Current Lead Design

US Particle Accelerator School June 21-25, 2004

Current Lead Design

- What is a current lead and what are the design challenges?
- Design goal minimize cryogenic impact
- Configurations
- What do you expect?
- Designing conventional leads
 - Conduction cooled
 - Vapor cooled
 - Forced flow cooled
- Designing HTS (hybrid) leads
 - Cooling options
 - Additional factors to consider

Purpose, Design Challenge

75 kA leads at zero current

AMI 75 kA Conventional, helium vapor-cooled leads

- <u>Purpose:</u> Communicate electric power from room temperature to cryogenic coils, magnets, transmission lines, or devices.
 - Design challenge:
 - Cryogenic heat load due to:
 - Heat conduction
 - Heat generation (I²R)
 - Reducing conduction (reduce area, increase length, reduce k) increases heat generation
 - Reducing heat generation (increase area, decrease length, reduce) increases conduction
 - Optimization required

Goal: Minimize Impact on Cryogenic System

- Open systems: reduce cryogen boil-off
 - Benchmark: 1.1 W/kA-lead = 3 liter/hr-kA-pair for conventional helium vapor cooled leads
- Closed cycle refrigerator: improve performance
 - Reduce the required electrical power to refrigerate vapor exiting warm end of leads:
 - \approx 7 kW electrical power for pair of 1 kA conventional leads
 - Improve reliability by using a cryocooler to re-condense vapor at 4.2 K
 - Replacing conventional 5 kA leads with HTS versions provides Fermilab Tevatron excess refrigeration to reduce magnet temperature from 4.2 K to 3.5 K.

Configurations

- Conventional
 - Conduction cooled
 - Vapor cooled
 - Forced-flow cooled
- HTS hybrid
 - Conduction cooled
 - Vapor cooled
 - Forced-flow cooled

What Do You Expect?

- The functional dependence of Q on I_{max} :
 - For an optimized conduction cooled lead
 - For an optimized vapor cooled lead ______
- The functional dependence of the aspect ratio L/A on I_{max} :
 - For an optimized conduction cooled lead
 - For an optimized vapor cooled lead ______
- Compare the cold-end heat leak for a 1 kA vapor cooled lead:

Q (helium vapor cooled) Q(nitrogen vapor cooled)

• Compare the aspect ratio for a 1 kA vapor cooled lead:

L/A (neon vapor cooled) _____ L/A (nitrogen vapor cooled)

Conduction Cooled Lead: Derivations

 T_{h}

)	Energy balance on control volume:
	$Q_{in} - Q_{out} + Q_{gen} = 0$
	$kA\frac{dT}{dx}\Big _{x+dx}$ $kA\frac{dT}{dx}\Big _{x} + \frac{I^{2}}{A}dx = 0$ note that if $dT/dx > 0$, $Q_{in} > 0$
	$\frac{d}{dx} k \frac{dT}{dx} + J^2 = 0$
)	Change variables: let $s = k \frac{dT}{dx}$
	$\frac{ds}{dx} + J^2 = 0; \qquad \frac{ds}{dT}\frac{dT}{dx} + J^2 = 0$
	$\frac{s}{k}\frac{ds}{dT} + J^2 = 0; \qquad sds = k J^2 dT$
	$s = \frac{Q}{A};$ $ds = \frac{dQ}{A};$ ${}_{c}{}^{h}QdQ = \frac{1}{2}Q^{2}\Big _{c}^{h} = I^{2} {}_{T_{c}}{}^{T_{h}}k dT$

$$T_{h} = Conduction Cooled Lead: Derivation (cont.)$$

$$Q_{h}^{2} = Q_{c}^{2} = 2I^{2} \frac{T_{h}}{T_{c}} k \ dT \qquad Q_{c}^{2} = Q_{h}^{2} + 2I^{2} \frac{T_{h}}{T_{c}} k \ dT$$

$$Q_{c} \text{ is minimized when } Q_{h} = 0.$$

$$Q_{c, \min} = I \ 2 \frac{T_{h}}{T_{c}} k \ dT \qquad dx = \frac{kA \ dT}{\sqrt{2}I \left(\frac{T_{h}}{T} k \ dT\right)^{1/2}}$$

As T is lowered, this equation defines the additional length required to produce Q_{min} at T_c

• Finally:

$$\frac{L}{A} = \frac{1}{I\sqrt{2}} \frac{T_{h}}{T_{c}} \frac{k \, dT^{*}}{\left(\frac{T_{h}}{T^{*}} k \, dT\right)^{1/2}} \quad OR \quad JL = \frac{1}{\sqrt{2}} \frac{T_{h}}{T_{c}} \frac{k \, dT^{*}}{\left(\frac{T_{h}}{T^{*}} k \, dT\right)^{1/2}}$$

