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Maxwell’s equations 1n differential form
V.D =p Gauss' law for electrostatics

V.B=0 Gauss' law for magnetostatics

oD

VxH=]+— Ampere's law
dt
VXE = _oB Faraday's law
dt
op . .
VI]= ~ s Equation of continuity
[
D=¢E « Varying E and H fields are
B=uH coupled
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Electromagnetic waves in lossless media - Maxwell’s equations

Constitutive relations

Maxwell D=cE—ccE
oD he
VXH=J+7t B=uH=puuH
J = ok
VxE:—G—B SI Units
dt « J  Amp/ metre?
VD=p « D Coulomb/metre?
VB=0  H Amps/metre
« B Tesla
Weber/metre?
Equation of continuity Volt-Second/metre?
O 0 « E  Volt/metre
VJd=—"— e ¢ Farad/metre
Ot e u Henry/metre
* o Siemen/metre
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Wave equations in free space
 In free space

— o=0=J=0
— Hence: VxH:J+6D:aD
dt dt
V><E_—§E
dt

— Taking curl of both sides of latter equation:
OB 0 0

VXVXE=-VX—=-—VxB=—pu, —Vx
ot ot
0 GDj
o5 ar
VXVxE=-u, 58—E
ot
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Wave equations in free space cont.

2
VxVXE = —,LIOEE;—S:
t
It has been shown (last week) that for any vector A
VxVxA=VV.A-V°A

where ._2 @ o 1isthe Laplacian operator
Thus: o oyt ozt

2
E
VVE-V’E = —y056—2
ot
* There are no free charges in free space so V.E=p=0
and we get
0°E
ot*
A three dimensional wave equation

V°E =y,
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Wave equations in free space cont.

* Both E and H obey second order partial differential wave
equations:

2
E
V°E = ,uoga—z
Ot
o°H
V°H = Ho€——
Ot
* What does this mean
— dimensional analysis ?
Volts/metre Volts/metre
S T Hy€ >
metre seconds

— € has units of velocity
— Why is this a wave with velocity 1/ V K€ ?
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Uniform plane waves - transverse relation of E and H

« Consider a uniform plane wave, propagating in the z
direction. E 1s independent of x and y

E _, E

—= —=0
ox oy
In a source free region, V.D=p =0 (Gauss’ law) :
OE
V.E:aEx+ y+aEZ:()
ox oy Oz
E 1s independent of x and y, so
OE
ok, _ 0, —~=0 = o, _ 0 =E =0 (E,=constisnotawave)
ox oy 0z

* So for a plane wave, E has no component in the direction of
propagation. Similarly for H.

« Plane waves have only transverse E and H components.
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Orthogonal relationship between E and H:
* For a plane z-directed wave there are no variations along x and y:

OoH d_a |04 04
VXH:_ax y+ay aHx Vx A ax(ay Py +
0z 0z (o4, o4,
_8D 6z ox
o L [oA o,
‘L ox oy
=gl a aE’C+a aEy+a % z o
* ot YOt Y VxH:>J<+d—]t)
* Equating terms:  and likewise for VxE =—u, 0H/or :
OH, ¢OF OE, OH
. — £ X =u, X
0z ot Oz ot
OH _ ~ aEy OF ~ 8Hy
o ot oz %

Spatial rate of change of H is proportionate to the temporal rate of change of
the orthogonal component of £ & v.v. at the same point in space
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Orthogonal and phase relationship between E and H:

» Consider a linearly polarised wave that has a
transverse component in (say) the y direction only:

| - oH, i OF
E =E flz—vt) - - oz ot
OE =— OF
=e—L=—gvE f(z—wt) Oz A =g—
Ot 0z Ot
= H_= —ngOJ-f'(z — vtz + const = —&vE, f(z —vt)
=—¢evE
H, =-|=E,
H,
e Similarly oF, _ p OH
- 0z ° ot
_ <
H, = |—FE, \8Ex:ﬂ OH ,,
Ho oz " o

H and E are in phase and orthogonal
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E &
H, =- /—Ey H,= |—E,
Ho L,

* The ratio of the magnetic to electric fields strengths 1s:

