LECTURE 10

POWER DIVIDERS AND COUPLERS

JUNE 19,2003

A. NASSIRI - ANL

Power dividers and directional couplers

> Basic properties of dividers and couplers three-port network (T-junction), four-port network (directional coupler), directivity measurement
$>$ The T-junction power divider
> Lossless divider, lossy divider
> The Wilkinson power divider
> Even-odd mode analysis, unequal power division divider,
> N-way Wilkinson divider
$>$ The quadrature $\left(90^{\circ}\right)$ hybrid branch-line coupler
> Coupled line directional couplers
$>$ Even- and odd-mode Z_{0}, single-section and multisection coupled line couplers
> The Lange coupler
$>$ The 180° hybrid

- rat-race hybrid, tapered coupled line hybrid
$>$ Other couplers reflectometer

Basic properties of dividers and couplers

- N-port network

Discussion

1. Matched ports $\longrightarrow S_{i j}=0$
2. Reciprocal network \longrightarrow symmetric property $S_{i j}=S_{j i}$
3. Lossless network \longrightarrow unitary property

$$
\sum_{i=l}^{N}\left|S_{i j}\right|^{2}=l \forall j, \quad \sum_{i=l}^{N} S_{i k} S_{k j}^{*}=0 \quad k \neq j
$$

Three-port network (T-junction)

Discussion

1. Three-port network cannot be lossless, reciprocal and matched at all ports.
2. Lossless and matched three-port network is nonreciprocal
\longrightarrow circulator

Microwave Physics and Techniques
UCSB -June 2003

3. Matched and reciprocal three-port network is lossy
\longrightarrow resistive divider
4. Lossless and perfect isolation three-port network cannot be matched at all ports.

Four-port network (directional coupler)

$$
\text { Directivity: } \quad D(d B) \equiv 10 \log \frac{P_{3}}{P_{4}}
$$

Isolation: $I(d B) \equiv 10 \log \frac{P_{1}}{P_{4}}=C+D$

Discussion

1. Matched, reciprocal and lossless four-network \longrightarrow symmetrical $\left(90^{\circ}\right)$ directional coupler or antisymmetrical (180°) directional coupler.

$$
\left[\begin{array}{cccc}
0 & \alpha & j \beta & 0 \\
\alpha & 0 & 0 & j \beta \\
j \beta & 0 & 0 & \alpha \\
0 & j \beta & \alpha & 0
\end{array}\right]\left[\begin{array}{cccc}
0 & \alpha & \beta & 0 \\
\alpha & 0 & 0 & -\beta \\
\beta & 0 & 0 & \alpha \\
0 & -\beta & \alpha & 0
\end{array}\right]
$$

2. $\mathrm{C}=3 \mathrm{~dB} \longrightarrow 90^{\circ}$ hybrid (quadrature hybrid, symmetrical coupler), 180° hybrid (magic-T hybrid, rate-race hybrid)

$$
\frac{l}{\sqrt{2}}\left[\begin{array}{cccc}
0 & 1 & j & 0 \\
1 & 0 & 0 & j \\
j & 0 & 0 & 1 \\
0 & j & 1 & 0
\end{array}\right] \quad \frac{1}{\sqrt{2}}\left[\begin{array}{cccc}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & -1 \\
1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

The T-junction power divider

- Lossless divider

$Y_{i n}=j B+\frac{l}{Z_{2}}+\frac{l}{Z_{3}}=\frac{l}{Z_{o}} \rightarrow B=0 \quad$ "not practical"
\Longrightarrow Lossless divider has mismatched ports

Resistive (lossy) divider

matched ports $\Rightarrow\left(R+Z_{o}\right) / /\left(R+Z_{o}\right)+R=Z_{o} \rightarrow R=\frac{Z_{o}}{3}$

Wilkinson power divider

- Basic concept

Input port 1 matched, port 2 and port 3 have equal potential

$$
\Rightarrow \sqrt{2} Z_{0}, \lambda / 4
$$

Input port 2, port 1 and port 3 have perfect isolation lossy, matched and good isolation (equal phase) three-port divider

Wilkinson power divider

\square The Wilkinson power divider has these advantages:

1. It is lossless when output ports are matched.
2. Output ports are isolated.
3. It can be designed to produce arbitrary power division.

Wilkinson power divider

> If we inject a TEM mode signal at port 1, equal in-phase signals reach points a and b. Thus, no current flows through the resistor, and equal signals emerge from port 2 and port 3 . The device is thus a 3 dB power divider. Port 1 will be matched if the $\lambda / 4$ sections have a characteristic impedance $\sqrt{2} Z_{0}$.
> If we now inject a TEM mode signal at port 2, with matched loads placed on port 1 and on port 3, the resistor is effectively grounded at point b. Equal signals flow toward port 1, and down into the resistor, with port 2 seeing a match. Half the incident power emerges from port 1 and half is dissipated in the resistor film.
$>$ Similar performance occurs when port 1 and port 2 are terminated in matched loads, and a TEM mode signal is injected at port 3.
> If we choose the terminal planes at 1.0 wavelengths from the three Tee junctions, the scattering matrix is

$$
[S]=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
0 & -j & -j \\
-j & 0 & 0 \\
-j & 0 & 0
\end{array}\right]
$$

Wilkinson power divider for unequal power splits

Microwave Physics and Techniques

Wilkinson power divider

Design a Wilkinson power divider with a power division ration of 3 dB and a source impedance of 50Ω

Solution:

$$
\begin{aligned}
& \frac{P_{3}}{P_{2}}=0.5(3 \mathrm{~dB}) \\
& K^{2}=\frac{P_{3}}{P_{2}}=\frac{1}{2} \Rightarrow K=0.707 \\
& Z_{03}=Z_{0} \sqrt{\frac{1+K^{2}}{K^{3}}}=50 \sqrt{\frac{1+0.5}{(.5)(.707)}}=103.0 \Omega \\
& Z_{02}=K^{2} Z_{03}=(.5)(103 \Omega)=51.5 \Omega \\
& R=Z_{0}\left(K+\frac{1}{K}\right)=50\left(0.707+\frac{1}{0.707}\right)=106.1 \Omega
\end{aligned}
$$

Wilkinson power divider

The output impedances are

$$
\begin{aligned}
& R_{2}=Z_{0} K=50(0.707)=35.35 \Omega \\
& R_{3}=Z_{0} / K=50 / 0.707=70.72 \Omega
\end{aligned}
$$

Bethe-Hole Directional Coupler

This the simplest form of a waveguide directional coupler. A small hole in the common broad wall between two rectangular guides provides 2 wave components that add in phase at the coupler port, and are cancelled at the isolation port.

