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5.1 Introduction

Damping rings are used in linear colliders to quickly reduce the emittance
of the electron and positron beams at an early stage of the acceleration. A
damping ring is a storage ring optimized for a fast damping time and a low
emittance.

A train of bunches is injected into the damping ring from a transport line.
After several thousands of turns, the bunches will have been reduced in the
transverse dimension, and then are extracted into a transport line leading to
a linac for further acceleration.

Expressed in an equation,

εx(t) = εx,inje
−2t/τx + εx,eq(1 − e−2t/τx), (5.1)

where εx,inj is the injected emittance, εeq is the equilibrium emittance, and
similarly for y. τx is the damping time for the particle motion. Note that the
beams may be stored for only a few damping times such that the extracted
emittance is somewhat larger than the equilibrium emittance.

As shown in Figure 5.1, a storage ring is essentially a curved beamline
of dipole magnets (for bending) and quadrupole magnets (for focusing) that
closes on itself. Usually the magnets are laid out as an oval: two semi-circles
and two straight sections. However a “dog bone” layout is proposed for the
TESLA linear collider [1] in order to fit the straight sections side-by-side in
the main linac tunnel to save costs.
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Figure 5.1: Layout of essential damping ring.

Additionally, a storage ring requires rf cavities for replacing particle en-
ergy lost through synchrotron radiation and for maintaining the bunching
structure.

Damping occurs in all electron storage rings through the combination
of emission of synchrotron radiation and energy recovery by an rf cavity.
In time, an equilibrium in beam size is established when the trajectory
“noise” created by emitting photons randomly, a diffusion process, matches
the damping rate.

The arrangement and strength of the dipoles and the quadrupoles (called
the lattice) to be determined by the accelerator designers partly determine
the damping rate and the equilibrium beam parameters of transverse emit-
tance and energy spread. In general the stronger the dipoles, the faster the
damping rate, and the stronger the quadrupoles, the smaller the emittance.

Special magnets called wigglers are inserted in straight sections of the
damping rings to significantly increase the damping rate and lower the emit-
tance as an alternative to using difficult-to-achieve optics.
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Sextupoles magnets (i.e., with six poles) are required for correcting chro-
matic aberrations (focal length change for particles of different momentum).
These sextupoles have a drawback in that they add nonlinearities to the
particle motion, which cause particle motion instability when a particle is
launched at a large enough offset from the design orbit and effectively re-
duce the usable aperture of the beampipe. Strongly focusing lattices such as
those in damping rings require stronger sextupoles, and therefore may have
aperture problems.

Almost all design parameters of the storage ring are interrelated, some-
times at cross purposes. These will be reviewed in this lecture using some
designs proposed for the NLC [2] and TESLA [1] damping rings.

5.2 Storage Rings Optics

5.2.1 Bending

⊗

⊗

By

integration path

pole

return
yoke

coil

pole gap

2G

Figure 5.2: Dipole cross section showing integration path.

The particles are deflected into arcs of a circle by an iron dipole magnet
with a uniform field inside a gap of height 2G. The magnetic field is generated
by the current in the coils wrapped around an iron pole. A yoke provides a
path for the magnetic field lines.
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The uniform field is determined by a path integral shown in Figure 5.2,

∮

~Hd~l = 2GBy +
∫

iron

~B

µ
d~l =

4π

c
2I, (5.2)

where µ is the permeability of the iron, and I is the current through one coil.
Since we operate with reasonable fields such that µ is very large, the path
integral can be dropped, and

By =
4π

c

I

G
(5.3)

or

By[T] =
0.4π

104

I[A-turn]

G[cm]
. (5.4)

For a field of 2 T and a gap of 2 cm, the coil current is 31 kA-turn. Say for a
coil of 50 turns, the circuit current needs to be 620 A. A smaller gap would
need less current, but a large vertical aperture of usually 2 cm is required for
injecting the beam.

The bending radius of the arc of the trajectory is

1

ρ
=
eBy

pc
(5.5)

or
1

ρ[m]
=

0.3By[T]

E[GeV]
. (5.6)

For a 1.2-GeV beam, the bending radius from 2 T is 2.0 m.
Saturation effects in the iron start to occur at 1.6 T, and the magnet is

saturated at about 2 T, meaning that increasing the current from that point
on will not increase the field efficiently. Designs should avoid requiring fields
larger than 2 T. Higher fields can be produced by superconducting magnets,
but they are much more expensive and are complicated to operate.

5.2.2 Focusing

Quadrupole magnets are installed in spaces betweeen dipole magnets and fo-
cus particle trajectories using a gradient in the magnetic field. An idealized
cross section of the quadrupole magnet poles is given in Figure 5.3. Because
dBy/dx = dBx/dy, a magnet that focuses in the horizontal plane will defo-
cus in the vertical plane. By alternating the polarity of the magnets in a
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beamline or arc, one can achieve overall focusing with the requirement that
the quadrupole magnets have to be spaced at intervals significantly shorter
than the focal length.

Figure 5.3: Quadrupole cross section showing forces on particles on x- and
y-axes.

As mentioned earlier, iron saturates at about 2 T. In a quadrupole the
saturation would first occur somewhere along the long poles. To avoid satu-
ration, the field at the pole tip should not be larger than 1 T.

Another (obvious) design limitation is that the pole tip radius R must be
larger than the required aperture for the beam.

Both these limitations determine the maximum gradient of a quadrupole.
The normalized strength k of a quadrupole, which is used in optics calcula-
tions, is determined by the energy of the beam.

As an example, say that R = 3 cm, Btip = 1 T, E = 2 GeV, and lQ =

0.2 m. We use g = Btip/R, k[m−2] = 0.3g[T/m]/E[GeV], and f = 1/(klQ)

as the focal length to give g = 33 T/m, k = 5 m−2, f = 1 m.

