

Refrigeration & Liquefaction J.M Pfotenhauer University of Wisconsin - Madison

Outline

- Recuperative systems
 - Ideal refrigeration / liquefaction
 - Joule Thomson expansion
 - System analyses: 1st and 2nd law applied to:
 - Simple Linde-Hampson cycle Variations and improved performance cycles Claude and Collins cycles
 - Introduction to EES
- Regenerative systems
 - Overview of regenerative coolers
 - Stirling Cryocoolers
 - Gifford-McMahon Cryocoolers
 - Pulse tube cryocoolers

Ideal Refrigeration/Liquefaction

'Moving' heat from a cold reservoir to a warm reservoir requires energy

The amount of heat moved is associated with an amount of entropy by the relationship:

dQ = TdS

• In an ideal process, the entropy associated with the two heat flows is the same, that is:

$$dS = \frac{dQ_c}{T_c} = \frac{dQ_h}{T_h}$$

 In an ideal process the amount of work (energy) required to 'move' the heat is

$$dW = dQ_h - dQ_c$$

Ideal Cool Down

 Extracting an amount of heat to lower the temperature of (whatever) by dT, and releasing the heat at T_h:

$$dQ = mc_p dT$$
, $dW = dQ_h$, $dQ = mc_p \frac{I_h}{T}$ 1 dT

Including the temperature dependence of the specific heat, the ideal cool down work becomes:

$$(W = \int_{T_c}^{T_h} mc_p(T) \frac{T_h}{T} \quad 1 \ dT$$

Compare this to the amount of energy required to warm up the same mass:

$$E = \prod_{T_c}^{T_h} mc_p(T) dT$$

Ideal Liquefaction

 To cool down a parcel of gas, <u>and</u> convert it from saturated vapor to saturated liquid at its normal boiling temperature:

Temperature dependent specific heat

$$(W = \int_{T_{nbp}}^{T_h} mc_p(T) \frac{T_h}{T} \quad 1 \quad dT + mh_{fg} \quad \frac{T_h}{T_{nbp}} \quad 1$$

Work to extract sensible heat Work to extract latent heat

• Re-arranging terms we have:

$$W = mT_h \quad \frac{c_p(T)}{T}dT + \frac{h_{fg}}{T_{nbp}} (m c_p dT + h_{fg})$$
$$W = mT_h \quad S \quad m h$$

• Or, in the 'rate' form:

$$\dot{W} = \dot{m}T_h s \dot{m} h$$

Ideal Liquefaction

A 1st-law, 2nd-law analysis around an ideal cycle reveals the same expression

1st law: Energy balance around system:

In steady state, the sum of the energies into and out of the system = 0

$$\dot{W_c} + \dot{m}h_1 = \dot{W_e} + \dot{Q_r} + \dot{m}h_f \quad or \quad \dot{W_{net}} = \dot{Q_r} \quad \dot{m}\begin{pmatrix}h_1 & h_f\end{pmatrix}$$

2nd law: Entropy balance around system: In steady state, the sum of the entropies into and out of the system = 0

$$\dot{m}s_1 = \dot{m}s_f + \frac{\dot{Q}_r}{T_1} + \int^0 or \quad \dot{Q}_r = T_1 \dot{m} \begin{pmatrix} s_1 & s_f \end{pmatrix}$$

Combining, we have:

$$\dot{W}_{net} = T_1 \dot{m} \begin{pmatrix} s_1 & s_f \end{pmatrix} \dot{m} \begin{pmatrix} h_1 & h_f \end{pmatrix}$$

Note the SI units of h(kJ/kg) and s(kJ/kg-K)

Ideal Refrigeration

• In steady state, the 1st law around the whole system gives:

$$\dot{W_c}$$
 $\dot{W_e} = \dot{Q_r}$ $\dot{Q_c}$ or $\dot{W_{net}} = \dot{Q_r}$ $\dot{Q_c}$