Bethe-Hole Directional Coupler

Let the incident wave at Port 1 be the dominant $T E_{10}$ mode:
Top Guide

$$
\begin{array}{rl}
E_{y}=A \sin \frac{\pi x}{a} e^{-\jmath \beta z} & A=\text { amplitude of electric field }\left(\mathbf{V} \mathrm{m}^{-1}\right) \\
H_{x}=-\frac{A}{Z_{10}} \sin \frac{\pi x}{a} e^{-, \beta z} & Z_{0}=\frac{\eta_{0}}{\sqrt{1-\left(\lambda_{0} / 2 a\right)^{2}}}=\text { wave impedance, } \\
H_{Z}=\frac{\dot{\pi} A}{\beta a Z_{10}} \cos \frac{\pi x}{a} e^{-, \beta z} & \beta=\kappa_{0} \sqrt{1-\left(\lambda_{0} / 2 a\right)^{2}}=\text { phase constant } \mathrm{rad} / \mathrm{m} \\
& \kappa_{0}=2 \pi / \lambda_{0}
\end{array}
$$

Bethe-Hole Directional Coupler

In the bottom guide the amplitude of the forward scattered wave is given by

$$
A_{10}^{+}=-\frac{j \omega A}{P_{10}}\left[\varepsilon_{0} \alpha_{e} \sin ^{2} \frac{\pi s}{a}-\frac{\mu_{0} \alpha_{m}}{Z_{10}^{2}}\left(\sin ^{2} \frac{\pi s}{a}+\frac{\pi^{2}}{\beta^{2} a^{2}} \cos ^{2} \frac{\pi s}{a}\right)\right]
$$

while the amplitude of the reversed scattered wave is given by
$A_{10}^{-}=-\frac{\omega A}{P_{10}}\left[\varepsilon_{0} \alpha_{e} \sin ^{2} \frac{\pi s}{a}+\frac{\mu_{0} \alpha_{m}}{Z_{10}^{2}}\left(\sin ^{2} \frac{\pi s}{a}-\frac{\pi^{2}}{\beta^{2} a^{2}} \cos ^{2} \frac{\pi s}{a}\right)\right]$
where

$$
P_{10}=\frac{a b}{Z_{10}}
$$

For round coupling hole or radius r_{0}, we have

$$
\begin{aligned}
& \alpha_{e}=\frac{2}{3} r_{0}^{2} \quad \text { electric polarizability } \\
& \alpha_{m}=\frac{4}{3} r_{0}^{2} \quad \begin{array}{c}
\text { magnetic polarizability } \\
\text { Microwave Physics and Techniques } \\
18
\end{array}
\end{aligned}
$$

Bethe-Hole Directional Coupler

Let $\boldsymbol{s}=$ offset distance to hole

We can then show that

$$
\sin \frac{\pi s}{a}=\frac{\lambda_{0}}{\sqrt{2\left(\lambda_{0}^{2}-a^{2}\right)}}
$$

The coupling factor for a single-hole Bethe Coupler is

$$
C=20 \log \left|\frac{A}{A_{10}^{-}}\right|(d B)
$$

and its directivity is

$$
D=20 \log \left|\frac{A_{10}^{-}}{A_{10}^{+}}\right|(d B)
$$

Bethe-Hole Directional Coupler

Design procedure:

1. Use

$$
\sin \frac{\pi s}{a}=\frac{\lambda_{0}}{\sqrt{2\left(\lambda_{0}^{2}-a^{2}\right)}}
$$

to find position of hole.
2. Use $\quad C=20 \log \left|\frac{A}{A_{10}^{-}}\right|(d B) \quad$ to determine the hole radius r_{0} to give the required coupling factor.

Bethe-Hole Directional Coupler

Typical x-Band -20 dB coupler

Note: Coupling very broad band, directivity is very narrow band (for single-hole coupler)

We can achieve improved directivity bandwidth by using an array of equispaced holes.

Bethe-Hole Directional Coupler

UPPER GUIDE

Let a wave of value $1 \angle 0$ be injected at Port 1 . If the holes are small, there is only a small fraction of the power coupled through to the upper guide so that we can assume that the wave amplitude incident on all holes is essentially unity. The hole n causes a scattered wave F_{n} to propagate in the forward direction, and another scattered wave B_{n} to propagate in the backward direction. Thus the output signals are:

Bethe-Hole Directional Coupler

Port 2 (through)

$$
\begin{gathered}
F_{\text {Total }}^{(2)}=\underbrace{e^{-j \lambda \lambda \beta d}}_{\text {main incident wave }}+\underbrace{e^{-j \lambda \beta d} \sum_{n=0}^{N} F_{n}}_{\text {forward scattered waves }} \\
F^{(3)}=e^{-j 2 \Lambda \beta d} \sum_{n=0}^{N} F_{n}
\end{gathered}
$$

Port 3 (coupled)
All of these waves are phase referenced to the $\mathrm{n}=0$ hole.

$$
\begin{aligned}
& C=-20 \log \left|F^{(3)}\right|=-20 \log \left|\sum_{n=0}^{N} F_{n}\right|(d B) \\
& D=-20 \log \left|\frac{B^{(4)}}{F^{(2)}}\right|=-20 \log \left\lvert\, \frac{\sum_{\substack{n=0}}^{\sum_{\substack{n=0 \\
\text { Microwave Physics and } \text { Techniques }}}^{N} B_{n} e^{-j 2 \beta n d}} \mid(d B)}{} \quad\right. \text { Uc }
\end{aligned}
$$

Bethe-Hole Directional Coupler

We can rewrite this as

$$
\begin{aligned}
D & =-20 \log \left|\sum_{n=0}^{N} B_{n} e^{-j 2 \beta n d}\right|+20 \log \left|\sum_{n=0}^{N} F_{n}\right| \\
& =-C-20 \log \left|\sum_{n=0}^{N} B_{n} e^{-j 2 \beta n d}\right|
\end{aligned}
$$

The coupling coefficients are proportional to the polarizability α_{e} and α_{m} of the coupling holes. Let $\mathrm{r}_{\mathrm{n}}=$ radius of the $\mathrm{n}^{\text {th }}$ hole. Then the forward scattering coefficient from the $\mathrm{n}^{\text {th }}$ hole is

$$
F_{n}=A_{10}^{+}(n)
$$

And the backward scattering from the hole is

$$
B_{n}=A_{10}^{-}(n)
$$

Bethe-Hole Directional Coupler

Now let us assume the coupling holes are located at the midpoint across common broad wall, i.e. $s=a / 2$. Then for circular holed, we have

$$
F_{n}=A_{10}^{+}=-j \frac{2 \omega \varepsilon_{0} A}{3 P_{10}}\left[1-\frac{2 \mu_{0}}{\varepsilon_{0} Z_{10}^{2}}\right] r_{n}^{3}
$$