5.2.3 Betatron Oscillation

Betatron oscillations are the pseudo-sinusoidal motion of a particle relative
to the design trajectory; they are “shaped” by the focusing channel of the
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beamline or ring and are due to the initial coordinates of the particles. See
Figure 5.4 for examples trajectories through a FODO channel. The amplitude
of betatron oscillations decrease during the damping process, giving a beam
distribution that gets smaller and smaller. When a particle occasionally emits
a high-energy photon, the particle starts a new oscillation with a higher
amplitude. Since the radiation process is continual, the amplitude step-
changes occur forever, but the accumulated amplitude is limited because of
the damping process.

Figure 5.4: FODO channel with several x and y trajectories of different initial
conditions.

However it is useful to describe the motion in the absence of the radiation
effects.1 Omitting other complicating terms like a curvature term in x plane,
magnet errors, and sextupole magnets, the equation of motion for x and y
coordinates relative to the design axis are

x′′ + k(s)x = 0 and (5.7)

1In the case of a proton, there is little or no radiation emission, so a betatron oscillation

is the correct description of the motion of a single particle.
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y′′ − k(s)y = 0, (5.8)

where k(s) is the focusing strength of the quadrupole along the beamline or
arc, which is a piecewise function. The general solution looks like that of a
harmonic oscillator,

x(s) = Ax

√

βx cos(φx(s) + φx0), (5.9)

y(s) = Ay

√

βy cos(φy(s) + φy0), (5.10)

where the β’s are an envelope function (called the beta function) of length
dimension, are always positive, and may be totally different in character for
each plane. The φ functions are called the phase advance defined by the β’s,

φ =
∫ s

0
ds/β(s), (5.11)

which increases monotonically with s and is not necessarily linear in s. When
φ increases by 2π along s, then we say the particle has executed one betatron
oscillation. The value of φ at s = C is called the betatron number, which is
the number of oscillations in one turn. This betatron number is not neces-
sarily a whole number, and actually should not be a whole number in order
to avoid amplitude-growing resonances seeded by magnet errors.

In a storage ring, we select a reference location to be s = 0, and solve for
the β as a periodic function, β|s=0 = β|s=C. Given the complicated nature
of k(s), β(s) and φ(s) are solved numerically by a computer program.

In a ring with a constant k, then β is constant (β would be equal to
1/
√
k), and φ(s) =

√
ks, as for a pure harmonic oscillation.

It turns out that the β function is a very useful quantity in beam dynam-
ics. It is not only used for the solution of a particular trajectory but also
used to describe the distribution of particles around the ring. It comes up
also in studies of tolerances to magnet errors and instabilities of the beam.

The values of x′(s) and y′(s) are obtained by differentiating with respect
to s:

x′(s) = Ax

(

− 1√
βx

sin(φx(s) + φx0) +
β ′

x√
βx

cos(φx(s) + φx0)

)

,(5.12)

y′(s) = Ay



− 1
√

βy

sin(φy(s) + φy0) +
β ′

y
√

βy

cos(φy(s) + φy0)



 ,(5.13)
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which is messy but allows us to introduce the concept of the invariant of the
motion and the phase ellipse. If we eliminate the phases, we get a constant
of the motion for each plane,

γxx
2 + 2αxxx

′ + βx′2 = A2
x, (5.14)

where αx(s) = β ′(s)/2 and γx(s) = (1 + αx(s)
2)/βx(s), and similarly for y.

The collection of β, α, and γ are called the “Twiss” functions or the machine
functions. In the x-x′ plane the trajectory will be represented by a particular
point on the ellipse, as shown in Figure 5.5. As we travel around the ring
going through various focusing elements, the coordinates will move as a point
on different ellipses, since the machine functions are a function of s.

x

x’

√εγ

−α√ε/β

−α√ε/γ

√εβ

Figure 5.5: Trajectory ellipse dimensions with β, α, and γ and ǫ as the
invariant.

At a particular location s around the ring, the betatron oscillation will
occupy different points on the same ellipse on different passes. The ellipse
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will be eventually be filled out after a large number of passes. Note that we
have only considered linear motion so far. The inclusion of sextupoles and
nonlinear terms will deform this ellipse.

5.2.4 Phase Space

The transverse coordinates of a particle circulating in a ring are (x, x′, y,
y′) and are measured relative to a reference particle on the design trajectory.
x′ is defined px/pz and similarly for y′. These are the coordinates of phase
space. Strictly speaking, the pairs of coordinates of phase space should be
canonical pairs, but since pz ≈ p0 then the two alternatives are equivalent.
One may add the longitudinal coordinates, (τ , δ = (p − p0)/p0), where τ is
the time displacement from a particle synchronous with the rf system.

At “equilibrium” the distribution of particles in phase space at any fixed
particular point in the ring is constant, and is Gaussian in character, i.e.,
ψ(x) ∼ exp{−x2/2σ2

x}, and similarly for the other coordinates.
The full distribution function is

ψ(x, x′, y, y′) = A exp

{

−βxx
′2 + 2αxxx

′ + γx2

εx

}

(5.15)

× exp

{

−βyy
′2 + 2αyyy

′ + γy2

εy

}

. (5.16)

Areas of phase space of constant density of particles are elliptical bands
described by the β, α, and γ functions. The density of particles in the neigh-
borhod of a particular trajectory doesn’t change as the beam travels along
the ring circumference (assuming equilibrium conditions). The area enclosed
by one standard deviation of the distribution is π times the emittance ε.

One can also express the beam size as σx =
√
εxβx, which is a function

of s. Given the solution of Equation (5.9), it is not surprising that σx ∼ βx.
The divergence of the beam is σ′

x =
√
εxγx. Similarly for y.

5.2.5 Dispersion

The dipole magnet strengths are set such that a particle with the design
momentum follows a central trajectory through the dipoles and quadrupoles.
Particles in a beam actually have a distribution in momentum. Taking p0

as the design momentum, and p as the momentum of a particle, then δ =
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(p− p0)/p0 is the relative momentum error. In an electron storage ring, the
rms momentum spread σδ is of the order of 10−3.

Each particle will in general execute a betatron oscillation about a refer-
ence orbit particular to the momentum error, i.e., xδ(s) = η(s)δ, where η(s)
is a proportionality function called the dispersion (or “eta”) function.