2 2
VEHE B u, Note:

2 2
\/Hx+Hy E__E __1 _.
which has units of impedance B u,e,
Volts | metre _0
amps | metre

 and the impedance of free space is:

—7
Ho _ [ 4210 150723770

€o l %1077
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Orientation of E and H

e For any medium the intrinsic impedance 1s denoted by 7
E, E
Y X

H, H,

n=-

and taking the scalar product
EH=EH, +EH,

=nH H,-nH . H,=0

so E and H are mutually orthogonal

Taking the cross product of E and H we get the direction
of wave propagation

EXHZaZ(ExI;[y_E);Hx) AxB:ax(Asz_Asz)+
:az(nHy_on) ay(Asz_AB )+
)

X"z

2
ExH=a_nH a_(4,B,-4,B,
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A ‘horizontally’ polarised wave

e Sinusoidal variation of E and H o e -
* E and H in phase and orthogonal y o ;0 X

ExH
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A block of space containing an EM plane wave

* Every point in 3D space 1s characterised by
- E,E,E,
— Which determine
« H,H, H,
 and vice versa
— 3 degrees of freedom

«— A—

E
2/ 0= [
Ho
X
. ExH Ho—— iEy
y Ko
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Power flow of EM radiation

2
ek
* Energy stored in the EM field in the thin box is: Up = 7
o2 I7e Upg = )
dU =| Z 4+ £ | 4dx
2 2
H=|2E
= ¢E° Adx yo u
* Power transmitted through the box is dU/dt=dU/(dx/c)....
PR YN dx
vl
ExH ¢
H, /
Area A
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Power flow of EM radiation cont.

dU = ¢E* Adx
2 2
:dU: ) Adx = £ :E W/m?
Adt  A(dx/e) H, 1

This 1s the instantaneous power flow
— Half is contained in the electric component
— Half 1s contained in the magnetic component

E varies sinusoidal, so the average value of S 1s obtained

as. E=FE, sinzjﬂ(z—vt)
2 -2
g E, sin (z—vt)
n
2 2
5-Lo RMS(Ej sinz(z—vt)): %
7 2n

S 1s the Poynting vector and indicates the direction and magnitude of
power flow in the EM field.
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Example problem

e The door of a microwave oven 1s left open
— estimate the peak E and H strengths in the aperture of the door.
— Which plane contains both E and H vectors ?

— What parameters and
equations are required?
* Power-750 W

» Area of aperture - 0.3 x 0.2 m
» impedance of free space - 377 Q
* Poynting vector:
E2
S=—"—=pH* W/m*
n
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Solution

2
Power = §4 = E—A = 77H2 A Watts

E=\/77P0W€’”=\/377 0 5 171Vim
y 0.3.0.2

_E 2170
n 377

=5.75A/m

B=u H = 4rx107" x5.75 = 7.2uTesla
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Constitutive relations

 permittivity of free space €,=8.85x 102 F/m D=¢E=¢.¢E
 permeability of free space p .=4nx107 H/m B=uH=puuH

* Normally ¢ (dielectric constant) and 1, J=0E
— vary with material
— are frequency dependant

« For non-magnetic materials p. ~1 and for Fe 1s ~200,000
* ¢ is normally a few ~2.25 for glass at optical frequencies

— are normally simple scalars (i.e. for isofropic materials) so
that D and E are parallel and B and H are parallel

 For ferroelectrics and ferromagnetics €. and pi_depend on the
relative orientation of the material and the applied field:

Bx Hye Hxy Hyz Hx At H o~ J Kk 0

y Hyc Hyy o Hyz V microwave Hy =% A 0

B, Moo Hzy Mz \H. frequencies: 0 07 4
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Constitutive relations cont...

* What is the relationship between € and refractive index for non
magnetic materials ?

— v=c/n 1s the speed of light in a material of refractive index n

1 c
y= =—

V lLlO gO gl"
— For glass and many plastics at optical frequencies
* n~1.5
e g~2.25

« Impedance 1s lower within a dielectric
n= /ﬂoﬂr
8081"
What happens at the boundary between materials of different
n,u, gr ?
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Why are boundary conditions important ?