But

$$
\begin{aligned}
& \omega \varepsilon_{0}=\frac{k_{0}}{\eta_{0}} \text { and } Z_{10}^{2}=\frac{\eta_{0}^{2}}{\left(\sqrt{1-\left(\lambda_{0} / 2 a\right)^{2}}\right)}=\frac{\eta_{0}^{2}}{1-\left(f_{c} / f\right)^{2}} \\
& \therefore F_{n}=K_{f} r_{n}^{3} \quad \text { where } K_{f}=\frac{-j 2 k_{0} A}{3 \eta_{0} P_{10}}\left[1-2\left(1-\left(f_{c} / f\right)^{2}\right)\right]
\end{aligned}
$$

Let $A=1 \mathrm{v} / \mathrm{m}$. Then

$$
K_{f}=\frac{-j 2 k_{0}}{3 \eta_{0} P_{10}}\left[2\left(\frac{f_{c}}{f}\right)^{2}-1\right]
$$

Bethe-Hole Directional Coupler

Likewise the backward scattering coefficient is

$$
K_{b}=\frac{2 k_{0}}{3 \eta_{0} P_{10}}\left[2\left(\frac{f_{c}}{f}\right)^{2}-3\right] \quad \text { and } \quad \beta_{n}=K_{b} r_{n}^{3}
$$

Note that K_{f} and K_{b} are frequency-dependent constants that are the same for all aperture. Thus,

$$
\begin{aligned}
C & =-20 \log \left|K_{f}\right|-20 \log \sum_{n=0}^{N} r_{n}^{3} \quad(d B) \\
D & =-C-20 \log \left|K_{b}\right|-20 \log \left|\sum_{n=0}^{N} r_{n}^{3} e^{-j 2 \beta n d}\right|(d B)
\end{aligned}
$$

Bethe-Hole Directional Coupler

Consider the following design problem:

Given a desired coupling level C, how do we design the coupler so that the directivity D is above a value $D_{\text {min }}$ over a specified frequency band?
Note that if the coupling \mathbf{C} is specified, then

$$
\left|\sum_{n=0}^{N} F_{n}\right| \text { is known. }
$$

We now assume that either (1) the holes scatter symmetrically (e.g. they are on the common narrow wall between two identical rectangular guides) or (2) holes scatter asymmetrically (e.g. they are on the centerline of the common broad wall, i.e. $s=a / 2$). Thus:

$$
\begin{aligned}
B_{n} & =F_{n} \\
B_{n} & =-F_{n}
\end{aligned}
$$

or
In either case, we have

$$
D=20 \log \frac{\left|\sum_{n=0}^{N} F_{n}\right|}{\left|\sum_{n=0}^{N} F_{n} e^{-j 2 \beta n d}\right|}
$$

Bethe-Hole Directional Coupler

Thus, keeping the directivity $D>D_{\text {min }}$ is equivalent to keeping below a related minimum value. Let

$$
\sum_{n=0}^{N} F_{n} e^{-j 2 \beta n d}
$$

$$
\varphi=-2 \beta d \text { and } w=e^{j \phi}=e^{-j 2 \beta d}
$$

We also introduce the function

$$
\begin{aligned}
& g(\beta d)=\left|\sum_{n=0}^{N} F_{n} e^{-j 2 \beta n d}\right| \Rightarrow g(\phi)=\left|\sum_{n=0}^{N} F_{n} e^{j n \phi}\right| \\
& \therefore g(W)=\left|\sum_{n=0}^{N} F_{n} W^{n}\right|=F_{N} \sum_{n=0}^{N} \frac{F_{n} W_{N} n}{F_{N}}=F_{N} \prod_{n=1}^{N}\left(W-W_{n}\right)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
D & =20 \log \frac{|g(1)|}{|g(W)|} \\
\mid g(1) & =\left|\sum_{n=0}^{N} F_{n}\right|=10^{-C / 20} \quad \begin{array}{l}
\text { coupling } \\
\text { factor (dB) }
\end{array}
\end{aligned}
$$

Bethe-Hole Directional Coupler

From the previous two equations we can deduce that

$$
|g|_{\max }=|g(1)| \times 10^{-D_{\min } / 20}
$$

The multi-hole coupler design problem thus reduces to finding a set of roots w_{n} that will produce a satisfactory $g(w)$, and thus a satisfactory $D(f)$ in the desired frequency band under the constraint that $|g(W)| \leq|g|_{\text {max }}$.
Example: Design a 7 -hole directional coupler in C-band waveguide with a binomial directivity response to provide 15 dB coupling and with $\mathrm{D}_{\min }=30 \mathrm{~dB}$. Assume an operating center frequency of 6.45 GHz and a hole spacing $\mathrm{d}=\lambda_{\mathrm{g}} / 4$ (or $\lambda_{\mathrm{g}}+\lambda_{\mathrm{g}} / 4$). Also assume broadwall coupling with $\mathrm{s}=\mathrm{a} / 2$.

Solution:
From $g(w)=F_{N} \prod_{n=1}^{N}\left(w-w_{n}\right)$, we have
$g(w)=F_{6}\left(w-w_{n}\right)^{6}$ where $w_{n}=e^{-j 2 \beta d}=-1$
$\therefore g(W)=F_{6}(W+1)^{6}=F_{6}\left(w^{6}+6 W^{5}+15 w^{4}+20 w^{3}+15 w^{2}+6 w+1\right)$

Bethe-Hole Directional Coupler

Thus,

$$
|g(1)|=\left|F_{6}\right|(1+1)^{6}=64\left|F_{6}\right|=10^{-15 / 20}=0.1778 \quad \therefore\left|F_{6}\right|=0.00278=\left|F_{0}\right|
$$

By the binomial expansion we have

$$
\begin{aligned}
& (W+1)^{6}=\sum_{n=0}^{6} C_{n}^{(6)_{W}^{n}} \\
& C_{n}^{(6)}=\frac{N!}{(N-n)!n!}=\frac{6!}{(6-n)!n!}
\end{aligned}
$$

is the set of binomial coefficients

Thus

$$
\begin{aligned}
& \left|F_{5}\right|=\left|F_{1}\right|=6\left|F_{6}\right|=0.01667 \\
& \left|F_{4}\right|=\left|F_{2}\right|=15\left|F_{6}\right|=0.04168 \\
& \left|F_{3}\right|=20\left|F_{6}\right|=0.05557
\end{aligned}
$$