The equation for the periodic xδ and η looks like the equation from which
betatron motion was solved, but has the dipole strength as driving terms:

x′′δ + kxδ = δ/ρ , or (5.17)

η′′ + k(s)η = 1/ρ. (5.18)

Since the RHS’s of the above equations are nonzero, the dispersion solu-
tion does not have arbitrary amplitude and phase as in the betatron oscil-
lation solution. The dispersion is generally positive so that a particle with
higher momentum travels on the outside of the design trajectory. We’ll see
later that for a low-emittance ring, η should in general be made small, which
means that the 1/ρ driving terms should be small.

5.2.6 Sextupoles and Nonlinearities

Sextupole magnets correct the focusing error of quadrupoles for particles with
a momentum error. The sextupoles are located where dispersion is nonzero,
so that particles of a given momentum error get either an additional negative
or a positive focusing from the sextupolar field.

The sextupoles are more efficient when the dispersion is large. To see
this, we rewrite the equation of motion for an off-momentum particle and
with a new term for the sextupole

x′′ + kx = δkx− 1

2
mx2, (5.19)

where m = (e/cp)d2By/dx
2 and where we used k/(1+ δ) = k− δk. Applying

x = xβ + xδ = xβ + ηδ, and collecting only the terms linear in xβ :

x′′β + kxβ = δkxβ −mδηxβ (5.20)

= δ(k −mη)xβ . (5.21)

Without sextupoles (m=0) the term δkxβ is a gradient error and causes
a tune change that may lead to an instability. The mη term can be used to

11



cancel the chromatic aberration. The normalized sextupole strength required
here is m = k/η. Since the sextupoles introduce the nonlinear terms seen in
Equation (5.19), it is clear that the sextupoles should be located where the
η is large.

We have to correct the chromaticity for both x and y planes. Unfortu-
nately, a sextupole that corrects the focusing error in x worsens the error
in y, in analogy to the quadrupoles’ effect on focusing. Therefore we need
two families of sextupoles with opposite polarities arranged throughout the
lattice to compensate both planes. Because the two sets of sextupoles par-
tially offset each other, they need to run at slightly higher strength. The
degree that they do depends on the particular lattice cell. This is a critical
consideration for choosing a cell type.

We’ll see in the next section that for a small emittance, η must be small in
the dipoles. However since the bending radius drives the value of η overall, a
compromise must be reached between weaker sextupoles and small emittance.

5.3 Radiation Effects

5.3.1 Energy Oscillation

A particle with a momentum error going once around the ring will have
travelled over a shorter or a longer path than that of on-momentum parti-
cles. The path length difference comes from the extra trajectory through the
dipoles where the reference trajectory is curved, and is expressed concisely
with

∆L/L = αcδ, (5.22)

where αc =
∫

η/ρ ds is called the momentum compaction factor. A particle
with positive momentum deviation will arrive late. Since all particles travel
at essentially the same velocity c, particles with a momentum spread initially
bunched in time will spread out significantly in time (and in longitudinal
coordinate) after several turns. If the bunching of particles is destroyed,
then the “bunch” can’t be accelerated efficiently in a linac upon extraction
of the damping ring.

One or more rf cavities (see Figure 5.6 for a typical side view cross section)
are used to maintain the bunching (and to maintain the particles’ energies
after synchrotron radiation emission). The desired function is adding or
subtracting from the energy of a particle according to how much the particle

12



has moved away from the ideal longitudinal position. This restoring action
results in an oscillation in the time displacement coordinate and the energy.

An rf cavity produces an oscillating longitudinal electric field that is syn-
chronized with the passage of the bunches. This implies that the driving
rf frequency must be a multiple of the particle revolution frequency. We
normally speak in terms of the rf voltage (V =

∫

Ez dz) since the particles
integrate the E-field as they pass through a gap. Figure 5.6 shows an energy
gain of U , which is e times the voltage.

E E + U

Figure 5.6: Cavity cross section showing the accelerating E-field.

The energy gained for a particle will depend on its position relative to
a reference (synchronous) particle passing through the right rf phase for an
energy balence with synchrotron radiation.

Say that
V (t) = V0 cos(2πfrf t), (5.23)

where frf = hf0 = h/T0 and where h is the rf harmonic number, which is
an integer that is usually pretty large since frf is chosen in the 350 to 750
Mhz range and f0 is of the order 1 MHz. Note that we took the rf fields as
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the time reference. Then a synchronous particle that loses energy U0 from
synchrotron radiation must pass through at some time ts or phase φs to
maintain its energy:

U0 = eV (ts) = eV0 cos(2πfrfts) = eV0 cos(φs). (5.24)

Say that a particle is ahead of the synchronous particle by an amount cτ ,
where τ is defined the time displacement coordinate. Then the voltage seen
by this particle is V (ts − τ), i.e., the particle arrived at the cavity ahead of
the “correct” time. The total energy gain in one turn for this particle is then

∆E(τ) = eV (ts − τ) − U0 = eV0(cos(2πfrf(ts − τ)) − cos(2πfrfts)). (5.25)

For small τ ,
∆E(τ) = 2πfrfeV0 sin(φs)τ, (5.26)

where −2πfrfV0 sin(φs) is the slope of the rf voltage at φs. A particle with
τ > 0 will have absorbed too much energy on this pass. The path length will
be greater and the particle will arrive later on the next pass, which brings
the particles closer to the reference particle. On the second pass the energy
gain will not be as much, but the trend in arriving later (and closer to the
reference particle) will continue until the “correct” energy is gained. This
describes the start of an oscillation, which is depicted in Figure 5.7.

Equation (5.26) shows a linear dependence of energy gain on the time co-
ordinate. Assuming slow changes in coordinates at every turn, this equation
and the one for ∆L can both be turned into coupled first-order differential
equations which then gives a second-order equation for δ and τ .