• The 2nd law around the compressor gives:

$$\dot{Q}_r = T_H \dot{m} \left(s_1 \quad s_2 \right)$$

- The 2nd law around the evaporator gives: $\dot{Q}_c = T_c \dot{m} \begin{pmatrix} s_4 & s_3 \end{pmatrix}$
- Combining, and noting that s₁=s₄ and s₂ =s₃ we have:

$$\frac{\dot{W}_{net}}{\dot{m}} = \begin{pmatrix} T_H & T_c \end{pmatrix} \begin{pmatrix} s_4 & s_3 \end{pmatrix} = \frac{S}{\dot{m}} \begin{pmatrix} T_H & T_c \end{pmatrix} = \frac{\dot{Q}_c}{\dot{m}} \frac{T_H}{T_c} \quad 1 \begin{pmatrix} T_c \end{pmatrix} = \frac{\dot{Q}_c}{\dot{m}} \frac{T_c}{T_c} \quad 1 \begin{pmatrix} T_c \end{pmatrix} = \frac{\dot{Q}_c}{\dot{m}} \frac{T_c}{T_c} \quad 1 \end{pmatrix}$$

• The coefficient of performance (COP) for the refrigerator is then

$$COP_{ideal} \quad \frac{\dot{Q}_{c}}{\dot{W}_{net}} = \frac{T_{H}}{T_{C}} \quad 1 \quad = \frac{T_{C}}{T_{H}} \quad T_{C}$$

Ideal Liquefaction / Refrigeration

Table 3.1. Ideal-work requirements for liquefaction of gases beginning at 300 K (80°F) and 101.3 kPa (14.7 psia)

	Normal Pc	Boiling vint	Ideal Work of Liquefaction, $-\dot{W}_{i}/\dot{m}_{f}$	
Gas	K	°R	kJ/kg	Btu/lb _m
Helium-3	3.19	5.74	8 178	3 516
Helium-4	4.21	7.58	6 819	2 931
Hydrogen, H ₂	20.27	36.5	12 019	5 167
Neon, Ne	27.09	48.8	1 335	574
Nitrogen, N ₂	77.36	139.2	768.1	330.2
Air	78.8	142	738.9	317.7
Carbon monoxide, CO	81.6	146.9	768.6	330.4
Argon, A	87.28	157.1	478.6	205.7
Oxygen, O ₂	90.18	162.3	635.6	273.3
Methane, CH4	111.7	201.1	1 091	469
Ethane, C2H6	184.5	332.1	353.1	151.8
Propane, C ₃ H ₆	231.1	416.0	140.4	60.4
Ammonia, NH ₃	239.8	431.6	359.1	154.4

- Ideal liquefaction work for cryogens (from Barron)
- Comparison with ideal performance defined by Figure of Merit (FOM), for refrigeration sometimes referred to as "% of Carnot."

 $FOM_{liquefier}$ net 'n

Practical Limitations

- Not possible to achieve idealscenario pressure
 - Inspect T-S diagram: find lines of constant pressure, constant enthalpy, constant density, vapor dome
 - Estimate required pressure for 'ideal' liquefaction of nitrogen
- Isentropic expansion is very difficult to achieve.
 - Isenthalpic (or throttle) expansion is very easy to achieve
 - Cooling associated with throttle process exploits 'real-gas' properties. Note that at high T, low P, h is independent of pressure, but elsewhere it is not.

Joule-Thomson Coefficient

 1885 - Joule & _ Thomson (Lord Kelvin) confirm that a gas flow through a restriction experiences a temperature drop along with the pressure drop.

$$\frac{\Delta P}{\int_{a} = \frac{dT}{dP}}$$
 characterizes the

- The Joule-Thomson coefficient: $_{j} = \frac{dP}{dP}\Big|_{h}$ characterizes the phenomenon.
- When i>0, cooling accompanies a pressure drop.
- Regions of positive and negative _j are reflected in T-S diagrams and inversion curves:
 Above the

Simple Linde-Hampson Cycle

- Inversion temperature must be above compression temperature, or precooling via a higher temperature refrigerant liquid is required.
- Recuperative heat exchanger pre-cools high pressure stream.
- Liquefier requires source of make-up gas.
- Refrigerator absorbs heat converting liquid to vapor at saturation temperature of low pressure.