When a free-space electromagnetic wave is incident
upon a medium secondary waves are

— transmitted wave
— reflected wave

The transmitted wave 1s due to the E and H fields at
the boundary as seen from the incident side

The reflected wave 1s due to the E and H fields at the
boundary as seen from the transmitted side

To calculate the transmitted and retlected fields we
need to know the fields at the boundary

— These are determined by the boundary conditions
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Boundary Conditions cont.

H1,£1,0

1,852,065

At a boundary between two media, u, .0 are different on either
side.

An abrupt change 1n these values changes the characteristic
impedance experienced by propagating waves

Discontinuities results in partial reflection and transmission of
EM waves

The characteristics of the reflected and transmitted waves can be
determined from a solution of Maxwells equations along the
boundary
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Boundary conditions

The tangential component of E 1s continuous E, Hy

at a surface of discontinuity

H1,€1,0

—

- Elt,= By E, H,,

9

Except for a perfect conductor, the
tangential component of H 1s continuous at a
surface of discontinuity

— Hlt,= Hy,

Hy,E5,0,

The normal component of D is continuous at
the surface of a discontinuity if there is no

surface charge density. If there is surface D 1n,
charge density D is discontinuous by an

Bln

H1,61,0

amount equal to the surface charge density. D
- Dln,= D2n+ps

The normal component of B is continuous at
the surface of discontinuity

— B =B2n

2n,

In,

B2n

Hy,872,0,

Microwave Physig_sz and Technigues
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Proot of boundary conditions - D

D
. nl 1 Ay

961
Hy,€7,6,

Dn2|

« The integral form of Gauss’ law for electrostatics is:

ﬁD'dA - J..”V pdV

applied to the box gives
D, AxAy — D, ,AxAy

As dz —> 0, Weigge 20 hence

= pAxAy

D.—D .= The change in the normal component of D at a
T En2 S L boundary 1s equal to the surface charge density
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Proof of boundary conditions - D_cont.
Dnl _Dn2 = Ps

 For an nsulator with no static electric charge p.=0
Dnl = Dn2

* For a conductor all charge flows to the surface and for an
infinite, plane surface is uniformly distributed with area
charge density p,

In a good conductor, c is large, D=c¢E~0 hence i1f
medium 2 1s a good conductor

Dnl = Py
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Proof of boundary conditions - B

* Proof follows same argument as for D, on page 47,

n

* The integral form of Gauss’ law for magnetostatics 1s

ﬁB.dA =0

— there are no isolated magnetic poles

B, AxAy — B, AxAy + Wy, =0

— l;nl — l;n2

edge

The normal component of B at a boundary i1s
always continuous at a boundary

Microwave Physics and Techniques UCSB -June 2003 !gg""a
25 o



Conditions at a perfect conductor

In a perfect conductor ¢ 1s infinite

Practical conductors (copper, aluminium silver) have
very large o and field solutions assuming infinite ¢ can
be accurate enough for many applications
— Finite values of conductivity are important in calculating
Ohmic loss

For a conducting medium
— J=cE
* infinite 6= infinite J
* More practically, o 1s very large, E is very small (=0) and J is finite
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Conditions at a perfect conductor
It will be shown that at high frequencies J 1s confined to a surface
layer with a depth known as the skin depth

« With increasing frequency and conductivity the skin depth, ox
becomes thinner

Current sheet

e

Lower frequencies,
smaller

4

OX

Higher frequencies,

larger ¢

* It becomes more appropriate to consider the current density in
terms of current per unit with:

limJox=J, A/m
ox —> 0
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Conditions at a perfect conductor cont.

: Ax
>
Ay Hyl Hxl Hy3¢ Hl?glacl
H ) H y4+ Hr,€7,0,
<€
Hx2

 Ampere’s law: ﬁHds‘H (_+deA

J,Ax
5 A/ A A/ oD -
2 2 2\ 0 2 ot
AsAy -0, 0D, /otAxAy —0,  J AxAy > AxJ
H,—-H,=J, That is, the tangential component of H 1s discontinuous by

an amount equal to the surface current density
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Conditions at a perfect conductor cont.