The equation for ∆E can be changed into one for δ̇ using ∆X → T0Ẋ:

δ̇ =
2πfrfeV0 sin(φs)

T0E
τ. (5.27)

Taking Equation (5.22) and the change in τ , ∆τ = −∆L/c (remember a
longer path means that the particle is falling behind), we get

τ̇ = −Lαc

cT0

δ = αcδ. (5.28)

Combining,

δ̈ = −2παcfrfeV0 sin(φs)

T0E
δ, (5.29)
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Figure 5.7: Motion in the longitudinal plane following an ellipse.

and similarly for τ .
We define the synchrotron frequency Ω with

Ω2
s =

2παcfrfeV0 sin(φs)

T0E
. (5.30)

Ωs/2π is of the order 2 kHz for large rings (the Advanced Photon Source).
The amplitude of the oscillation described above is constant under our

assumption. A damping term has been left out by omitting the dependence
of energy loss (U0) on the energy of the particle. This will be covered later.

5.3.2 Synchrotron Energy Loss

The instantaneous power loss by a particle in a magnetic field goes as E2B2

and may be expressed in terms of bending radius ρ,

Pγ[GeV/sec] =
cCγ

2π

E4[GeV]

ρ2
, (5.31)

where

Cγ =
4π

3

re

(mc2)3
= 8.85 × 10−5m/GeV3. (5.32)
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The energy loss per turn is

U =
〈Pγ〉
T0

=
CγE

4

2π

∫

ds

ρ2
. (5.33)

In practical units for a ring with only one type of dipole,

U [MeV] = 0.088
E4[GeV4]

ρ[m]
. (5.34)

The quantity U0 used earlier is U evaluated for E = E0.
Another useful radiation quantity is the photon critical energy, the point

in the energy spectrum at which the power emitted below is equal to the
power emitted above:

uc =
3

2

h̄c

ρ
γ3. (5.35)

This gives an upper bound to the photon energy in the spectrum. In practical
units, uc[keV] = 0.665E2[GeV2]B[T].

5.3.3 Damping of Energy Oscillations

In the previous description of energy oscillation, we assumed that the energy
loss per turn was a constant, U0, i.e., not dependent on energy. When we
add this dependence, a damping term will appear.

Return to Equation (5.25) and replace U0 with

U(E) = U0 +
dU

dE

∣

∣

∣

∣

∣

0

(E − E0) = U0 +
dU

dE

∣

∣

∣

∣

∣

0

E0δ (5.36)

giving

δ̇ = −2πfrfeV0 sin(φs)

T0E
τ +

1

T0

dU

dE

∣

∣

∣

∣

∣

0

δ. (5.37)

Leaving the term dU/dE unevaluated for now, the equation of motion for
δ is

δ̈ +
1

T0

dU

dE

∣

∣

∣

∣

∣

0

δ +
2παcfrfeV0 sin(φs)

T0E
δ = 0. (5.38)

The general solution for δ is then

δ = A exp{−αst}ei(Ωst+φ0), (5.39)
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where the damping rate is

αs =
1

2T0

dU

dE

∣

∣

∣

∣

∣

0

. (5.40)

The calculation of dU/dE or dPγ/dE is complicated by the fact that
particles with different energy than E0 will travel on a dispersion orbit where
the fields may be different. This occurs when a gradient is designed into the
field of a dipole magnet, which is an option for damping rings that is used in
the New Linear Collider (NLC). Also if the dipoles are sector magnets, then
the path length increases with energy, producing another correction term.
Omitting these terms for simplicity we get

dPγ

dE
≈ ∂Pγ

∂E
= 2

Pγ

E
(5.41)

from Pγ ∼ E2B2.
Therefore the damping rate is

αs =
1

T0

U

E
. (5.42)

Writing in terms of Pγ, we have

αs =
〈Pγ〉
E

. (5.43)

The damping time is

τs =
1

αs
=

E

〉Pγ/rangle
, (5.44)

the time required to radiate all the energy of the particle if there were no rf
cavities to maintain the energy and 〉Pγ/rangle stayed constant.

Gradients in dipole magnets and sector magnets require the correct ex-
pression,

αs =
1

2T0

U

E
(2 + ϑ), (5.45)

where

ϑ =

[

∫ 1

ρ
(2k +

1

ρ2
)η ds

]/[

∫ 1

ρ2

]

. (5.46)

In some accelerators that have gradients in bends, ϑ is order unity, which is
a significant effect.
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5.3.4 Damping of Transverse Oscillations

The damping of transverse oscillation is a little simpler to illustrate. The
process appears to be different, but it turns out that the result is the same
as in the longitudinal case except for a factor of 2.

Starting with general transverse coordinates (x, x′ = px/pz, y, y
′ =

py/pz), a particle emits photons at various phases of the betatron oscilla-
tion. We assume that the photons are emitted in the direction of motion so
that the angles x′ = px/pz and y′ = py/pz are preserved after every emission.
This is a good approximation since the opening angle of photon emission is
of the order 1/γ, which is much less than the angular divergence of the beam.
Figure 5.8 shows the damping process with nonzero transverse momentum
in the vertical plane.

before emission
of photon

after emission
of photon

after acceleration

p

p
0

p
y0

z0

y’0 y’1

p γ

p
0

y’1
y’0<

p
y1 p

y1

Figure 5.8: Snapshots of particle momentum showing transverse damping.

The rf cavity fields will restore the original total momentum after one
turn. The fields are longitudinal and can only add to pz. Thus we have a
damping mechanism, since at every turn px and py decrease while pz increases.