Simple Linde-Hampson Cycle

In steady state conditions, the 1st law around the compressor gives:

$$\dot{W_c} \quad \dot{Q_r} + \dot{m} \begin{pmatrix} h_1 & h_2 \end{pmatrix} = 0$$

The 2nd law around the compressor gives:

$$\dot{m}s_1 = \dot{m}s_2 + \frac{Q_r}{T_1}$$
 or $\dot{Q}_r = \dot{m}T_1(s_1 \ s_2)$

(Note the assumption of isothermal compression)

Combining, we have:

$$\frac{\dot{W}_c}{\dot{m}} = T_1 \begin{pmatrix} s_1 & s_2 \end{pmatrix} \begin{pmatrix} h_1 & h_2 \end{pmatrix}$$

• Applying the 1st law around everything except the compressor gives:

$$\dot{m}h_2 \quad \left(\dot{m} \quad \dot{m}_f\right)h_1 \quad \dot{m}_fh_f = 0 \quad or \quad \dot{m}\left(h_1 \quad h_2\right) = \dot{m}_f\left(h_1 \quad h_f\right)$$

• Defining yield, $Y = \frac{\dot{m}_f}{\dot{m}} = \frac{h_1 \quad h_2}{h_1 \quad h_f}$ and combining with compression work gives: $\frac{\dot{W}_c}{\dot{m}_f} = \frac{\dot{W}_c}{\dot{m}Y} = T_1 \begin{pmatrix} s_1 \quad s_2 \end{pmatrix} \begin{pmatrix} h_1 \quad h_2 \end{pmatrix} \begin{pmatrix} \frac{h_1 \quad h_f}{h_1 \quad h_2} \end{pmatrix}$ WINTERSITY OF

Simple Linde-Hampson (JT) Refrigerator

 Applying 1st law (energy balance) to everything except the compressor gives:

$$\dot{Q}_c = \dot{m} \begin{pmatrix} h_1 & h_2 \end{pmatrix} = \dot{m}y \quad h_{fg}$$

 Combining with the expression for the compressor work provides an equation for the COP:

$$COP = \frac{\dot{Q}_{c}}{\dot{W}} = \frac{\begin{pmatrix} h_{1} & h_{2} \end{pmatrix}}{T_{1} \begin{pmatrix} s_{1} & s_{2} \end{pmatrix} \begin{pmatrix} h_{1} & h_{2} \end{pmatrix}}$$

• Comparing with the Carnot COP gives the FOM (or % of Carnot):

$$FOM = \frac{\begin{pmatrix} h_{1} & h_{2} \end{pmatrix} \begin{pmatrix} T_{1} & T_{c} \end{pmatrix}}{T_{1} \begin{pmatrix} s_{1} & s_{2} \end{pmatrix} \begin{pmatrix} h_{1} & h_{2} \end{pmatrix} T_{c}}$$

Linde-Hampson Performance

- Optimum theoretical performance realized by minimizing h₂ (P₂ such that h is on the inversion curve)
- P₂ is typically ~ 100 atm.
- Theoretical performance with $P_2 = 20$ atm.(from Barron):

Table 3.3. Performance of the Linde-Hampson system using different fluids. $p_1 = 101.3$ kPa (14.7 psia); $p_2 = 20.265$ MPa (200 atm); $T_1 = T_2 = 300$ K (80°F); heat-exchanger effectiveness = 100 percent; compressor overall efficiency = 100 percent

Fluid	Normal Boiling Point		Liquid Yield y =	Work per Unit Mass Compressed		Work per Unit Mass Liquefied		Figure of Merit FOM =
	K	°R	\dot{m}_{f}/\dot{m}	kJ/kg	Btu/lb _m	kJ/kg	Btu/lb _m	Ŵ _i /Ŵ
N_2	77.36	139.3	0.0708	472.5	203.2	6673	2869	0.1151
Air	78.8	142	0.0808	454.1	195.2	5621	2416	0.1313
CO	81.6	146.9	0.0871	468.9	201.6	5381	2313	0.1428
A	87.28	157.1	0.1183	325.3	139.8	2750	1182	0.1741
O_2	90.18	162.3	0.1065	405.0	174.1	3804	1636	0.1671
CH₄	111.7	201.1	0.1977	782.4	336.4	3957	1701	0.2758
C_2H_6	184.5	332.1	0.5257	320.9	138.0	611	262	0.5882
C_3H_8	231.1	416.0	0.6769	159.0	68.4	235.0	101.0	0.5976
NH ₃	239.8	431.6	0.8079	363.1	156.1	449.4	193.2	0.7991

Linde-Hampson Cycle Enhancements

Pre-cooled L-H cycle

UNIVERSITY OF WISCONSIN

- Optimize performance via pressure, pre-cooling temperature and mass flow ratio
- FOM increased by ~ factor of 2

- Dual-pressure L-H cycle
 - Optimize performance via two pressures and fractional mass flow ratio
 - FOM increased by ~ factor of 1.9