Bethe-Hole Directional Coupler

We now can compute the radii of the coupling holed from
$F_{n}=\boldsymbol{K}_{f} r_{n}^{3} \quad$ where $\quad \boldsymbol{K}_{f}=\frac{-j 2 k_{0} A}{3 \eta_{0} P_{10}}\left[1-2\left(1-\left(f_{c} / f\right)^{2}\right)\right]$
and
$\boldsymbol{K}_{f}=\frac{-j 2 k_{0}}{3 \eta_{0} P_{10}}\left[2\left(\frac{f_{c}}{f}\right)^{2}-1\right]$
We have - with $f_{c}=4.30 \mathrm{GHz}$ for C -Band guide, $f=6.45 \mathrm{GHz}, k_{0}=2 \pi / \lambda_{0}=135.1 \mathrm{~m}^{-1}$, $\eta_{0}=376.7 \Omega, P_{10}=a b / Z_{10}$,

$$
Z_{10}=\eta_{0} / \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}=505.4 \Omega, P_{10}=1.08 \times 10^{-6} \mathrm{~m}^{2} / \Omega
$$

$$
\left.\left|\boldsymbol{K}_{f}\right|=\frac{2 \times 135.1}{3 \times 376.7 \times 1.08 \times 10^{-6}}\left(2\left(\frac{4.30}{6.45}\right)^{2}-1\right) \right\rvert\,=24598
$$

Bethe-Hole Directional Coupler

The hole radii are:

$$
\begin{aligned}
& r_{0}=\left(\frac{0.00278}{\left|K_{f}\right|}\right)^{1 / 3}=0.00483 \mathrm{~m}=r_{6} \leftarrow 0.483 \mathrm{~cm} \\
& r_{1}=\left(\frac{0.01667}{\left|K_{f}\right|}\right)^{1 / 3}=0.00878 \mathrm{~m}=r_{5} \leftarrow 0.878 \mathrm{~cm} \\
& r_{2}=\left(\frac{0.04168}{\left|K_{f}\right|}\right)^{1 / 3}=0.011921 \mathrm{~m}=r_{4} \leftarrow 1.192 \mathrm{~cm} \\
& r_{3}=\left(\frac{0.05557}{\left|K_{f}\right|}\right)^{1 / 3}=0.0131 \mathrm{~m} \leftarrow 1.31 \mathrm{~cm}
\end{aligned}
$$

Bethe-Hole Directional Coupler

Top view of C-Band guide common broad wall with coupling holes
The guide wavelength is $\lambda_{g}=\frac{\lambda_{0}}{\sqrt{1-\left(\frac{4.3}{6.45}\right)^{2}}}=0.624 \mathrm{~m}$
The nominal hole spacing is $d=\frac{\lambda_{g}}{4_{t}}=1.56 \mathrm{~cm}$. However, the center hole has a diameter of 2.62 cm , so it would overlap with adjacent holes. We can increase the hole spacing to $d=\frac{3 \lambda_{g}}{4}=4.68 \mathrm{~cm}$ with no effect on electrical
performance.

The total length of the common broad wall section with coupling holes is ~ 30 cm , which is fairly large WG section.

Bethe-Hole Directional Coupler

We now plot the coupling and directivity vs. frequency

$$
\begin{aligned}
& g(W)=F_{6}(W+1)^{6}=F_{6}\left(e^{j \phi}+1\right)^{6}=F_{6}\left\{e^{j \frac{\phi}{2}}\left(e^{j \frac{\phi}{2}}+e^{-j \frac{\phi}{2}}\right)\right\}^{6}=F_{6}\left[2 e^{j \frac{\phi}{2}} \cos \frac{\phi}{2}\right]^{6} \\
& \therefore|g(W)|=2^{6}\left|F_{6}\right|\left|\cos \frac{\phi}{2}\right|^{6}=0.1778\left|\cos \frac{\phi}{2}\right|^{6}
\end{aligned}
$$

We then have

$$
D(d B)=-20 \log \frac{|g(W)|}{|g(1)|}=-120 \log \left|\cos \frac{2 \pi d}{\lambda_{g}}\right|
$$

where $d=4.68 \mathrm{~cm}$

$$
\lambda_{g}=\frac{\lambda_{0}}{\sqrt{1-\left(\lambda_{0} / 2 a\right)^{2}}}=\frac{\left(3 \times 10^{8} / f\right)}{\sqrt{1-\left(f_{c} / f\right)^{2}}}
$$

Bethe-Hole Directional Coupler

Note that the directivity is better than $D_{\text {min }}=-30 \mathrm{~dB}$ over a bandwidth of 900 MHz centered about 6.45 GHz .

Even-odd mode analysis

Even-mode

$$
\begin{aligned}
& V_{2 e}=V \rightarrow S_{22 e}=0 \\
& \tilde{A}=\frac{2-\sqrt{2}}{2+\sqrt{2}} \rightarrow V_{l e}=j V \frac{\tilde{A}+1}{\tilde{A}-1}=-j \sqrt{2} V \rightarrow S_{12 e}=-j \sqrt{2}
\end{aligned}
$$

Symmetry of port 2 and $3 \longrightarrow V_{3 e}=V \rightarrow S_{33 e}=0, S_{13 e}=-j \sqrt{2}$

Odd-mode

$$
\begin{aligned}
& \frac{1}{=} \sqrt{2} Z_{o}, \lambda / 4 \\
& \frac{R}{2}=Z_{o} \rightarrow R=2 Z_{o} \rightarrow S_{22 o}=0 \Rightarrow S_{22}=\frac{1}{2}\left(S_{22 e}+S_{22 o}\right)=0 \\
& V_{1 o}=0, V_{2 o}=V \rightarrow S_{12 o}=0 \Rightarrow S_{12}=\frac{1}{2}\left(S_{12 e}+S_{12 o}\right)=-j \frac{1}{\sqrt{2}}=S_{21}
\end{aligned}
$$

symmetry of port 2 and $3, \quad V_{3 o}=-V \Rightarrow S_{13}=\frac{1}{2}\left(S_{12 e}-S_{12 o}\right)=-j \frac{1}{\sqrt{2}}=S_{31}$,

$$
S_{33}=0
$$

$\begin{array}{ll}\text { open, short at bisection } & \Rightarrow S_{32}=S_{23} \\ \text { port } 1 \text { matched } & \Rightarrow S_{11}=0\end{array}$

Discussion

3dB Wilkinson power divider has equal amplitude and phase outputs at port 2 and port 3.