Looking at only the vertical plane, after radiating the average amount of
photons over one turn and before reaching the rf cavities, the change in py

and pz are

∆py = −py(U0/E0) and (5.47)

∆pz = −pz(U0/E0), (5.48)

while y′ is unchanged from the radiation process. (The equations say that the
momentum fractions are equal to the energy fraction lost to photon emission.)
Going through the rf cavity, pz is incremented by U0/c, changing the angle
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y′ = py/pz by

∆y′ = py

(

1

pz + U0/c
− 1

pz

)

(5.49)

≈ −py

pz

U0

cpz

≈ −y′U0

E0

. (5.50)

The amplitude of the vertical motion is decreased at the rf cavity only when
the particle has a slope there. The reduction in the invariant Ay = βyy

′2 +
2αyyy

′ + γyy
2 (assume αy=0 for simplicity) is

∆Ay = 2βyy
′∆y′ (5.51)

= −2βyy
′2U0

E0
. (5.52)

Averaging over phases of y′ (i.e., several turns),

〈∆Ay〉 = −2βy〈y′2〉
U0

E0

. (5.53)

But 〈y′2〉 = Ayγy/2 and γy = 1/βy, then

〈∆Ay〉 = −Ay
U0

E0

. (5.54)

Converting to a time derivative,

Ȧy = −Ay
U0

T0E0
. (5.55)

The time decrement for the coordinates y or y′ is then

αy =
1

2

U0

T0E0

. (5.56)

This is the same time decrement in the longitudinal plane, apart from a
factor of 2.

A similar derivation can be done for the horizontal plane. However the
presence of a gradient in the dipole complicates things, which results in a
numerical correction term for the damping decrement,

αx =
1

2

U0

T0E0
(1 − ϑ), (5.57)
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where ϑ is the same quantity in the energy damping decrement. Note that
one could design a nonzero gradient and wedges on the dipole magnet to
increase the damping in the horizontal plane to improve the performance
of a damping ring. However this complicates the magnet design and isn’t
usually used for this purpose.

There is a principle that states that the sum of damping decrements in
the three directions is

αx + αy + αz = 2
U0

T0E0
, (5.58)

where the lattice-dependent quantity ϑ drops out. This applies only to pre-
determined magnetic and accelerating rf fields that are not influenced by the
motion of the particles (i.e., collective effects).

5.3.5 Quantum Excitation

Quantum excitation refers to the noise generated by the random emission
of photons. The noise occurs in the horizontal and longitudinal planes. If
there is vertical bending somewhere in the ring, then some noise is generated
in the vertical plane, too. The quantum excitation is the main process that
keeps the beam emittances in the horizontal and longitudinal planes from
shrinking to zero.

As a starting point, suppose that all electrons have the same energy and
are traveling along the ideal orbit. After emitting a photon, the electron im-
mediately starts to oscillate about a new off-momentum orbit corresponding
to the lower energy of the electron. The coordinates of the particles don’t
change but the particles are forced into betatron oscillations through

∆x = ∆xβ − η
u

E
= 0 (5.59)

and
∆x′ = ∆x′β − η′

u

E
= 0, (5.60)

where u is the photon energy. We see here how a small dispersion in the
dipoles will help make the betatron oscillation small, and reduce the emit-
tance.

Let us consider the energy oscillation first. Say that a particle already
undergoes an oscillation E(t)−E0 = Aei(Ωst+φ0), then an emission of photon
of energy u, at a general phase will increase the amplitude by an average of

〈∆A2〉 = u2. (5.61)
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The rate of change while averaging over the whole ring is

〈

dA2

dt

∣

∣

∣

∣

∣

Q

〉

=
∫ ∞

0
u2ṅ(u)du =

〈

Ṅph〈u
2〉
〉

s
, (5.62)

where ṅ(u) is the number of photons of energy u emitted in the bin du over
one turn of the ring. The 〈...〉s around u2 refers to averaging over photon
energies at a particular location in the ring, and the 〈...〉s around Ṅph〈u2〉
refers to the ring average. These quantities can be calculated exactly and
will be given later.

From the section on damping,

〈

dA2

dt

∣

∣

∣

∣

∣

D

〉

= −2αs〈A2〉 = − 2

τs
〈A2〉. (5.63)

At equilibrium,
〈

dA2

dt

∣

∣

∣

∣

∣

D

〉

+

〈

dA2

dt

∣

∣

∣

∣

∣

Q

〉

= 0. (5.64)

Then

〈A2〉 =
1

2
τs
〈

Ṅph〈u
2〉
〉

s
. (5.65)

At equilibrium 〈A2〉 is interpreted as the probable value of A2, the energy
amplitude squared. The average of the square of the energy deviation is then
σ2

E = 〈A2〉/2.
A complex calculation gives

Ṅph〈u
2〉 =

55

24
√

3
Pγuc, (5.66)

where uc is the critical energy. Since Pγ ∼ γ4 and uc ∼ γ3, then Ṅph〈u2〉 ∼
γ7, a very strong dependence. The equilibrium σ2

E goes as γ4, and the mo-
mentum deviation goes as γ2.

Expressing in terms of the rms of δ,

σ2
δ =

σ2
E

E2
=

τs
4E2

〈

Ṅph〈u
2〉
〉

s
= Cq

γ2

Js

〈|ρ−3|〉s
〈ρ−2〉s

, (5.67)

where Cq = 3.8 × 10−13m.
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The excitation in the horizontal plane is derived similarly. The emission
of a photon will modify the particle’s ellipse A2

β = βxx
′2
β + 2αxxβx

′
β + γxx

2
β .

Making the substitutions of the type xβ → (xβ + ∆xβ) and averaging over
phases (which eliminates terms linear in ∆xβ and ∆x′β) produces

∆A2
β =

u2

E2
H(s), (5.68)

where
H(s) = βxη

′2 + 2αxηη
′ + γxη

2. (5.69)

Again we have an expression with a u2 that we need to average over the
spectrum at each point in the ring, and then to average over the ring. This
results in

〈

dA2
β

dt

∣

∣

∣

∣

∣

Q

〉

=
1

E2

〈

Ṅph〈u
2〉H(s)

〉

s
. (5.70)

The damping term is
〈

dA2
β

dt

∣

∣

∣

∣

∣

D

〉

= − 2

τx
〈A2

β〉 (5.71)

and

〈A2
β〉 =

1

2E2
τx
〈

Ṅph〈u
2〉H(s)

〉

s
. (5.72)

The quantity 〈A2
β〉 is interpreted as the equilibrium ellipse amplitude. Aver-

aging over phases, the equilibrium emittance is then 〈A2
β〉/2 or

εx =
τx

4E2

〈

Ṅph〈u
2〉H(s)

〉

s
(5.73)

= Cq
γ2

Jx

〈|ρ−3|H〉s
〈ρ−2〉s

. (5.74)

Note that in the term H the lattice has an influence on the emittance. In
most cases, the main term of interest is βη′2.