L/A (m/m^2)

Conduction Cooled Lead: Conclusions

- An 'optimized' lead is optimized for a single (maximum) current
- $Q_{c, \min} \sim I$

T_h

T_c

- $Q_{c, min}$ is a function of T_h , T_c , I, and (weakly) on material choice
- JL = constant dependent only on T_h , T_c , and mtl. choice
- $L/A \sim 1 / I$

Vapor Cooled Lead

- Energy balance at steady state is given by:
- $\frac{l^{2}}{A} + \frac{d}{dx} Ak \frac{dT}{dx} \dot{m} C_{p} \frac{dT}{dx} = 0$ • Goal is to minimize \dot{m} with $\dot{m} = \frac{1}{C_{L}} kA \frac{dT}{dx}\Big|_{x=0}$
- Variety of solution methods: J.E.C. Williams (1963), Deines (1965), Lock (1969), Dresner (1995) similarity solution: (special units)

$$\ln \frac{T_{h}}{T_{c}} = \ln \frac{s_{c}^{2}}{T_{c}^{2}} + \frac{s_{c}^{2}}{T_{c}} + 1 + s_{c} (4 - s_{c}^{2})^{1/2} \arctan \left(\frac{s_{c} (4 - s_{c}^{2})^{1/2} + s_{c} (4 - s_{c}$$

• Q_{\min}/I (ordinary units) = $s_c L_o^{1/2} \frac{C_L}{C_p}$

Helium: $T_h = 300 \text{ K}, T_c = 4 \text{ K}, s_c = 1.79, \text{ Q/I} = 1.12 \text{ W/kA}$

• Examples:

 T_h

T_c

Neon: $T_h = 300 \text{ K}$, $T_c = 27 \text{ K}$, $s_c = 1.23$, Q/I = 16.1 W/kA

Nitrogen: $T_h = 300 \text{ K}$, $T_c = 77 \text{ K}$, $s_c = 0.855$, Q/I = 25.4 W/kA

Vapor Cooled Lead (cont.)

• Optimum aspect ratio (similarity solution - special units)

 T_h

T_c

$$\frac{L}{k} = 2(4 \quad s_{c}^{2})^{1/2} \arctan \frac{s_{c}(4 \quad s_{c}^{2})^{1/2}}{2T_{c} \quad s_{c}^{2}} \quad ; \qquad JL = \frac{L}{k} \frac{k}{\frac{special}{units}} \quad \frac{k}{L_{o}^{1/2}}$$

using an integrated average value of k over the temperature range, and the Lorentz constant $L_0 = 2.45 \times 10^{-8} (W\Omega/K^2)$ gives (for a 1 kA lead)

• Helium VCL (300 K - 4.2 K)

$$\frac{L}{k}_{s.u.} = 4.87$$
 $LJ = \frac{LI}{A} = 1.62 \times 10^7 \text{ A / m}$ $\frac{L}{A} = 162 \text{ cm / cm}^2$

$$\frac{L}{k}_{s.u.} = 1.985 \qquad LJ = \frac{LI}{A} = 6.28 \times 10^{6} \text{ A / m} \qquad \frac{L}{A} = 62.8 \text{ cm / cm}^{2}$$

Nitrogen VCL (300 K - 77 K)

$$\frac{L}{k} = 1.675$$
 LJ $= \frac{LI}{A} = 4.93 \times 10^6 \text{ A / m}$ $\frac{L}{A} = 49.3 \text{ cm / cm}^2$

Vapor Cooled Lead - Conclusions

- Minimum heat leak:
 - As with conduction cooled leads, $Q_{min} \sim I$
 - Dependence of Q_{min} on coolant is dominated by (C_L / C_p)

- Optimized aspect ratio:
 - L/A_{opt} ~ 1/I smaller current larger aspect ratio
 - L/A_{opt} dependence on coolant: colder range larger aspect ratio

Forced Flow Cooled

• Behavior governed by same energy balance equation as vapor cooled

Ø

• E. Barzi, (Fermi-lab, 1998): numerical solution, with variable mass flow rate, for lead designed for a maximum current of 5 kA

HTS Current Leads

- Reduced cryogenic impact
 - Heat generation significantly reduced (eliminated) in HTS segment.
 - Heat conduction reduced
 - Cold end heat load reduced by factor of 3 - 10.
- Wide variety of cooling options
- Additional design issues to consider