3dB Wilkinson power combiner

$$
\begin{aligned}
& {\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
0 & -j & -j \\
-j & 0 & 0 \\
-j & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
-j \frac{1}{\sqrt{2}}\left(a_{2}+a_{3}\right) \\
0 \\
0
\end{array}\right]} \\
& a_{2}=a_{3} \rightarrow P_{1}=2 P_{2}
\end{aligned}
$$

Unequal power division Wilkinson power divider

$$
\begin{aligned}
& \text { (1) port1 match } \rightarrow Z_{o}=Z_{\text {m2 }} / / Z_{i n 3} \\
& \text { (2) } \frac{P_{3}}{P_{2}}=K^{2} \rightarrow \frac{V_{3}^{2}}{Z_{\text {in } 3}}=K^{2} \frac{V_{2}^{2}}{Z_{\text {in } 2}} \\
& \text { (3) } V_{2}=V_{3} \rightarrow Z_{m 2}=K^{2} Z_{m 3} \\
& \text { (l), (3) } \rightarrow Z_{\text {bi2 } 2}=\left(l+K^{2}\right) Z_{o}, Z_{\text {in } 3}=\frac{l+K^{2}}{K^{2}} Z_{o} \\
& R_{2}=K^{2} R_{3}, R_{2}=K Z_{o} \rightarrow R_{3}=\frac{Z_{o}}{K}, Z_{o 4}=\sqrt{K} Z_{o}, Z_{o 5}=\frac{Z_{o}}{\sqrt{K}} \\
& Z_{o 2}=\sqrt{Z_{i n 2} R_{2}}=\sqrt{K\left(l+K^{2}\right)} Z_{o}, Z_{o 3}=\sqrt{Z_{i n 3} R_{3}}=\sqrt{\frac{l+K^{2}}{K^{3}}} Z_{o}
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=j I_{1} Z_{a 3} \rightarrow I_{1}=\frac{V_{1}}{j Z_{a 3}} \\
& V_{a}=j Z_{a 2} I_{2}, I_{R}=\frac{V_{a}}{R}, I_{R}+I_{1}=0 \rightarrow R=\frac{Z_{a 2} Z_{o 3}}{Z_{a}}=\frac{1+K^{2}}{K} Z_{o}
\end{aligned}
$$

N -way Wilkinson power divider

The quadrature $\left(90^{\circ}\right)$ hybrid

- Branch-line coupler

Port 2 and port 3 have equal amplitude, but 90° phase different

$$
[S]=\frac{-1}{\sqrt{2}}\left[\begin{array}{llll}
0 & j & 1 & 0 \\
j & 0 & 0 & 1 \\
1 & 0 & 0 & j \\
0 & 1 & j & 0
\end{array}\right]
$$

Microwave Physics and Techniques
UCSB -June 2003

Quadrature Hybrids

We can analyze this circuit by using superposition of even-modes and Oddmodes. We add the even-mode excitation to the odd-mode excitation to produce the original excitation of $A_{1}=1$ volt at port 1 (and no excitation at the other ports.)

Quadrature Hybrids

We now have a set of two decoupled 2-port networks. Let Γ_{e} and T_{e} be the reflection and transmission coefficients of the even-mode excitation. Similarly Γ_{o} and T_{e} for the odd-mode excitation.

Superposition:

$$
\left.\begin{array}{rlrl}
\text { Input } & B_{1} & =\frac{1}{2} \Gamma_{e}+\frac{1}{2} \Gamma_{o} \\
\text { Through } & B_{2} & =\frac{1}{2} \mathrm{~T}_{e}+\frac{1}{2} \mathrm{~T}_{o} \\
\text { Coupled } & B_{3} & =\frac{1}{2} \mathrm{~T}_{e}-\frac{1}{2} \mathrm{~T}_{o} \\
\text { Isolated } & B_{4} & =\frac{1}{2} \Gamma_{e}-\frac{1}{2} \Gamma_{o}
\end{array}\right\} \begin{aligned}
& \text { Reflected } \\
& \text { waves }
\end{aligned}
$$

Quadrature Hybrids

Consider the even-mode 2-port circuit:

We can represent the two $\lambda / 8$ open circuit stubs by their admittance:

$$
y=\lim _{z_{L} \rightarrow \infty} \frac{\frac{1}{z_{L}}+j \tan \frac{\pi}{4}}{1+\frac{j}{z_{L}} \tan \frac{\pi}{4}}=j
$$

The $\lambda / 4$ transmission line, with characteristic impedance $1 / \sqrt{2}$ has ab ABCD matrix

$$
\left[\begin{array}{cc}
0 & j / \sqrt{2} \\
j / \sqrt{2} & 0
\end{array}\right]
$$

Quadrature Hybrids

Thus, the ABCD matrix for the cascade is

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{e}=\underbrace{\left[\begin{array}{ll}
1 & 0 \\
j & 1
\end{array}\right]}_{\lambda / 8 \text { stub }} \underbrace{\left[\begin{array}{cc}
0 & j / \sqrt{2} \\
\sqrt{j} 2 & 0
\end{array}\right]}_{\lambda / 4 \text { line }} \underbrace{\left[\begin{array}{cc}
1 & 0 \\
j & 1
\end{array}\right]}_{\lambda / 8 \text { stub }}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
-1 & j \\
j & -1
\end{array}\right]
$$

Using the conversion table (next slide) to convert [S] parameters (with $\mathrm{Z}_{0}=1$ as the reference characteristic impedance).

$$
\begin{aligned}
& \text { denominator }=A+\frac{B}{Z_{0}}+C Z_{0}+D=-\frac{1}{\sqrt{2}}+\frac{j}{\sqrt{2}}+\frac{j}{\sqrt{2}}-\frac{1}{\sqrt{2}} \\
& \Gamma_{e}=S_{11}=\frac{A+\frac{B}{Z_{0}}-C Z_{0}-D}{A+\frac{B}{Z_{0}}+C Z_{0}+D}=\frac{(-1+j+j+1) / \sqrt{2}}{(-1+j+j-1) / \sqrt{2}}=0 \\
& \mathrm{~T}_{e}=S_{21}=\frac{2}{A+\frac{B}{Z_{0}}+C Z_{0}+D}=\frac{2}{(-1+j+j-1) / \sqrt{2}}=-\frac{1}{\sqrt{2}}(1+j)
\end{aligned}
$$

Similarly for odd mode we have: $S_{11}=\Gamma_{0}=0$ and $\quad S_{12}=\mathrm{T}_{0}=\frac{1}{\sqrt{2}}(1-j)$

Conversion between two-port network parameters

\begin{tabular}{|c|c|c|c|c|}
\hline \& S \& Z \& Y \& $A B C D$

\hline S_{11} \& S_{11} \& $\frac{\left(Z_{11}-Z_{0}\right)\left(Z_{22}+Z_{0}\right)-Z_{12} Z_{21}}{\Delta Z}$ \& $\frac{\left(Y_{0}-Y_{11}\right)\left(Y_{0}+Y_{22}\right)+Y_{12} Y_{21}}{\Delta Y}$ \& $$
\frac{A+B / Z_{0}-C Z_{0}-D}{A+B / Z_{0}+C Z_{0}+D}
$$

\hline S_{12} \& S_{12} \& $$
\frac{2 Z_{12} Z_{0}}{\Delta Z}
$$ \& $$
\frac{-2 Y_{12} Y_{0}}{\Delta Y}
$$ \& $$
2(A D-B C)
$$