* From Maxwell’s equations:

— If in a conductor E=0 then dE/dT=0

. oH
— Since Vsz—,uE

H _,=0 (1t has no time-varying component and also
cannot be established from zero)

H xl = JSZ
The current per unit width, J; along the surface of a

perfect conductor 1s equal to the magnetic field just
outside the surface:

 H and J and the surface normal, n, are mutually
perpendicular:  J =nxH
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Summary of Boundary conditions

At a boundary between non-conducting media

E, =E, nx(E; ~E,)=0
Hy=H, nx(H;—H,)=0
D,=D,, - ”-(Dl _Dz): 0
B, =B, n(B;—B,)=0
At a metallic boundary (large o)
n X (E1 -E, ) =0
n X (H1 -H, ) =0
”-(Dl -D, ) = Ps
n(B,—B,)=0
At a perfectly conducting boundary nxE, =0
nxH;=J,
n.Dy = p;
nB, =0
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Reflection and refraction of plane waves

» At a discontinuity the change in u, € and  results
in partial reflection and transmission of a wave

* For example, consider normal incidence:
Incident wave = E l-ej G

Reflected wave = E e’ (wr+ )

* Where E, 1s a complex number determined by the
boundary conditions

Microwave Physics and Techniques UCSB -June 2003 !gg,"a
31 o



Reflection at a perfect conductor

» Tangential E 1s continuous across the
boundary

* For a perfect conductor E just inside the
surface 1s zero

— E just outside the conductor must be zero

E,+E. =0
= FE, =-FL

r

* Amplitude of reflected wave 1s equal to
amplitude of incident wave, but reversed 1n
phase
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Standing waves

 Resultant wave at a distance -z from the interface 1s
the sum of the incident and reflected waves

E(z,t) = incident wave + reflected wave
= B/ f) L | ollortf)

= Ey[o# — oI Jpio ing &’
2j

= -2 jE, sin fz e/
and 1f £; 1s chosen to be real
Er (z,t) = Re{— 2jE; sin fz (cos @t + jsin a)t)}

=2F; sin fZsin ot
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Standing waves cont...

E; (z, t) =2F; sin fzsin wt

 Incident and reflected wave combine to produce
a standing wave whose amplitude varies as a

function (sin fz) of displacement from the
interface

* Maximum amplitude 1s twice that of incident
fields
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Reflection from a perfect conductor

resultant waswre

incident wavwe
tran=smitted wawvre

reflectad wawe

Microwave Physics and Techniques UCSB -June 2003 !3""3
cs 111




Reflection from a perfect conductor

* Direction of propagation 1s given by ExH
If the incident wave 1s polarised along the y axis:

E; = ayEyl-
= H;,=-a H ,
then ExH=(-a, xa )E.H,
=+a L, H,

That 1s, a z-directed wave.

For the retlected wave ExH =—-a_F yil i and £, =-a E,

So H,=-a _H_;=H, and the magnetic field is
reflected without change 1n phase
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Reflection from a perfect conductor
2

e Given that cos¢ =

HT (Z, t) = Hiej(”t_ﬂz) 4+ Hrej(COHﬂZ)
— H(ejﬂz + e_jﬁz ;Ja)t
=2H, cos fiz e/
As tor E, H; 1s real (they are 1in phase), therefore

H; (z,t) = Re{2Hl. cos & (coswt + jsin a)t)} =2H, cos [z cos wt
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Reflection from a perfect conductor

HT(z,t): 2H; cos [z coswt
« Resultant magnetic field strength also has a standing-wave

distribution

e In contrast to E, H has a maximum at the surface and zeros
at (2n+1)A/4 from the surface:

— resultant wave ——— resultant wave

z =0 z =0
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Reflection from a perfect conductor

E; (z, t) = 2FE, sin [z sin wt

H; (z,t) =2H cos fz coswt

« E,and H; are n/2 out of phase(sin wt = Cos(a)t -/ 2))
* No net power flow as expected

— power flow 1n +z direction 1s equal to power flow in - z
direction
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Reflection by a perfect dielectric
» Reflection by a perfect dielectric (J=cE=0)

