LECTURE 12 RF MODELING AND SIMULATIONS JUNE 20, 2003

UCSB –June 2003

MAFIA 4 - Solvers

- Mafia consists of many modules defined to perform various calculations.
- Each module may run either individually or inside the Graphical User Interface
- The M3 module is the preprocessor where the simulation geometry is constructed.
- The P3 module is the postprocessor which permits plotting and calculation of field and derived quantities.
- The T2, T3, TS2, TS3, S, E, and W3 modules each calculate the electromagnetic fields within the defined geometry.

CSB -Júne 2003

Eigenmode Solver I

- The eigenmode solver E is used to calculate the resonant fields in 2D and 3D structures.
- Useful for the simulation and optimization of resonators, filters, and waveguides
- Anisotropic materials and lossy materials are available

Eigenmode Solver II

- Calculates the eigenmodes without spurious solutions.
 Does an excellent job avoiding false multiple resonances at nearly identical frequencies
- Selective computation of all modes within a specified frequency range
- Automatic quality check and accuracy determination
- Boundary conditions for symmetric and periodic structures

UCSB -June 200

Static Solver I

- The Static Solver S calculates electrostatic and electro-quasistatic fields as well as magnetostatic fields
- Determines the electric currents and temperature distributions within the geometry
- Supports non-linear, anisotropic material

Static Solver II

- Electrostatic fields are crucial to the acceleration and the deflection of electron beams as well as to high voltage technology.
- Typical applications for magnetostatics can be found in the design of sensors, electromechanical devices, electromagnetic instrument shielding, and accelerators.
- Non-linear materials, permanent magnets and coil systems, can be taken into account by Mafia

Time-Domain Solvers I

- Time domain solvers T2 and T3 are used for the calculation of radiation and scattering problems
 - Power splitters, Directional couplers, Antennas
 - Connectors, filters, optical waveguides, switches, EMC and EMI
- Time domain simulations calculate steady-state parameters such as sparameters, impedances, etc
- Also calculate the transient signals such as time domain reflectometry
- Broadband simulation of hysics and Theorigency dependent traterials

Particle in Cell Solvers I

- The TS2 and TS3 modules calculate the relativistic effects of particle motion
- Static and dynamic fields can be assumed as initial conditions
- Electron / ion gun and tube simulation (2D and 3D)
 - Space charge limited emission
 - Temperature limited emission
 - Examination of high frequency properties

UCSB -June 2

Time-Domain Solvers II

• Excitation by incident plane waves, waveguide modes or superposed electric currents or voltages

- Specialized model for skin effect simulations of highly conductive materials
- Specialized models for thin wires or sharp edges of electric conducting materials
- Gyrotropic materials such as ferrites, and plasmas can be simulated
- Calculation of particle beam wake fields

Particle in Cell Solvers II

- Boundary conditions
 - Electric, magnetic, open
 - Broadband waveguide boundary condition
 - Interface to previous TS2 simulation
- Particle definition
 - Flexible definition of cathodes
 - Separation of particles into different bunches
 - Various charge to mass ratio permitted for each bunch
 - Particle emission from curved surfaces

Particle interaction: TS2 and TS3 I

- The interaction of the relativistic motion of charged particles in the presence of electromagnetic fields can be simulated
- Many studies on the behavior of charged particles are possible.
- Effects of static and high frequency fields on particles can be evaluated
- Range of applications include
 - electron guns, cathodes
 - devices for beam focusing and beam deflection
 - high-power tubes for radar,

Microwave Physics and Techniquateasting, and asected and sectors 2003

Particle interaction: TS2 and TS3 II

- Study of 3D electron / ion guns and tubes can use various emission schemes such as space charge limited and temperature limited
- Consistent coupling between particles and fields are accurately realized with FIT algorithm for these emission schemes

Post Processing

- The P3 module permits the display of S-Parameters and impedances
- Calculates energies, losses, integrals, forces, etc
- Calculate Discrete Fourier Transform, Fast Fourier Transform, Auto Regressive Filter
- VRML export capability
 - Force computation

Post-Processing: Field Visualization

- Field Quantities may be viewed in isometric and contour plots
- 1-d plots of field quantities
- 2-d and 3-d visualization capability
- Calculations and manipulations of field quantities can be performed
- Far-Field data (radiation, RCS patterns) can be

Microwave Physics and Techniques generated and plotte

Exercise: Waveguide Hybrid

- We will explore the complete geometry construction of a waveguide tee problem using the MAFIA M3 module.
- We will build the geometry for this problem but not solve it.
- The tee is constructed from WR 2300 waveguide with dimensions 23 in x 11.5 in.
- Its operating frequency will be 352 MHz.

Nicrowave Physics and Techniques

UCSB -June 2003

Create Mafia file

crowave Physics and Techniques

<u>→</u> MAFIA 4.106		X
街 Open a new MAFIA File		
Path /net/ozone/rfscratch/waldschm/mafiaNew/class		Filter
		*.drc ¥
File	Directory	
geometry	••	A
lowpassFilter.drc magictee.drc	Ā	X
OK Cancel		Help
Select filename		

- Go to File > New. Enter the filename 'magictee' when prompted. Press 'OK'. Do not save previous project by pressing 'No'
- Open the M3 module. Go to Module > M - The Mesh Generator.
- We will begin constructing the magic tee

UCSB -June 20

Create Brick

- The magic tee consists of simple waveguide arms.
 Therefore we will use the 'brick' primitive.
- Go to Shapes > Brick. Enter the following input:
 - Material number: 1
 - Name: 'arm_1'
 - Xlow: -0.2921
 - Xhigh: 0.2921
 - Ylow: -0.14605
 - Yhigh: 0.14605
 - Zlow: 0
 - Zhigh: 1.651 **UCSB –June 200**

Create Second Brick

- Click on the 'Add' button located in the second column on the left side of the dialogue window.
- Add another brick. Go to Shapes
 > Brick. Enter the following input:
 - Material number: 2
 - Name: 'arm_2'
 - Xlow: -0.14605
 - Xhigh: 0.14605
 - Ylow: 0
 - Yhigh: 1.651
 - Zlow: -0.2921
 - Zhigh: 0.2921

Create Third Brick

- Press the 'Add' button
- Go to Shapes > Brick. Enter the following input:
 - Material number: 3
 - Name: 'arm_3'
 - Xlow: -1.651
 - Xhigh: 1.651
 - Ylow: -0.14605
 - Yhigh: 0.14605
 - Zlow: -0.2921
 - Zhigh: 0.2921
- Press the 'Add' button. Then press 'Close'

UCSB –June 200