5.3.6 Coupling

Since there is no bending in the vertical plane, the quantum excitation is
zero, and the vertical emittance would damp to zero. However because of
small magnet misalignment, there will be some vertical dispersion, which
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produces quantum excitation in the vertical plane, and there will be some
horizontal motion coupled into the vertical plane.

This results in a nonzero equilibrium vertical emittance. We normally
quantify this as a ratio times the equilibrium horizontal emittance:

εy =
κ

1 + κ
εx0, (5.75)

εx =
1

1 + κ
εx0. (5.76)

Linear colliders require a very small vertical beam size, therefore damping
rings must be operated at small coupling. This means that care must be taken
in aligning the magnets, and corrections must be made to the optics once
the ring is built.

5.3.7 Formula Summary

The important formulas are rewritten here using the following traditional
definitions, and revealing the γ factors:

I2 =
∫

dipoles

1

ρ2
ds, (5.77)

I3 =
∫

dipoles

1

|ρ3| ds, (5.78)

I4 =
∫

dipoles

1

ρ
(2k +

1

ρ2
)η ds (for sector magnet), (5.79)

I4 =
∫

dipoles

2k

ρ
η ds (for rectangular magnet), (5.80)

I5 =
∫

dipoles
H 1

|ρ3| ds, (5.81)

ε = Cqγ
2 I5
I2 − I4

, (5.82)

σ2
δ = Cqγ

2 I3
I2 − I4

, (5.83)

where Cq = 3.84 × 10−13m.
The integral I5 is related to quantum excitation, and I2 is related to

damping.
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The damping times are:

τu =
4π

Cγ

T0

E3[GeV3]

1

I2Ju

for u = x, y, s, (5.84)

where Cγ = 8.85 × 10−5 m/GeV3, and

Jx = 1 − I4/I2, (5.85)

Jy = 1, (5.86)

Js = 2 + I4/I2. (5.87)

5.4 Lattice Design

The main lattice parameter is the energy of the beam since the emittance
and damping have a strong dependence on energy. For the linear collider
the normalized emittance (γε) is the figure of merit. The expressions of ε in
the previous sections should be replaced by expressions for γε if we want to
compare the performance of rings of different energies.

The damping ring is usually composed of a repeating pattern (cells) of
quadrupoles and dipoles to make the arcs. The cells are designed to give
specific properties to the beam such as damping and emittance. There are
two cell types that are usually considered for damping rings, the FODO cell,
and the theoretical minimum emittance (TME) cell. For a given cell type,
there are several parameters to decide:

• cell length, Lc;

• deflection angle per dipole magnet, θd, or equivalently the number of
cells, Ncell or dipoles, Ndip; and

• phase advance per cell in the horizontal plane, 2πµx .

The quantities Lc and θ determine the bending radius of the dipole, ρ ∼
Lc/θ. The horizontal phase advance per cell 2πµx influences the emittance.
The vertical phase advance is not relevant to the emittance, but it is preferred
to have it small to reduce chromatic aberrations.

The emittance of the arcs is rewritten with important factors separated:

γε = Cqγ
3Fε(lattice, µx)

θ3

Jx
, (5.88)
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where F is a phase-advance-dependent quality factor (different for each cell
type).

If we add wigglers to the ring the emittance can no longer be expressed
so simply. In any case, the above expression is useful in establishing an arc
cell that has good characteristics.

5.4.1 FODO Cells

The FODO cell is a simple cell with alternating polarity quadrupoles be-
tween each dipole. One can operate all the focusing quadrupoles at one
gradient and the defocusing quadrupoles at another gradient, to optimize
the horizontal focusing for emittance and to decrease the amount of focus-
ing in the vertical plane for reducing sextupole strengths. The FODO cell
has well-known properties, some of which can be derived analytically in the
“thin-lens” approximation [3].

Figure 5.9: Emittance quality factor for FODO cell.

Figure 5.9 shows the quality factor for the FODO cell. The minimum
value is 1.2, which is relatively high compared to other cell types. Since the
curve has a broad minimum in the range 120 to 160 degrees, we could operate
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anywhere in that range. Actually to reduce the strength of sextupoles, it is
preferable to run at the lower end of that range.

The reasons for using FODO cells are their simplicity, their flexibility (in
making phase advance adjustments), generally weaker sextupoles, and the
high filling factor for the dipoles needed for their damping contributions. The
SLAC damping rings built in 1983 are based on optimized FODO cells and
operate with phase advance per cell of 130 degrees. I presented in my 1989
thesis [4] a model damping ring that achieved an ultralow emittance with
wigglers with arcs of short FODO cells, partially for simplicity of design.

5.4.2 TME Cells

In the theoretical minimum emittance cell the dispersion has a minimum in
the dipole. A gradient in the dipole is optional. Quadrupoles are symmet-
rically placed in the cell to create a minimum for βx. The integral of the
function H can be minimized along the dipole. The value of the emittance
quality factor is Fε ≈ 1/12

√
15 = 0.02, about 50 times better than a FODO

cell. This is understandable since these cells uses three or four quadrupoles
per dipole compared to the one quadrupole per dipole in the FODO cell.
When making the TME dipole angle equal to the total angle of a FODO cell
with two dipoles and two quadrupoles, then the advantage is reduced by a
factor of 8, obviously still substantial. At the optimum setting of the TME
cell the sextupoles need to be very strong, so a “detuning” optics is often
used with larger emittance to obtain weaker sextupoles.

Figure 5.10 shows the magnet layout and beta functions for the NLC
damping ring. The damping ring design for TESLA uses the TME cell as
well.

5.4.3 Comparison of Cells

The NLC and TESLA design groups compared the TME cell with other
cells and found that the TME cell was the best choice. The TESLA group
made equivalent FODO cells and TME cells by adjusting the angle per cell in
each type to produce the same emittance (for example 12 degrees for TME
and 7.5 degrees for FODO), and found that from simulations of particle
trajectories the TME cell had much weaker nonlinearities from sextupole
chromatic correction.
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Figure 5.10: TME cell from the NLC damping ring.