Claude Cycle: isentropic expansion

- Isentropic expansion, characterized by s=dT/dPs (always >0) results in larger temperature drop for a given pressure drop than with isenthalpic expansion
- 1st and 2nd law analyses give:

$$y = \frac{h_{1} \quad h_{2}}{h_{1} \quad h_{f}} + x \quad \frac{h_{3} \quad h_{e}}{h_{1} \quad h_{f}} ; \quad x = \frac{\dot{m}_{e}}{\dot{m}}; \quad x + y < \frac{\dot{m}_{e}}{\dot{m}_{f}} = \frac{T_{1}(s_{1} \quad s_{2}) \quad (h_{1} \quad h_{2}) \quad x(h_{3} \quad h_{e}) \quad (h_{1} \quad h_{f})}{(h_{1} \quad h_{2}) + x(h_{3} \quad h_{e})}$$

Optimize performance by varying P_2 , T_3 , and x.

Claude Cycle: Variations

- Heylandt cycle
 - High pressure (200 atm) air liquefaction
 - Room temperature expander

- Low pressure (7 atm) production of liquid air
- Regenerative heat exchanger

Collins Liquefier

- Introduced by Sam Collins (MIT) in 1952
- Optimized performance via expander flow rates and temperatures
- LN₂ pre-cooling increases yield by factor of 3.

Commercial Helium Liquefier

- The dashed line encloses the 'cold box,' i.e. everything except the compressor.
- Find the expansion engines
- Trace the flow from LN₂ precooler through the cold box to the JT valve.

Influence of Non-Ideal Components

- A non-ideal heat exchanger will have an effectiveness less than 1. •
- A non-isothermal compressor will ٠ require more work than an isothermal compressor

The influence of these non-ideal parameters on the cooling capacity (refrigerator), ٠ liquid yield (liquefier), and compression work for a simple Linde-Hampson system is:

$$\frac{\dot{Q}}{\dot{m}} = \begin{pmatrix} h_1 & h_2 \end{pmatrix} (1) \begin{pmatrix} h_1 & h_g \end{pmatrix}$$

$$y = \frac{h_{1'}}{h_{1'}} \frac{h_2}{h_f} = \frac{\begin{pmatrix} h_1 & h_2 \end{pmatrix} (1) \begin{pmatrix} h_1 & h_g \end{pmatrix}}{\begin{pmatrix} h_1 & h_f \end{pmatrix} (1) \begin{pmatrix} h_1 & h_g \end{pmatrix}}$$

$$\frac{\dot{W}}{\dot{m}} = \frac{1}{c} T_1 \begin{pmatrix} s_{1'} & s_2 \end{pmatrix} (h_1 & h_2) + (1) \begin{pmatrix} h_1 & h_g \end{pmatrix}$$

Introduction to **Engineering Equation** Solver (EES)

- Oscillatory flow: frequencies 1 100 hz
- Regenerative heat exchangers: ideal -low axial k, high transverse k, matrix specific heat much larger than gas specific heat, zero void volume, zero pressure drop
- Phase modulation (between pressure and flow waves) is crucial for performance

Stirling Cryocoolers

- Stirling cycle engine:
 - invented in 1815
 - 1950's bid for auto industry
 - Today: 2.5 kW generators
- Stirling cryocoolers: 1946 -
- Ideal efficiency = Carnot
 - COP = T_c / (T_h T_c)
- Primary uses:
 - tactical and security IR systems
 - medical and remote- location cryogen plants
- Potential cooling for large scale HTS applications
- Commercial sources:
 - Stirling (<u>www.stirling.nl</u>)
 - Sunpower(<u>www.sunpower.com</u>)
 - Stirling Technology Company (www.stirlingtech.com)

Stirling Cryocoolers

۵

Stirling Cycle: Zero'th Order (ideal gas) Analysis

Carnot

Q

 $T_{C}(s_{2}-s_{1})$

0

 $T_{F}(s_{4}-s_{3})$

0

 $(T_{C}-T_{F})(s_{2}-s_{1})$

 $T_{\rm F}/(T_{\rm C}-T_{\rm F})$

process

● 1(1') – 2

• 2 - 3(3')

• 3(3') - 4

• 4 - 1(1')

Net

COP

Compare work and heat transfer for Stirling and Carnot cycles

helium

(J/mol)

-627

0

209

0

-418

0.5

• Use helium gas as quantitative example: $T_c=300$ K, $T_F=100$ K, $P_1=1$ atm., $P_2=20$ atm.