Cooling Options for HTS Leads

- Conduction cooled via cryocooler Chang & Van Sciver
 - Minimize combined 1st and 2nd stage cooling power

$$\frac{W_{ref}}{I} = \frac{1}{FOM_{L}} \frac{T_{H}}{T_{L}} - 1 \frac{1}{JL_{hts}} \frac{T_{J}}{T_{L}} k_{hts} dT + \frac{1}{FOM_{J}} \frac{T_{H}}{T_{J}} - 1 \sqrt{2 \frac{T_{H}}{T_{J}}} k_{cu} dT - \frac{1}{JL_{hts}} \frac{T_{J}}{T_{L}} k_{hts} dT$$

Optimized joint temperature ~ 90 K for Bi2223

Cooling Options for HTS Leads

- Forced flow cooling Fermilab, CERN, ITER
- Fermilab: 5 kA lead retrofit for Tevatron
 - helium vapor cooled HTS section
 - nitrogen gas cooled upper section
 - prototypes from ASC and IGC
 - heat loads: 101 W @ 80 K, 0.7 W @ 4 K

- CERN: 13 kA, 6 kA, 0.6 kA for LHC
- ITER Toroidal Field Coils: 10kA, 20kA
 - conduction cooled HTS
 - helium gas cooled 50 K 300 K
 - multiple vendors
 - < 1 g/s helium flow @ 20 K inlet

10 kA prototype for ITER-FEAT FZK, CRPP-TF, Aventis/Nexans

13kA prototype for CERN Eurus/NHMFL

Cooling Options for HTS Leads

• Vapor cooling - AMI / MIT

- Hybrid lead designed so that HTS section operates above I_c
 - 6 kA

addl.

helium in

- Stacked tapes (240 vs 480) of Bi-2223/Ag-4%Au
- Short (~ 0.4 cm / 28 cm) portion of HTS produces joule heating
- Additional joule heat removed by effluent helium vapor
- Improved characteristics as compared to fully superconducting version
 - Optimized versions: $Q_c = 0.36$ W vs. 0.71 W
 - Quantity of Ag & Au reduced by a factor of ~2.

Additional Considerations for HTS Leads

Additional Considerations for HTS Leads

- Joint resistance $\sim 0.1 \ \mu\Omega$
- Protection
 - Localized hot spots, cracking
 - Fault mode behavior: loss of cooling, overcurrent

References

- S. Deiness, "The Production and Optimization of High Current Leads," *Cryogenics*, vol. 5, pp. 269-271, October 1965
- J.E.C. Williams, "Counterflow Current Leads for Cryogenic Applications," *Cryogenics*, vol. 3, pp. 234-238, December 1963.
- Yu.L. Buyanov, "Current Leads for use in Cryogenic Devices. Principle of Design and Formulae for Design Calculations," *Cryogenics*, vol. 25, pp. 94-110, February 1985.
- J.R. Hull, "High Temperature Superconducting Current Leads," *IEEE Trans. on Applied Superconductivity*, vol. 3 (1), pp. 869 - 875, 1992.
- L. Dresner, *Stability of Superconductors*, Plenum, 1995, pp. 190-197.
- R. Wesche and A.M. Fuchs, "Design of Superconducting Current Leads," *Cryogenics*, vol. 34, pp. 145-154, February 1994.
- E. Barzi, "Gas/Vapour-Cooled Binary Current Leads: Copper Part," Fermilab internal report number TD-98-026, March 1998.
- H.M. Chang and S.W. Van Sciver, "Thermodynamic Optimization of Conduction Cooled HTS Current Leads," *Cryogenics*, vol. 38 (7), pp. 729-736, July 1998.

- T.M. Taylor, "HTS Current Leads for the LHC," *IEEE Trans. on Applied Superconductivity*, vol. 9 (2), pp. 412 - 415, June 1999.
- J.M. Pfotenhauer and J.W. Lawrence, "Characterizing Thermal Runaway in HTS Current Leads," *IEEE Trans. on Applied Superconductivity*, vol. 9 (2), pp. 424 - 427, June 1999.
- A. Hobl *et.al.*, "HTc Current Leads in Commercial Magnet Systems Applying Bi 2212 MCP BSCCO Material," *IEEE Trans. on Appl. Superconductivity*, vol. 9 (2), pp. 495-498, June 1999.
- R. Heller *et.al.*, "Status of the Development Program of a 60 kA HTSC Current Lead for the ITER Toroidal Field Coils," *IEEE Trans. on Applied Superconductivity*, vol. 9 (2), pp. 507 -510, June 1999.
- G. Citver, S. Feher, T.J. Peterson, C.D. Sylvester, "Thermal Tests of 6 kA HTS Current Leads for the Tevatron," *Advances in Cryogenic Engineering*, vol. 45, pp. 1549 - 1564 2000.
- Y. Iwasa and H. Lee, "High Temperature Superconducting Current Lead Incorporating Operation in the Current-sharing Mode," *Cryogenics* vol. 40 pp. 209-219, 2000.

