

IP s
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146 9. COLLIDING BEAMS<frame ref="quadir4"/><frame ref="dr45"/><frame ref="quadir5"/><frame ref="dr56"/><frame ref="quadir6"/></setor>Not shown in this listing are the regular ar quadrupole half-strengths; q1 =0:1194 and q2 = �0:1199. The lattie funtions for the lattie with these valuesare shown in FIGs 9.2, 9.3, and 9.4. One sees from FIG 9.2 that the IR region iswell mathed to the ars (whih are the same as in the raetrak lattie). Butthe presene of small beta funtions at the intersetion point (IP) ause high betavalues nearby. This follows inexorably, as an be seen, for example, from Table 2in Chapter 2. Sine the lattie is mirror symmetri about the IP's, �x� = �y� = 0at the IP. Here the use of asterisk to speify IP is a traditional notation. It thenfollows from Eq. (3.4) that�x1 = �x� + l201�x� ; �y1 = �y� + l201�y� : (9.1)The optis has been adjusted so that �y� << �x� . Eqs. (9.1) then shows that �y1inreases muh more rapidly than �x1 , as s inreases from zero. This requires the�rst quad, Q1, to be vertially fousing, as shown. (The onave/onvex symbolsrefers to horizontal fousing harater in this �gure, and all Qi are taken to bepositive.) FIG 9.4 on�rms these features.Quadrupole lens optis is too ompliated to be taken lightly, as you will dis-over if you start hanging parameters reklessly, but ertain features of a beamlinelike this are subjet to quite simple treatment. One good plan is to work with\doublets" whih, together, behave something like glass lenses by having the sameharater (either fousing or defousing) in both x and y planes.The dominant visual feature of these IR optis is that l23 is muh greater thaneither l01 or l12. This, plus the math to the FODO ar optis, is what leads tosmall beta funtions at the IP. There is a \beam waist" at the origin. This is aslose to a point fous as ever ours in lattie optis. Basially the Q1, Q2 doubletfouses rays emerging from the origin to an image somewhere in the viinity ofQ3 or beyond. With l23 assumed large, we may as well assume that the Q1, Q2doublet fouses \at in�nity". In other words we want this doublet to produe pointto parallel fousing.Problem 9.1. Let Mx and My stand for the 2� 2 matries governing propa-gation from the origin to point 2. Show that, for point to parallel fousing, we needMx22 = My22 = 0. Work out these matrix elements and then, assuming l01 and l12are known, show that the doublet quadrupole strengths areQ1 = 1l01 r l01 + l12l12 ; Q2 =s 1(l01 + l12)l12 : (9.2)Finally, show that the entries in the ollider lattie are in rough agreement withyour values; (atually somewhat greater in magnitude beause we don't really wantthe fous as far as in�nity.)In pratie l01 is hosen to be as short as possible, onsistent with �tting therequired partile detetor into that drift, and allowing for Q1 itself to use some of



9.1. THE COLLIDER.ADXF LATTICE 147the spae. Typially Q2 has design similar to Q1 and is butted right up against Q1,e�etively �xing l12 � l01.Commonly it is the large value of �y1 that �xes the minimum ahievable valueof �y� . Viewing FIG 9.4 let us assume that the optis has been adjusted to satisfythe onstraint �y1 < �max = 200m. From Eq. (9.1), treating the leading term asnegligible, we therefore have �y� > l201�max : (9.3)Though quad Q1 restrains �y, it auses �x to inrease even more rapidly in theregion from Q1 to Q2. This inrease is stopped by Q2 but, typially, not before �xhas inreased until it is equal, or almost equal, to �max. For simpliity, we take thisto be the same as the maximum tolerable vertial value. (i.e. �x2 � 200m.)Problem 9.2. With Q1 and Q2 given by Eqs. (9.2), �nd the value of �x� suhthat �x2 = 200m, under the (reasonable) requirement that the maximum of �x oursat Q2. FIG 9.4 shows this assumption is quite aurately orret, but you annotexpet omparably good agreement for the value of �x� sine other approximationshave been made.FIG 9.4 shows that the optis is roughly mathed to the ar optis already atQ4. In fat, to make the mathing learer, Q4 ould be treated as two thin lensesQ41 and Q42, butted together, with Q42 = q1. With this observation, and notingthat Q5 = 2q2 and q6 = q1, one sees that the optis are quite aurately mathedalready at a point \part way through" Q4.What this has meant is that, with all lengths �xed, as well as strengths Q1 andQ2, the only adjustable parameters left are Q3 and Q41. All Twiss funtions areonstrained (by the need to math the ar optis) at the boundary between Q41and Q42. The other onstraints that must be met are �x� = �y� = 0. These twoequations �x Q3 and Q41.If all lengths are held �xed, by the arguments given so far, the entire optis is�xed, at least approximately. There is little point, therefore, in trying to adjust theIP beta funtions by just altering quadrupole strengths for the simple IR ollideron�guration. It is typially diÆult (but not impossible, using rails,) to hangedrift lengths in a storage ring. From the arguments given, one sees that this makesit quite diÆult to hange the beta-star values using the ollider intersetionregion optis.Of ourse one an vary all lengths in the entire ring. By equations like Eq. (3.17),saling all lengths up and all quadrupole strengths down in the same ratio, will leavethe optis, inluding the IR optis, mathed. The lengths �x� and �y� would there-fore be redued in the same ratio. But one never has the luxury of saling theirumferene of a storage ring, so this alteration is impratial.Problem 9.3. In spite of its impratiality, sale all lengths in the olliderlattie, and sale all quad strengths by the inverse fator. Use the simulation ode todetermine the new optis and on�rm the saling behavior desribed in the previousparagraph.If one must hange beta-star values, the most promising proedure is to alterl01 and l12 by the same (preferably fairly lose to 1) fator and preserving ringgeometry by altering l23. For simpliity, let all other lengths remain unhanged.



148 9. COLLIDING BEAMSBy Eqs. (6) Q1 and Q2 sale inversely with l01 and l12. Then it should be possibleto restore the math by adjusting Q3 and Q4 using �x� = �y� = 0.By varying the ratio l01=l12 it would be possible to vary the ratio �y�=�x� . But, asexplained earlier the use of \doublet optis" fores this ratio to be large. Swithingthe signs of Q1 and Q2 would produe �x� << �y� .Problem 9.4. Using the UAL simulation ode, determine aurate values for�x� and �y� and ompare your values with values alulated by formulas in this se-tion.The optis that has been desribed is typial of eletron aelerators, where thevertial emittane is already muh less than the horizontal emittane rendering thebeams ribbon-shaped. In hadron aelerators the transverse beam emittanes arenormally approximately equal and there is a luminosity advantage in having thebeams approximately round at the IP. This an only be ahieved by using \tripletoptis", more ompliated than an be ahieved with the ollider toy lattie.Just replaing the doublet Q1; Q2 by a triplet, most of the preeeding argu-ments will remain roughly true, and more-or-less equal betas at the IP an beahieved. Though �y� � 1 m, is pratial with doublet optis in an eletron a-elerator, �x� � �y� � 1m is more typial of hadron olliders. This is partly dueto the inherently longer foal lengths ahievable using triplet optis and partly dueto the muh higher partile momenta (and hene longer quadrupoles) in hadronaelerators.
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Figure 9.2. Twiss funtions for the ollider lattie.
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Figure 9.4. Twiss funtions for the IR region of the ollider lattie.
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Figure 9.5. UAL-generated Twiss funtions for the IR region ofthe ollider lattie.