The extra space in the TME cells can be used to install hardware such
as corrector dipole magnets and diagnostics.

5.5 Wiggler Design

5.5.1 Magnet Description

N N

N N

N

NSS

S

S

SS
y

x

z

Figure 5.11: Wiggler with undulating trajectory.

A wiggler is a periodic array of poles that produces an alternating vertical
field along the direction of the beam (see Figure 5.11). The wigglers are

27



inserted in specially-reserved, dispersion-free straight sections in order to
increase the damping rate by a large factor, and to decrease the emittance
by about the same factor. The damping is achieved by emission of radiation
as in any other bending magnet, except here the average magnetic fields are
particularly high and the wigglers extend for many meters without generating
a large dispersion value.

The bending radius of the wiggler is given by its magnetic field. Design
teams usually select a permanent magnet wiggler design over an electromag-
net design since the latter would consume too much electrical power. For the
Samarium-Cobalt hybrid wiggler [5], the magnetic field is

Bmax[T ] = B0 exp

[

− g

lp

(

2.74 − 0.45
g

lp

)]

, (5.89)

with B0 = 3.33 T. The minimum wiggler bending radius is given by

1

ρw
= eBmax/cp. (5.90)

The peak field depends on the wiggler gap g and period length 2lp. The
requirement of getting the highest peak field (for damping) implies a small
gap or a long period length. Both of these are bad; the first one is not
consistent with a large aperture, and the second one increases dispersion
in the wiggler, which increases quantum excitation of betatron oscillations.
Therefore we must choose a compromise in these variables by optimizing the
emittance.

Because the wiggler generates only a small internal dispersion function,
the quantum excitation is naturally small to begin with. The dispersion
function inside the wiggler is related to the deflection angle due to one pole.
For a sinusoidally varying field,

θ =
lp
πρw

, (5.91)

where lp is the pole length and ρw is the minimum radius of curvature of the
trajectory. A wiggler with a small deflection angle will have a small quantum
excitation.

5.5.2 Damping Contribution

The bending radius varies as a sine wave. The damping term 〈1/ρ−2〉s is
simply 1/2ρ2

w.
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5.5.3 Quantum Excitation Contribution

The internal dispersion and the bending radius vary as sine waves. The
integral of H/ρ3 is dominated by the βη′2 term.

The horizontal dispersion (there is no vertical dispersion) and its deriva-
tives are

η′′(s) =
1

ρw
sin

πs

lp
, (5.92)

η′(s) = η′0 −
lp
πρw

(cos
πs

lp
− 1), (5.93)

η(s) = η0 + (η′0 +
lp
πρw

)s− l2p
π2ρw

sin
πs

lp
, (5.94)

where η0 and η′0 are the dispersion and its derivative at the entrance of the
pole (s=0).

The quantum excitation integral for one pole is (using only the βη′2 term)

∫

1 pole
H
∣

∣

∣ρ−3
∣

∣

∣ ds ≈ βl2p
π2ρ5

w

∫ lp

0
cos2 πs

l

∣

∣

∣

∣

∣

sin3 πs

lp

∣

∣

∣

∣

∣

ds

=
βl2p
π2ρ5

w

(

4lp
15π

)

=
4βl3p

15π3ρ5
w

. (5.95)

Note the strong dependence on the bending radius.

5.5.4 Emittance

The contributions for the arcs (A) and the wiggler (W) can be separated in
Equation (5.82):

γε = Cqγ
3 I5a + I5w
I2a + I2w

. (5.96)

For a given arc design we can use the damping term I2w in the denomina-
tor to greatly reduce damping times and emittance. With modest wigglers,
we can increase the damping by a factor of 2 or 3. We can control the quan-
tum excitation I5w term by selecting a short enough period length for the
wiggler.
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There is a lower limit in emittance that wigglers can provide because of
their own quantum excitation. In the limit that the wiggler length is infinite,
the emittance reaches a constant value which scales like

γε = γ3 I5w
I2w

, (5.97)

∼ γ3 l
3
pβx/ρ

5
w

1/ρ2
w

,=

(

γ

ρw

)3

l3pβx (5.98)

∼ B3
maxl

3
pβx, (5.99)

the last step coming from 1/ρw = eBmax/cp. It turns out that the normalized
emittance from a wiggler doesn’t depend on the energy of the beam.

5.6 Design Requirements

These are brief comments on design requirements.

5.6.1 Circumference

The circumference is determined by the length of the linac bunch train. For
example, the TESLA damping ring circumference is 17 km in order to fit a
compressed 300-km bunch train. The NLC ring circumference is 300 m in
order to fit three 100-meter trains.

5.6.2 Damping Rate

The damping rate is determined by the linac repetition frequency and the
time required to damp the beam substantially close to the equilibrium emit-
tance.

In rings with multiple bunch trains NT, the damping time requirement is
loosened by the factor NT.

5.6.3 Normalized Emittance

This is determined from the interaction region specification. The values for
various designs are of the order of 2 × 10−6 m-rad.
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5.6.4 Coupling εy/εx

The coupling εy/εx requirement is determined by the interaction region spec-
ification of beam-beam effect. The requirement is of the order of a 0.5% ratio.
If the ring had no magnet errors, then the vertical emittance would be prac-
tically zero. However with magnet rotations, some of the horizontal motion
is transfered to the vertical plane, thus giving a potentially large vertical
emittance. The coupling is controlled by aligning the magnets well and by
applying optics corrections with skew quadrupole magnets.

5.6.5 Operating Energy

The energy is usually determined by the emittance and damping require-
ments, which was done in the SLAC Linear Collider (SLC) damping rings.
Sometimes the energy is adjusted to reduce instabilities in general. The
energy may be reduced to save costs if it is a relatively free parameter.

5.7 Limitations

There are limitations in the implementation of the requirements mentioned
in the previous section that will require an adjustment to an initial design.