\hline S_{21} \& S_{21} \& $\underline{2 Z_{21} Z_{0}}$ \& $\frac{-2 Y_{21} Y_{0}}{\Delta Y}$ \& a

$2+B / Z_{0}+D$

\hline S_{21}
S_{22} \& S_{21}

S_{22} \& \[
$$
\begin{gathered}
\frac{\Delta Z}{\Delta Z} \\
\frac{\left(Z_{11}+Z_{0}\right)\left(Z_{22}-Z_{0}\right)-Z_{12} Z_{21}}{\Delta Z}
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\Delta Y \\
\frac{\left(Y_{0}+Y_{11}\right)\left(Y_{0}-Y_{22}\right)+Y_{12} Y_{21}}{\Delta Y}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \overline{A+B / Z_{0}+C Z_{0}+D} \\
& \frac{-A+B / Z_{0}-C Z_{0}+D}{A+B / Z_{0}+C Z_{0}+D}
\end{aligned}
$$
\]

\hline Z_{11} \& $Z_{0} \frac{\left(1+S_{11}\right)\left(1-S_{22}\right)+S_{12} S_{21}}{\left(1-S_{11}\right)\left(1-S_{22}\right)-S_{12} S_{21}}$ \& Z_{11} \& \[
\frac{Y_{22}}{|Y|}

\] \& \[

\frac{A}{C}
\]

\hline Z_{12} \& $$
Z_{0} \frac{2 S_{12}}{\left(1-S_{11}\right)\left(1-S_{22}\right)-S_{12} S_{21}}
$$ \& Z_{12} \& $\frac{-Y_{12}}{|Y|}$ \& $\frac{A D-B C}{C}$

\hline Z_{21} \& \[
Z_{0} \frac{2 S_{21}}{\left(1-S_{11}\right)\left(1-S_{22}\right)-S_{12} S_{21}}

\] \& Z_{21} \& $\frac{-Y_{21}}{|Y|}$ \& \[

\frac{1}{C}
\]

\hline Z_{22} \& $Z_{0} \frac{\left(1-S_{11}\right)\left(1+S_{22}\right)+S_{12} S_{21}}{\left(1-S_{11}\right)\left(1-S_{22}\right)-S_{12} S_{21}}$ \& Z_{22} \& \[
\frac{Y_{11}}{|Y|}

\] \& \[

\frac{D}{C}
\]

\hline Y_{11} \& $Y_{0} \frac{\left(1-S_{11}\right)\left(1+S_{22}\right)+S_{12} S_{21}}{\left(1+S_{11}\right)\left(1+S_{22}\right)-S_{12} S_{21}}$ \& $\frac{Z_{22}}{|Z|}$ \& Y_{11} \& $$
\frac{D}{B}
$$

\hline Y_{12} \& $$
Y_{0} \frac{-2 S_{12}}{\left(1+S_{11}\right)\left(1+S_{22}\right)-S_{12} S_{21}}
$$ \& $\frac{-Z_{12}}{|Z|}$ \& Y_{12} \& $\frac{B C-A D}{B}$

\hline Y_{21} \& \[
Y_{0} \frac{-2 S_{21}}{\left(1+S_{11}\right)\left(1+S_{22}\right)-S_{12} S_{21}}

\] \& $\frac{-Z_{21}}{|Z|}$ \& Y_{21} \& \[

\frac{-1}{B}
\]

\hline Y_{22} \& \[
Y_{0} \frac{\left(1+S_{11}\right)\left(1-S_{22}\right)+S_{12} S_{21}}{\left(1+S_{11}\right)\left(1+S_{22}\right)-S_{12} S_{21}}

\] \& \[

\frac{Z_{11}}{|Z|}

\] \& Y_{22} \& \[

\frac{A}{B}
\]

\hline A \& $$
\frac{\left(1+S_{11}\right)\left(1-S_{22}\right)+S_{12} S_{21}}{2 S_{21}}
$$ \& $\frac{Z_{11}}{Z_{21}}$ \& $\frac{-Y_{22}}{Y_{21}}$ \& A

\hline B \& $$
Z_{0} \frac{\left(1+S_{11}\right)\left(1+S_{22}\right)-S_{12} S_{21}}{2 S_{21}}
$$ \& $\frac{|Z|}{Z_{21}}$ \& $\frac{-1}{Y_{21}}$ \& B

\hline C \& $\frac{1}{2} \frac{\left(1-S_{11}\right)\left(1-S_{22}\right)-S_{12} S_{21}}{2 S^{\prime}}$ \& $\begin{array}{r}1 \\ \hline\end{array}$ \& - |Y| \& C

\hline C \& $$
\stackrel{2 S_{21}}{\overline{Z_{0}}-\frac{2}{\left(1-S_{11}\right)\left(1+S_{22}\right)+S_{12} S_{21}}}
$$ \& $\overline{Z_{21}}$

Z_{22} \& | $-\|Y\|$ |
| :--- |
| Y_{21} |
| $-Y_{41}$ | \& C

\hline D \& $$
\frac{\left(1-S_{11}\right)\left(1+S_{22}\right)+S_{12} S_{21}}{2 S_{21}}
$$ \& $\frac{Z_{22}}{Z_{21}}$ \& \[

\frac{-Y_{11}}{Y_{21}}
\] \& D

\hline \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{; $\Delta Y=\left(Y_{11}+Y_{0}\right)\left(Y_{22}+Y_{0}\right)-Y_{12} Y_{21} ; \quad \Delta Z=\left(Z_{11}+Z_{0}\right)\left(Z_{2}\right.$} \& $\left.Z_{0}\right)-Z_{12} Z_{21} ; \quad Y_{0}=1 / Z_{0}$

\hline
\end{tabular}

D. Pozar

Quadrature Hybrids

Therefore we have

The bandwidth of a single branch-line hybrid is about $10 \%-20 \%$, due to the requirement that the top and bottom lines are $\lambda / 4$ in length. We can obtain increased directivity bandwidth (with fairly constant coupling) by using three or more sections.

Quadrature Hybrids

Next we consider a more general single section branch-line coupler:

We can show that if the condition

$$
\frac{Z_{02}}{Z_{0}}=\frac{Z_{01} / Z_{0}}{\sqrt{1-\left(Z_{01} / Z_{0}\right)^{2}}}
$$

is satisfied, then port 1 is matched; port 4 is decoupled from port 1.