152 9. COLLIDING BEAMSThis remainder of this hapter is rather more tehnial than is appropriate forthe USPAS aelerator simulation ourse. It is more appropriate as a setion ofthe Physis User's Manual. A beam-beam test program bmbm.pp is appended as aonvenient way to onvey various numerial oeÆients. A tar �le with onsistentREADME, data and make�le is available for atual use of the ode.As of Marh 2005, the elements headonbb and remotebb have not yet, in fat,been implemented in UAL. As a result, parasiti beam-beam interations annot beonatenated into nonlinear TPS lattie maps.9.2. Partile Deetion Caused by Onoming BunhThe deetion of a harged partile aused by an approahing harged bunhan be modeled as deetion by an arti�ial beambeam element that is loated wherethe bunhes meet and ats muh like any physial lattie element. The onomingbeam is assumed to be Gaussian in all six phase spae oordinates.In pratie the bunhes are long (z oordinate) ompared to their transverse(x,y) omponents. Invariably both bunhes are fully relativisti. It is well knownin this irumstane that the eletromagneti �elds of the bunh are ompressedlongitudinally to beome almost exatly transverse. This makes it appropriate totreat the �elds as purely transverse and derivable from a harge distribution withshape dependent only on transverse oordinates and magnitude proportional to thelongitudinal bunh distribution.To a lowest approximation the beam-beam interation an be treated as a singletransverse impulse at the rossing point. More aurate, and espeially for non-zerorossing angle of long bunhes, it is appropriate to \slie" the bunh longitudinallyand to represent eah bunh rossing by several, londitudinally-displaed dee-tions. Even in this ase, it is a good approximation to assume transverse �elds thatare independent of z exept for being modulated by the longitudinal bunh pro-�le. Beam-beam interations are modeled to both of these levels of approximationin UAL. For even greater auray, espeially in situations where the beam-beaminteration exites synhrobetatron osillations, it would be appropriate to inludelongitudinal fores, but this level of approximation is not supported at this time.In the purely-transverse, fully-relativisti, �eld approximation, the eletri andmagneti �elds are related exatly as are the �elds in a plane eletromagneti wave.(Weisszaker-Williams approximation.) For a 2D Gaussian transverse harge dis-tribution the �elds an be expressed as an analyti funtion of the (omplexi�ed)transverse position z = x+iy; the funtion is variantW (z) of the so-alled omplexerror funtion. In UAL (as in most other simulations) this funtion is evaluated byvarious nonpolynomial numerial algorithms for evaluation of the omplex errorfuntion.[21℄.Partile dynamis an be handled polymorphially in UAL. What this means isthat (optionally) the partile oordinates being evolved an be treated as trunatedpower series (TPS). It might be thought automati to treat an analyti funtionlike the omplex error funtion by a TPS. As it happens this is is diametriallyinorret. The inappropriateness manifests itself mathematially, physially, andomputationally. Mathematially, though analyti in some regions, W (z) is notanalyti at the z = x + iy = 0 origin, whih is preisely where a TPS has to be adi�erentiable funtion of x and y individually. Physially, the beam-beam �elds fallo� (proportional to 1=r) at large radial radius, while a TPS, trunated to any �nite



9.3. ELECTRIC FIELD DUE TO GAUSSIAN CHARGE DISTRIBUTION 153order, blows up at large r. Computationally the omplex plane has to be segmentedinto more than one path, with a separate evaluation algorithm applying in eahpath. The omputer program evaluating w(z) starts by seleting the orret pathand proeeds by applying the algorithm appropriate for this path. This is verysatisfatory for purely numerial evaluation, but limits the validity of onatenationto suh a restrited path as to be useless for multiturn simulation.Though beam-beam deetions an be represented di�erentiably (as requiredby TPS) in loal pathes, for example near the origin, the nonanalyti nature of theeletri �eld exludes the possibility of a path of size even as great as the smallerof the strong beam's transverse r.m.s. sizes.Beause of this mismath, for head-on beam-beam ollisions, the beam-beamdeetion annot be handled polymorphially. This means that the beam-beaminteration map annot be onatenated with a lattie TPS map. To exploit a (pos-sibly nonlinear) map representing the lattie setor preeeding an IP, it is neessaryto derive eah partile's oordinates at the IP from the map, then to alulate andapply the beam-beam deetion, and �nally to treat the result as input oordinatesfor the map representing the next setor.For suÆiently non-head-on, parasiti, beam-beam interations, the limitationjust desribed is not operative. Here \suÆiently" means something like \severalsigma". For suh ollisions the parasiti ollisions an be onatenated into a lattiemap muh the way any other lattie element would be.Beause the nonanalyti problem is not fatal for suÆiently remote ollision,it makes sense to introdue two distint beambeam types, alled headonbb andremotebb. The remotebb