5.7.1 Dynamic Aperture

A cell with low dispersion and strong focusing will need strong sextupoles.
The TME cell is such a case. The TME cell is usually “detuned” to make
the dispersion at the sextupoles larger, thus decreasing their strength.

5.7.2 Emittance Blow-Up from IBS

Intrabeam scattering (IBS) is the internal scattering of particles from colli-
sions in each bunch. In the beam frame, the distributions of momenta along
the three axes are quite different. The effect is to increase the emittance and
energy spread as the bunch charge increases. The original distribution of the
momenta along the three axes for the model damping ring of my thesis are:

σpx
∼

√

εβxp0 ≈ 1.6 × 10−6p0, (5.100)

σps
∼ σδp0/γ ≈ 1 × 10−7p0. (5.101)
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Particles will preferentially scatter pairwise into opposite s directions (on
the average), thus increasing the energy spread σps

, and, at first sight, re-
ducing the horizontal momentum spread σpx

. However a large fraction of the
scattering occurs where there is dispersion. The sudden change in momenta
for both colliding particles excites a horizontal betatron motion in both, thus
increasing the horizontal momentum spread (and horizontal emittance. The
intrabeam scattering growth rate goes as 1/γ4, therefore the growth is much
reduced at higher operating energies.

This is an ongoing process that is limited in electron storage rings by
radiation damping. The equilibrium horizontal emittance increase goes as
1/γ4.

5.8 Implementations

The implementations of damping ring design requirements in various damp-
ing rings are described below. Table 5.1 lists the main design parameters for
these damping rings.

The implementations are the result of compromise between requirements.
Reference [6] reports on the systematic approach that balances the design
requirements with the feasibility of the design. The reader is invited to read
this paper as a continuation of this lecture.

5.8.1 SLC

The SLAC linear collider was designed with two small damping rings [7]
operating at 1.2 GeV. They are made with short FODO cells with 2-T dipole
magnets. There are no wigglers in the design.

5.8.2 NLC

The NLC operates at 120 Hz, which requires a damping rate much less than
8 ms. The circumference of the damping ring (300 m) allows storing of three
bunch trains, effectively extending the time for damping by a factor of 3.
The bunch train of the NLC is 190 bunches at 1.4-ns intervals. The NLC
damping ring operates at 1.98 GeV. Some 46 meters of wiggler are included
to produce a sufficiently small damping time of about 5 ms.
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Table 5.1: Some Parameters of the Damping Rings Mentioned

SLC NLC TESLA Emery’s thesis
γε (m-rad) 2.1 × 10−5 3 × 10−6 8 × 10−6 2.0 × 10−7

γε (m-rad) of arcs only 2.1 × 10−5 3.7 × 10−5 2.7 × 10−6

γε (m-rad) of wigglers n/a 2.4 × 10−6 1.1 × 10−7

Lw (m) 0 46 468 360
Fw = I2w/I2a 0 2.15 17.3 32
Injected γε (m-rad) 5 × 10−3 1.5 × 10−4 10 × 10−6 n/a
ε (m-rad) 9 × 10−9 8 × 10−10 8 × 10−10 2.5 × 10−11

Energy (GeV) 1.2 1.98 5.0 4.0
Circumference (m) 35 300 17000 2229
τx (ms) 3.0 4.9 28 13.5
τx,t = τx/Nt (ms) 3.0 1.7 28 0.61†

† Used the same length of train as the NLC damping ring.

There is an additional predamping ring, to damp the rather large-emittance
positron beam before the positron beam can be accepted without loss by the
main damping ring.

The normalized emittances are γǫx = 3 mm-rad and γǫy = 0.02 mm-rad.
The cells in the arcs are TME cells that are adjusted to give larger dispersion
and a weaker sextupole correction.

5.8.3 TESLA

The TESLA linear collider accelerates a train of 2820 bunches a total of 1 ms
long. The bunch train length would be 300 km, which would have required a
damping ring with a circumference of the same length. However, by storing
the bunch train in a compressed mode, one can reduce the circumference of
the ring. The limitation is the quickness of the injection and ejection pulsed
magnets. With a 20-ns rise time, it is possible to fit 300 km of bunch train
into 17 km. In order to save tunneling costs, the long straight sections of the
damping ring are squeezed together to fit inside the linac tunnel, leaving two
arcs sections in their own circular tunnels, forming a “dog-bone” layout.

The cycle time for the linac is 0.2 s, therefore the damping time require-
ment isn’t as strong as the NLC. The damping time is set at 25 ms (50 ms

33



for electrons, i.e., half the wigglers, since electrons don’t have to damp as
much).

The energy is 5 GeV, significantly higher than the SLC. This value was
selected to reduce the space-charge tune shift, which goes as C/(γ2σxσu) for
u = x, y, where C is the circumference. The effect is particularly strong
because of the large circumference and the low emittance. The higher energy
also greatly reduces the effect of intrabeam scattering, which is a mechanism
for emittance growth.

The rest of the parameters, ρ, θcell, and the ratio Fcell are set by the
damping time and the emittance and by minimizing the wiggler length.

5.8.4 Ultralow Emittance Model Ring

This damping ring was designed for my thesis as an exercise to see how far
we can go in lowering the emittance with a large circumference ring, many
FODO cells, realistic magnets, and lots of wigglers. There were no emittance
or damping requirements except that they were to be much stronger than
the requirements discussed at the time (1988).

I set the FODO cell length to 7.2 m, the phase advance per cell to 90
degrees, and the length of the wiggler at 360 m. I minimized the emittance
using the period length of the wiggler for a fixed gap. The contributions of
arc and wigglers to the damping and quantum excitation are shown in Table
5.2.

Table 5.2: Damping and Quantum Excitation Contributions from Arcs and
Wigglers in Thesis Damping Ring.

Arc Wigglers
I2 (m−1) 5.6 × 10−7 7.4 × 10−7

I5 (m−2) 3.8 × 10−2 1.2

The contributions to quantum excitation from arcs and wiggler end up
being about the same, while the damping is provided by the wigglers only.
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