Quadrature Hybrids

Single section branch-line coupler

$$
\begin{aligned}
& \text { scattered wave } \\
& \text { voltages }
\end{aligned}\left\{\begin{array}{lr}
B_{1}=0 & \text { matched } \angle 0^{\circ} \\
B_{2}=-j \frac{Z_{01}}{Z_{0}} & \angle-90^{\circ} \\
B_{3}=-\frac{Z_{01} / Z_{0}}{Z_{02} / Z_{0}} & \angle-180^{\circ} \\
B_{4}=0 & \text { (matched) }
\end{array}\right.
$$

Thus, the directivity is theoretically infinite at the design frequency. We can also show that the coupling is given by

$$
C=10 \log \left[\frac{1}{1-\left(Z_{01} / Z_{0}\right)^{2}}\right](d B)
$$

For stripline + microstrip, we control $\mathrm{Z}_{01} / \mathrm{Z}_{0}$ by varying the strip width, in coax by adjusting the ratio b / a, and in the rectangular guide by changing the b dimension.

Quadrature Hybrids

Example:

Design a one-section branch-line directional coupler to provide a coupling of 6 dB . Assume the device is to be implemented in microstrip, with an 0.158 cm substrate thickness, a dielectric constant of 2.2, and that the operating frequency is 1.0 GHz .

Solution:

$$
\begin{gathered}
\because=10 \log \left[\frac{1}{1-\left(Z_{01} / Z_{0}\right)^{2}}\right]=6(d B) \\
\therefore Z_{01} / Z_{0}=0.8653 \Rightarrow Z_{01}=43.27 \Omega \\
\frac{Z_{02}}{Z_{0}}=\frac{Z_{01} / Z_{0}}{\sqrt{1-\left(Z_{01} / Z_{0}\right)^{2}}}=1.7263 \Rightarrow Z_{02}=86.31 \Omega \\
\lambda \cong \frac{\lambda_{0}}{\sqrt{\varepsilon_{r}}}=\frac{30}{\sqrt{2.2}}=20.226 \mathrm{~cm} \quad \quad \quad=\frac{\lambda}{4}=5.0565 \mathrm{~cm} \\
\frac{W_{\circ}}{d}=\frac{2}{\pi}\left\{B-1-\ln (2 B-1)+\frac{\varepsilon_{r}-1}{2 \varepsilon_{r}}\left[\ln \left(1 B-1+.39-\frac{0.61}{\varepsilon_{r}}\right)\right]\right\}=3.081 \\
\Rightarrow W_{\circ}=0.487 \mathrm{~cm}
\end{gathered}
$$

Quadrature Hybrids

$$
\begin{aligned}
& \text { For } \quad Z_{01}=43.27 \Omega, \quad W_{1}=0.601 \mathrm{~cm} \\
& \text { For } Z_{02}=86.31 \Omega \text {, }
\end{aligned}
$$

With 0 dB power input at the upper left arm, the power delivered to a matched load at the through arm is

$$
\begin{aligned}
P_{2}(d B) & =-10 \log \frac{P_{1}^{(\text {in) }}}{P_{2}^{(\text {out })}}=-10 \log \frac{1}{B_{2} B_{2}^{*}} \\
& =-10 \log \left(\frac{Z_{0}}{Z_{01}}\right)^{2}=-10 \log \left(\frac{50}{43.27}\right)^{2}=-1.26 \mathrm{~dB}
\end{aligned}
$$

Coupled Line Directional Couplers

These are either stripline or microstrip 3-wire lines with close proximity of parallel lines providing the coupling.

Microwave Physics and Techniques
UCSB -June 2003

Theory of Coupled Lines

Three-wire coupled line

Equivalent network
$C_{12} \longrightarrow$ capacitance between two strip conductors in absence of the ground conductor.
$C_{11}, C_{22} \longrightarrow \quad$ capacitance between one conductor and ground
In the even mode excitation, the currents in the strip conductors are equal in amplitude and in the same direction.

In the odd mode excitation, the currents in the strip conductors are equal in amplitude but are in opposite directions.

Theory of Coupled Lines

In the even mode, \vec{E} fields have even symmetry about centerline, and no current flows between strip conductors. Thus C_{12} is effectively open-circuited. The resulting capacitance of either line to ground is

$$
C_{e}=C_{11}=C_{22}
$$

The characteristic impedance of the even modes is

$$
Z_{0 e}=\sqrt{\frac{L}{C_{e}}}=\frac{1}{v C_{e}}
$$

In the odd mode, \vec{E} fields have an odd symmetry about centerline, and a voltage null exists between the strip conductors.

The effective capacitance between
 either strip conductor and ground is

$$
\begin{gathered}
C_{0}=C_{11}+2 C_{12}=C_{22}+2 C_{12} \\
Z_{0 o}=\sqrt{\frac{L}{C_{o}}}=\frac{1}{v C_{o}}
\end{gathered}
$$

Theory of Coupled Lines

Example: An edge-coupled stripline with $\varepsilon_{\mathrm{r}}=2.8$ and a ground plane spacing of 0.5 cm is required to have even- and odd-mode characteristic impedance of $Z_{0 \mathrm{e}} 100 \Omega$ and $Z_{00}=50 \Omega$. Find the necessary strip widths and spacing.
Solution: $b=0.50 \mathrm{~cm}, \quad \varepsilon_{r}=2.8, \quad Z_{0 e}=100 \Omega, \quad Z_{0_{o}}=50 \Omega$

$$
\therefore \underbrace{\sqrt{\varepsilon_{r}} Z_{0 e}=167.3}_{\text {even }} \underbrace{\sqrt{\varepsilon_{r}} Z_{0 o}=83.66}_{\text {odd }}
$$

$$
\varepsilon_{r}=2.8
$$

from the graph, $s / b \approx 0.095, W / b \approx 0.32$

$$
S=0.95 b=0.095 \times 0.5=0.0425 \mathrm{~cm}
$$

$$
W=0.32 b=0.32 \times 0.5=0.16 \mathrm{~cm}
$$

Microwave Physics and Techniques
UCSB -June 2003

Waveguide magic-T

Even Mode ABCD Analysis Consider the equivalent circuit for the even mode:

The ABCD matrix of a shunt admittance $\mathrm{y}_{\mathrm{S} 1}$ is

Microwave Physics and Techniques
UCSB -June 2003

Even Mode ABCD Analysis

At port 2, the admittance looking into the $3 \lambda / 8$ o.c. stub is

$$
y_{S 2}=y_{0}(j \tan \beta \ell)=\frac{1}{\sqrt{2}}\left(j \tan \frac{2 \pi}{\lambda} \cdot \frac{3 \lambda}{8}\right)=-\frac{j}{\sqrt{2}}
$$

The ABCD matrix of this shunt admittance is

The $A B C D$ matrix is
$\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]_{2}=\left[\begin{array}{cc}\cos \beta \ell & j Z_{o} \sin \beta l \\ j y_{o} \sin \beta \ell & \cos \beta \ell\end{array}\right]$
quarter-wave section
where $\quad \beta \ell=2 \pi / \lambda \cdot \pi / 4=\pi / 2$

$$
Z_{o}=\sqrt{2}, y_{o}=1 / \sqrt{2}
$$

$$
\therefore\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{2}=\left[\begin{array}{cc}
0 & j \sqrt{2} \\
\frac{j}{\sqrt{2}} & 0
\end{array}\right]
$$