type an be onatenated polymorphially just like anyother beam line element. The headonbb type an be subjeted to near-linear mapanalysis, to obtain small amplitude tune shifts and even amplitude-dependent tuneshifts, but the evaluation path valid at the origin is already very inaurate fortransverse displaement amplitudes omparable with the opposing bunh size. Cer-tainly the desription of long term evolution by iterating a single map representingboth lattie and beam-beam interation is unphysial with a headonbb element inthe ring. But there is nothing to prevent onatenation of any number of remotebbelements into a single nonlinear map for the setor from one headonbb element tothe next.9.3. Eletri Field Due to Gaussian Charge DistributionBassetti and Erskine[22℄ give formulas for the eletri �eld omponents at x; y ofa Gaussian harge distribution, total harge per unit length �, in terms of omplexerror funtion w(z), where z = x+ iy, The funtion w(z) is related to the so-alled\error funtion omplement" erf(z) byw(z) = e�z2erf(�iz): (9.4)(Introdution of omplex numbers into the disussion leads to an unfortunate lashof meanings for the word \real". Whether \real" means the real part of a omplexnumber or a single deimal number, as in omputer programming language, has tobe inferred from the ontext.)The eletri �eld is given by�ExEy� = �2�0p� 1s �=<��w(xws + i yws )�e�( x2w2s2x+ y2w2s2y ) w(xws sysx + i yws sxsy )�; (9.5)



154 9. COLLIDING BEAMSwhere xw and yw are horizontal and vertial deviations of a partiular partile ina \weak beam" from the enter of an approahing \strong beam". Here we areusing the onventional \strong/weak" terminology of olliding beams, where thedistribution of the strong beam, i.e. the other beam, or the unperturbed beam,is treated as onstant, at least until it is updated after multiple passes have beenevaluated.The horizontal and vertial strong beam \sigmas" are sx and sy and, to simplifythe expression a bit, a modi�ed transverse beam size s given bys =q2(s2x � s2y); (9.6)has been introdued. So that s is real, the beam is assumed to be wider than it istall, sx > sy, and sx=sy exeeds some nominal value, slightly greater than 1, suhas 1:1. Sine the \strong beam" aspet ratio depends on the loal �-funtions, thestrong beam will normally be at least this muh out of round even if the emittanesin the two planes are equal.At rossing points where the strong beam is nearly round a di�erent approahis required. For an exatly round beam, using S.I. units, the eletri �eld is�ExEy� = �(z)2��0 1� e�r2=(2s2)r2 �xy� ; (9.7)where �(z) is the longitudinal harge density. For a Gaussian-distributed, strongbeam bunh with Ns harges Qs,�(z) = NsQsp2� �z exp�� z22�2z �: (9.8)For long bunhes, espeially if they are relativisti, the longitudinal eletri�eld an normally be negleted. Also the magneti deetion is, exept for fatorv2=2, the same as the eletri deetion. The total deetion is therefore obtainedby multiplying the eletri deetion by 1� v2=2 where the minus sign would beappropriate for the spae harge fore on a partile o-moving with the bunh. Thepositive sign is appropriate for the ounter-traveling bunhes assumed for beambeamelements. The total deetion su�ered in passing the other bunh is proportionalto its bunh length, and hene to its total harge. (While inluding the fator ofnearly two to add eletri and magneti fore one must not forget to inlude analmost-exatly-aneling fator due to the relative veloity of the ounter-movingbunhes being almost 2.)The deetion, say horizontal, ��x, su�ered by a weak beam partile of hargeQw as it passes a strong beam bunh is given by��x = �pxp0 = 1p0 Z dt dpxdt = 1p0 Z 2QwEx(z) dtdz dz: (9.9)The fator 2 in the numerator inludes the magneti fore, and the fator dt=dz =1=(2) aounts for the relative veloity of the bunhes.9.4. The Beam-Beam Tune Shift ParametersTo a lowest (linearized) approximation the fore on a partile in the weakbeam due to the strong beam is lens-like, but unlike a quadrupole in that the fo-us/defous harater is the same in both planes. Repeating \golden rule" formulas



9.5. IMPRACTICALITY OF TAYLOR MAP BEAM-BEAM REPRESENTATION 155from Eqs. (3.47), the leading e�ets of suh fousing are tune shifts given by�x = 14��x�qx; �y = 14��y�qy; (9.10)where �qx and �qy are inverse foal lengths depending on the bunh harge andpro�le of the strong beam. Unlike a normal quadrupole, �qx and �qy have the samesign. Espeially in eletron olliding beams �qx and �qy an be vastly di�erentbut, for maximum luminosity, �x and �y tend to be roughly equal.The values of � due to a single interation point rarely exeed 0:05 in eletronolliders or 0:01 in hadron olliders. But olliding beam failities usually have morethan one interation point. The tune shifts they ause are stritly additive, andan add up to a total tune shift as great as 0:2 or more, even though this mightseem to have required rossing destrutive resonanes.Problem 9.5. For the round beam distribution of Eq. (9.7), show that thehorizontal, beam-beam tune shift parameter is given by�x = ��x4� 1p0=Qw NsQs4��0s2 : (9.11)Problem 9.6. By keeping the next term in the expansion of the round beamdeetion, alulate the otupole-order horizontal deetion.9.5. Impratiality of Taylor Map Beam-Beam RepresentationThe \altitude hart", for w(z) in Abramowitz and Stegun's[23℄ FIG. 7.3, showsregular behavior in the upper right quadrant, but there are poles in the lower rightquadrant. From the �gure and the relationw(z) = w(�z); (9.12)one onludes that expression Eq.