• Note that for an ideal gas in isothermal compression we have: $s = R \ln R$

 $s_2 \quad s_1 = R \ln \frac{P_1}{P_2}$

helium

(J/mol)

-7472

-2500

2491

2500

-4981

0.5

Stirling

Q

 $T_{C}Rln(P_{1}/P_{2})$

 $C_v(T_F-T_C)$

 $T_{F}Rln(P_{3}/P_{4})$

 $C_v(T_C - T_F)$

 $(T_{C}-T_{F})x$

 $Rln(P_1/P_2)$

 $T_{\rm F}/(T_{\rm C}-T_{\rm F})$

For an ideal cycle

$$W_{net} = Q_r \quad Q_a$$

$$= \bigcirc Q$$

Stirling cycle processes more heat than Carnot cycle, but same efficiency

Stirling Cryocoolers

- How is real machine different from ideal?
 - Harmonic motion (vs. abrupt changes)
 - Regenerator void volume
 - Regenerator ineffectiveness
 - Pressure drop through regenerator
 - Non-isothermal compression and expansion
 - Non-zero T between reservoir and heat exchangers
 - Constant temperature piston and cylinder walls
 - Isotropic pressure at all instants
- 1st order analysis (Schmidt, 1861)
 - includes
 - Harmonic motion
 - Regenerator void volume
 - Useful theoretical tool for parametric optimizations
- 2nd & 3rd order analyses nodal simulations
 - SAGE (dgedeon@compuserve.com)

Gifford-McMahon Cryocooler

- Valving allows use of inexpensive compressors, and separation between cold head and compressor
- Typical frequency 1 2 Hz
- Somewhat reduced efficiency
- Cooling power range:
 - ~ 1 watt @ 4.2 K : recondenser
 - 200 watts @ 80 K: cryo-pumps
- Primary uses:
 - Liquid nitrogen plants
 - Cryopumps
 - Conduction cooled s/c magnets -MRI, µSMES, HTS
 - Large scale HTS applications

Gifford-McMahon Cryocoolers

Pulse Tube Cryocoolers

- Two general types
 - Stirling type
 - High frequency ~ 60 Hz
 - High efficiency: 25% of Carnot
 - Operation down to 10 K
 - GM type _
 - Low frequency ~ 1-2 Hz ٠
 - Split design = very low vibration
 - Ideal for 4 K operation (< 1 watt) ٠

Stirling Type

Cooling Mechanisms

(why does this thing work?)

Pulse Tube Refrigerator

- Two mechanisms for cooling are possible
 - 1. Surface heat pumping
 - 2. Enthalpy flow
- The first mechanism is always present
- The second mechanism is not present in the basic pulse tube configuration.

Phase Shifting & Enthalpy Flow

- Phase shifting orifice introduced by Mikulin 1983, Radebaugh 1984
- Cooling power understood based on enthalpy flow analysis

$$\dot{m}_1 h_1 \quad \dot{m}_2 h_2 + \dot{Q} \quad \dot{W} = dU/dt$$
$$Q = \left\langle \dot{H} \right\rangle = \frac{1}{-} \circ \dot{m} c_p T dt$$

Basic pulse tube (no orifice):
 <H> = 0

$$\vec{m} = \tau_0 \cos(t - 90)$$
$$= -\tau_0 \sin(t)$$
$$\vec{m} = \tau_0 \cos(t)$$

Stirling-type, Orifice Pulse-Tube reciprocating piston reservoir orifice aftercooler T_H T_H hot heat exchanger pulse-tube regenerator matrix T_{C} cold heat exchanger

Losses in the Stirling-type Pulse tube

• In the real system, entropy is generated in the regenerator and the pulse tube, reducing the amount of acoustic work that is available for enthalpy flow

- The major losses in the regenerator are proportional to the magnitude of mass flow through the regenerator.
- Optimimzed performance minimize the magnitude of the mass flow through the regenerator.

Pulse Tubes: Future Directions & Commercial Sources

- R&D:
 - Phase shifting mechanisms inertance tubes
 - Large capacity modeling & losses
 - Performance improvements
- Sources:
 - GM-type
 - Cryomech, SHI (Sumitomo Heavy Industry), U of Giessen,
 - Stirling type
 - Atlas Scientific, STC, Sunpower, TRW, Martin-Marietta, Praxair, Sierra-Lobo