Even Mode ABCD Analysis

We can now compute the ABCD matrix of the even mode cascade

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{e}=\left[\begin{array}{cc}
1 & 0 \\
\frac{j}{\sqrt{2}} & 1
\end{array}\right]\left[\begin{array}{cc}
0 & j \sqrt{2} \\
\frac{j}{\sqrt{2}} & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-\frac{j}{\sqrt{2}} & 1
\end{array}\right]} \\
& =\left[\begin{array}{cc}
1 & 0 \\
\frac{j}{\sqrt{2}} & 1
\end{array}\right]\left[\begin{array}{cc}
1 & j \sqrt{2} \\
\frac{j}{\sqrt{2}} & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & j \sqrt{2} \\
j \sqrt{2} & -1
\end{array}\right]
\end{aligned}
$$

Odd Mode ABCD Analysis

The input admittance to a shortcircuited lossless stub is

$$
y_{i n}=y_{0}(-j \cot \beta \ell)
$$

Thus the input admittance to the s.c. $\lambda / 8$ tub is

$$
y_{S 1}=\frac{1}{\sqrt{2}}\left(-j \cot \frac{2 \pi}{\lambda} \cdot \frac{\lambda}{8}\right)=-\frac{j}{\sqrt{2}}
$$

ABCD matrix:

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{1}=\left[\begin{array}{cc}
1 & 0 \\
\frac{-j}{\sqrt{2}} & 1
\end{array}\right]
$$

$y_{S 2}=\frac{1}{\sqrt{2}}\left(-j \cot \frac{2 \pi}{\lambda} \cdot \frac{3 \lambda}{8}\right)=+\frac{j}{\sqrt{2}} \quad$ (Input admittance to s.c. $3 \lambda / 8$ stub)

Odd Mode ABCD Analysis

and

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{3}=\left[\begin{array}{cc}
1 & 0 \\
\frac{j}{\sqrt{2}} & 1
\end{array}\right]
$$

So the ABCD matrix of the odd-mode cascade is

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{o}} \\
& =\left[\begin{array}{cc}
1 & 0 \\
\frac{-j}{\sqrt{2}} & 1
\end{array}\right]\left[\begin{array}{cc}
0 & j \sqrt{2} \\
\frac{j}{\sqrt{2}} & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\frac{j}{\sqrt{2}} & 1
\end{array}\right] \\
& \\
& =\left[\begin{array}{cc}
-1 & j \sqrt{2} \\
j \sqrt{2} & 1
\end{array}\right] \\
& \Gamma_{e}=-j / \sqrt{2}, \mathrm{~T}_{e}=-j / \sqrt{2} \\
& \Gamma_{o}=j / \sqrt{2}, \mathrm{~T}_{o}=-j / \sqrt{2}
\end{aligned}
$$

Excitation at Port 4

We have derived the ABCD matrices for the Even (e) and Odd (o) modes:

$$
\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]_{e}=\left[\begin{array}{cc}
1 & j \sqrt{2} \\
j \sqrt{2} & -1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]_{o}=\left[\begin{array}{cc}
-1 & j \sqrt{2} \\
j \sqrt{2} & 1
\end{array}\right]
$$

For excitation at Port 4 instead of Port 1 the ABCD matrices remain the same. What changes are the definitions of Γ and T for each mode and their relations to $B_{1}-B_{4}$.

Excitation at Port 4

Even mode:

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{e}=\left[\begin{array}{cc}
1 & j \sqrt{2} \\
j \sqrt{2} & -1
\end{array}\right]
$$

$\Gamma_{e}=S_{22}=\frac{-A+B / Z_{o}-C Z_{o}+D}{A+B / Z_{o}+C Z_{o}+D} \longrightarrow \Gamma_{e}=\frac{-1+j \sqrt{2}-j \sqrt{2}-1}{1+j \sqrt{2}+j \sqrt{2}-1}=\frac{-2}{j 2 \sqrt{2}}=\frac{j}{\sqrt{2}}$
$\mathrm{T}_{e}=S_{12}=\frac{2(A D-B C)}{A+B / Z_{o}+C Z_{0}+D} \quad \longrightarrow \mathrm{~T}_{e}=\frac{2(-1+2)}{1+j \sqrt{2}+j \sqrt{2}-1}=\frac{2}{j 2 \sqrt{2}}=-\frac{j}{\sqrt{2}}$
Odd mode: $\quad\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]_{o}=\left[\begin{array}{cc}-1 & j \sqrt{2} \\ j \sqrt{2} & 1\end{array}\right]$
$\Gamma_{o}=S_{22}=\frac{1+j \sqrt{2}-j \sqrt{2}+1}{-1+j \sqrt{2}+j \sqrt{2}+1}=\frac{2}{j 2 \sqrt{2}}=-\frac{j}{\sqrt{2}}$
$\mathrm{T}_{o}=S_{12}=\frac{2(-1+2)}{-1+j \sqrt{2}+j \sqrt{2}+1}=\frac{2}{j 2 \sqrt{2}}=-\frac{j}{\sqrt{2}}$
Excitation at Port 4 is expressed as :

$$
V_{2}^{+}=1 / 2
$$

Even
Odd

$$
V_{2}^{+}=-1 / 2
$$

$$
V_{4}^{+}=1 / 2
$$

$$
V_{4}^{+}=1 / 2
$$

Excitation at Port 4 of Rat-Race Coupler (cont.)

$$
\begin{aligned}
& \Gamma_{e}=\frac{j}{\sqrt{2}} \\
& \mathrm{~T}_{e}=-\frac{j}{\sqrt{2}} \\
& \Gamma_{o}=-\frac{j}{\sqrt{2}}
\end{aligned} \mathrm{~T}_{o}=-\frac{j}{\sqrt{2}} .
$$

Output waves

$$
\begin{aligned}
& B_{1}=\frac{1}{2} \mathrm{~T}_{e}-\frac{1}{2} \mathrm{~T}_{o} \\
& B_{2}=\frac{1}{2} \Gamma_{e}-\frac{1}{2} \Gamma_{o} \\
& B_{3}=\frac{1}{2} \mathrm{~T}_{e}+\frac{1}{2} \mathrm{~T}_{o} \\
& B_{4}=\frac{1}{2} \Gamma_{e}+\frac{1}{2} \Gamma_{o}
\end{aligned}
$$

The resulting output vector for unit excitation at Port 4 is :

$$
\left[B_{i}\right]_{4}=\left[\begin{array}{c}
0 \\
j / \sqrt{2} \\
-j / \sqrt{2} \\
0
\end{array}\right]
$$