(9.5) has the orret symmetry for left-right ree-tion through the vertial axis, but that it does not give the physially demanded up-down symmetry for reetion through the horizontal axis. It follows that Eq. (9.5)is valid in the upper half-plane and invalid in the lower half-plane. Any analytiapproximation to this formula will have similar properties. For purely numerialtraking this is not a problem sine lower half-plane deetions an be inferred byusing the reetion symmetry. But appliation of symmetry for purpose of evalua-tion is inonsistent with TPS representation.Part of experimental, storage ring, parasiti-bunh-rossing lore is that a par-tile in one bunh will be lost if its amplitude enroahes on the opposing bunh's\spae", meaning the region of non-negligible harge density. This is not quali-tatively inonsistent with the mathematial observation that non-vanishing hargedensity is inompatible with analyti two dimensional �eld (as follows from Amp�ere'slaw.) A formalism suh as TPS, that relies on di�erentiability, is therefore, in prin-iple, invalid for even remote ollisions of Gaussian-shaped beam bunhes. ButGaussian harge distributions fall o� dramatially at large amplitudes and physi-ally realisti bunhes truly vanish outside, say, 5 or 6 sigma. This makes it validto ontemplate inorporating remote, or \parasiti" beam-beam ollisions into aTPS simulation formalism. As mentioned previously, to distinguish suh ollisionsfrom head on ollisions (for whih the element type name headonbb is employed)parasiti ollisions are modeled by the remotebb type.



156 9. COLLIDING BEAMSThe map simulation of remotebb parasiti rossings will inevitably break downfor rossings that are too lose. If partiles an atually be lost due to parasitirossings one annot expet the simulation to model the loss evolution aurately.(When ontemplating train wreks one onentrates on avoiding them, not on a-urate desription of the wrekage.) On the other hand, sine failure of analytiitymanifests itself by unphysial fores proportional to a possibly-high power of ampli-tude, one an be optimisti that numerial simulation an predit with quite goodauray the amplitude beyond whih partiles are lost. The next setion desribesformulas to be used, within UAL, to model the remotebb type polymorphially.For a headonbb type, one an ontemplate using its TPS map to simulate itse�et on weak beam partiles of small amplitude, suh as \one tenth sigma". Theso-alled \beam-beam tune shift" parameterization of the ollision amounts to justsuh a pure linearization of the deeting fore. Even some amplitude dependente�ets an perhaps be estimated while restriting the amplitudes to suÆientlysmall values. But the ode warns against onatenation of headonbb elements inany simulation that pretends to be a self-onsistent model using a distribution ofweak beam partile amplitudes mathing the strong beam distribution. For faithfulmodeling in this ase the ode uses pure numerial evaluation of eah headonbbinteration. This is not a serious limitation in pratie, but it auses the appliationof some nonlinear tools, suh as normal form analysis, to be invalid.There are approximation algorithms available for alulating the �elds of Gauss-ian harge distributions aurately for all possible bunh separations. But, to avoidompliation, it is sensible to aept redued auray in the interest of reduingthe number of evaluation pathes. The next setion disusses evaluation for par-asiti ollisions and the setion after that disusses headon evaluation. Sine theode takes are of hoosing a good algorithm in eah ase, for benhmarking andheking the ode reliability, it should be adequate to spot hek only a relativelysmall number of ases.9.6. Pad�e Approximation For remotebb Type CollisionsThe trunated Taylor series formalism is introdued into partile trajetorydesription to model nonlinear deeting elements. The deetions aused bysuh elements an be expressed as power series in the transverse oordinates (xand y). Unfortunately the beam beam deetion annot be desribed by a sin-gle, everywhere-onvergent, power series. For example, the �eld at large distanesfalls o� as 1=r and suh a term diverges at the origin. This problem is somewhatameliorated by the use of Pad�e approximation. As explained in referene[21℄, theneeded funtion w(z) an be approximated in the viinity of a point z0, in termsof (omplex) deviation z � z0, in a Pad�e formw(z) � 0 + 1(z � z0) + 2(z � z0)2 + 3(z � z0)31 + d1(z � z0) + d2(z � z0)2 + d3(z � z0)3 + d4(z � z0)4 : (9.13)This expression is relatively quik to alulate, and retains at least as many terms asare likely to be needed for any pratial Taylor series to be generated subsequently.Beause the denominator terminates in a powerN higher by one than the numeratorM , the behavior at large radius is appropriate. If needed, expressions with largervalues of M and N are easily obtainable.



9.6. PAD�E APPROXIMATION FOR REMOTEBB TYPE COLLISIONS 157The oeÆients i and di an be alulated by a program suh as the followingMAPLE program:restart: with(numapprox): Digits:=30:M:=6: N:=M+1:z0:=0.0+I*0.0:open("PCoeffs.dat",WRITE):fprintf("PCoeffs.dat", "%d\\n", M):fprintf("PCoeffs.dat", "%15.8e\\n", Re(z0)):fprintf("PCoeffs.dat", "%15.8e\\n", Im(z0)):evalf(pade( exp(-z^2)*erf(-I*z), z=z0, [M,N℄)):w := subs(z-z0=d, %):wnum:=numer(w): wden:=denom(w):sd:=oeff(wden,d,0):for j from 0 by 1 to M dofprintf("PCoeffs.dat", "%15.8e\\n", Re(oeff(wnum,d,j))/sd):fprintf("PCoeffs.dat", "%15.8e\\n", Im(oeff(wnum,d,j))/sd):end do:for j from 0 by 1 to N dofprintf("PCoeffs.dat", "%15.8e\\n", Re(oeff(wden,d,j))/sd):fprintf("PCoeffs.dat", "%15.8e\\n", Im(oeff(wden,d,j))/sd):end do:flose("PCoeffs.dat");This program outputs M , z0, and the oeÆients to �le "PCoe�s.dat" in aformat (one number per line) onvenient for reading into the C++ program thatalulates eletri �elds. (For example \bmbm.pp", listed at the end of this report.)For example, with (M;N) = (6; 7) and z0 = 0,0 = 1.00000000e+00 0.00000000e-011 = 0.00000000e-01 -1.25647718e+002 =-8.25059157e-01 0.00000000e-013 = 0.00000000e-01 3.19300157e-014 = 7.63191604e-02 0.00000000e-015 = 0.00000000e-01 -1.04697937e-026 =-6.44878650e-04 0.00000000e-01d0 = 1.00000000e+00 0.00000000e-01d1 = 0.00000000e-01 -2.38485634e+00d2 =-2.51608137e+00 0.00000000e-01d3 = 0.00000000e-01 1.52579039e+00d4 = 5.75922692e-01 0.00000000e-01d5 = 0.00000000e-01 -1.35740709e-01d6 =-1.85678083e-02 0.00000000e-01d7 = 0.00000000e-01 1.14243694e-03An example with (M;N) = (3; 4) and z0 = 3 is,0 = 1.23409804e-04 2.01157317e-011 = 2.33554192e-01 1.60868941e-012 = 1.25324805e-01 -4.04528997e-023 = 8.84183536e-03 -1.80649734e-02d0 = 1.00000000e+00 0.00000000e-01d1 = 1.19099484e+00 -1.16400275e+00d2 = 8.87402357e-02 -1.07153615e+00d3 =-1.68262727e-01 -2.69022561e-01d4 =-3.19855404e-02 -1.57189728e-02This expansion is appropriate for alulating w(z) with argument near z = 3. Theprogram is easily extended to alulate the Pad�e oeÆients with enter pointsloated on a regular grid.Even with Pad�e approximation, problems remain. An expansion like that ofEq. (9.13) is valid only in a restrited path. An expansion entered on the origingives a respetable approximation to w in the entire upper half-plane. CBN 80-13gives algorithms appropriate for enough pathes to over the entire x; y spae withhigh auray. But this multi-path treatment an be inorporated into the TPSformalism only by applying the map, partile-by-partile, to obtain the numerialoordinate values of every partile at every headonbb loation.



158 9. COLLIDING BEAMSWhen used to alulate the eletri �eld, beause of its x ! �x symmetry,the Pad�e expansion entered on the origin �ts the eletri �eld (whih immediatelyprovides the magneti �eld as well) reasonably well in the upper half-plane. Pre-liminary investigations have shown that some remote rossing ases an be modeledadequately with just the Pad�e expansion entered on the strong beam. This is asensible approah to take for preliminary investigations. As shown in CBN 80-13the origin-entered Pad�e expansion withM = 6; N = 7 (alled PADE1 in CBN 80-13)gives a respetable approximation over a the entire upper half plane and a narrowband just below the real axis. This an be referred to as a \default" representation.It is implemented with hardwired oeÆients in subroutine wpade3 (listed below)and with externally supplied oeÆients in wpade4.For higher auray eah parasiti ollision ould have its own Pad�e approxima-tion. Sine the two ourrenes of w in Eq.(9.5) have di�erent arguments, it wouldbe neessary to use two Pad�e formulas for a single bunh rossing. The MAPLE pro-gram listed above gives Pad�e oeÆients at suh a point. CoeÆients are neededfor the two argument values orresponding to the separation of the bunh enters.The same proedure an handle the ase of bunh separation more vertial thanhorizontal and the ase of beams higher than they are wide (sx > sy.)To avoid the need for programming the oeÆient determination into the C++ode, UAL requires them to be alulated o�-line, or at least in a separate module.The oeÆients are then be passed to the simulation as parameters of the remotebbelement. Other required parameters are (sx; sy; sz), (�x01;�x02, and the strongbeam strength (equivalent to �).Consider a parasiti bunh rossing in whih the partile being traked lies ina \weak beam" that is displaed approximately horizontally by (positive) distane�x from the enter of the \strong beam". This separation might also have non-zerovertial deviation. Also, sine the horizontal deviation depends, weakly to be sure,on the parasiti interation, it is, in priniple, neessary to determine �x iteratively.Two error funtion determinations are required. Always taking the strong beamenter as origin, one requires Pad�e expansions entered on the two pointsx01 = �xs ; x02 = �xs sysx : (9.14)If the beams have vertial separation it is neessary to alter the Pad�e enter pointsaordingly. The ase sy > ss also requires speial treatment not exhibited here.Re-expressing Eq.(9.5) in terms of oordinates x and y relative to the weakbeam enter yields�ExEy� = �2�0p� 1s �=<� (w(x01+ xs +i ys )�e�( (�x+x)22s2x + y22s2y ) w(x02+ xs sysx +i ys sxsy )):(9.15)For typial, many sigma, bunh separations at parasiti rossing, and for weak beambetatron amplitudes out to all but unphysially large amplitudes, the two w termswill be lose enough to the Pad�e expansion points that the Pad�e approximationsgive aurate deetions. This should not be surprising sine the strong beam issimply a multipole-rih eletromagnet from the point of view of the weak beam.



9.7. PAD�E APPROXIMATION FOR HEADONBB COLLISIONS 1599.7. Pad�e Approximation For headonbb CollisionsAs explained earlier, the proedure of the previous setion an be applied onlyfor small partile amplitudes. In this limit both expansions in Eq. (9.15) are en-tered on the origin. As mentioned above PADE1 (whih has been ported to wpade3and wpade4 below) gives a deent approximation in the entire upper half region. Butfor negative vertial displaements y more negative, say, than �sy (whih is a veryprobable amplitude) the alulated eletri �eld rapidly beomes inorret. Evenfor amplitudes of smaller amplitude than this, any apparent amplitude-dependenttune shifts would be suspet and would require areful veri�ation.For trajetory following in the presene of headonbb elements it is still possibleto use maps, but every trajetory has to be onverted to numbers at every rossing.The most ompat map representation possible would onatenate all elements,inluding parasiti rossings, in every ar into entire-ar maps. At every head-onrossing the next-ar map would be applied to eah partile's (numerial) post-interation oordinates to obtain its (numerial) pre-interation oordinates at thenext rossing point.
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