— no loss

* Wave 1s incident normally

— E and H parallel to surface

* There are incident, reflected (in medium 1)and
transmitted waves (1n medium 2):
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Reflection from a lossless dielectric

- rezultant wawe

= a— incident wave

_____ “ reflected wawe

tratnzmitted wawe
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Reflection by a lossless dielectric

E; =mH, B jou Y
b, =-mH, 7= o+ jwE, &, Ve
E, =m,H,
* Continuity of E and H at boundary requires:
E +E. =E,
H +H,.=H,
Which can be combined to give
1 I I
Hi +Hr :_(Ei _Er):Ht :_Et :_(Ei +Er)
™ Up) P
1 | E _
R R IR e |
g 7 E;  my+i

— 772(E _Er):nl(Ei +Er)

l

= Eln-n)=Emen) [ CHCCONCOSGIEN
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Reflection by a lossless dielectric

E.+E.=E,
o H,+H, =H,
e Similarly
Iy = E, E.+E E, 772_’71+772+771: 21,
E, E K M+ my+mn m+n
2
I = Uy
T, +1
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Reflection by a lossless dielectric

e Furthermore:

H, :_Ei = PH
H, _mk&, _m 27, 2y -
H, mkE, mnyn+m ny+mn

And because p=p for all low-loss dielectrics

0 :Erz\/;l_\/g:nl_rb:_p
‘ E; \/g-p\/g ny+n, v
. _ B, 2\/5 _ 2n
g E; \/ng\/g ny+n,
2n

2. &
2 2
Tl =—F1T7— —~
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Energy Transport - Poynting Vector

Electric and Magnetic Energy Density: 4y —

\ 4

E, (x,t)=Eqsin(kx — ot)
B,(x,t)= By sin(kx —ot) 7 B *

wbhere BO — EO /C
The electric energy density is given by

up = %gOEz = %SOEOz sin® (kx —w¢)and the magnetic energy is

uB:LBzz : E? =uy; Note: | used E=cB
2u 2upc

Microwave Physics and Techniques UCSB -June 2003 lﬂ’.‘s
45 o



Energy Transport - Poynting Vector cont.

Thus,
| =2 .
Uiy =Up TUp = 80E2 = B’= SOE()z Slnz(kX—(Dt)
Ho
Poynting Vector (3 =LE><B) ;
Ho

The direction of the Poynting Vector is the

direction of energy flow and the magnitude ,# ,

2
oy EL_1aU
Mo moc A dr

W »

/://///
Is the energy per unit time per unit area

(units of Watts/m?).
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Energy Transport - Poynting Vector cont.

Proof:
2 2
| L L
Sz—d—UzaocEz = =0 Sinz(kx—mt)
A 0’[ },L()C Moc‘

Intensity of the Radiation (Watts/m?):

The intensity, |, is the average of S as follows:

e 2 2
_ E
[:S :ld—U: 0 <Sin2(1{X—(0f)>: E .
A df },loC 2“06‘
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+ Ohm’s law

J =ckF

+ Skin depth
//_' B =
Hy —
— - Current density decays
i exponentially from the
- f'f surface into the interior of
N the conductor
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Phasors

|
j(t)zRe {}6 Jm[} I = Vﬁ
? R+ ol
v R=6 Q
Igl/lueaans:[ﬁ;able Phasor (not real) Vet + /\D L=0.2 mH
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Phasors cont.

+ Phasors in lumped circuit analysis have no space
components

+ Phasors in distributed circuit analysis (RF) have a space
component because they act as waves

V(X,[)zRe{VoeJ_FJBX ejwt}:Vo cos (ot +Bx)
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Displacement Current
Observe that the vector field ——— appears to form a continuation of the

: o . C : :
conduction current distribution. Maxwell called it the displacement current,
and the name has stuck although in no longer seem very appropriate.

We can define a displacement current density J, , to be distinguished from
the conduction current density J, by writing

cur]B:4—Tc(]+]d)
C

and define 7, = L@_E
d 41t Ot

It turns out that physical displacement current lead to small magnetic fields
that are difficult to detect. To see this effect, we need rapidly changing
fields (Hertz experiment).
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Displacement Current

Example: I=lyin a circuit branch having a capacitor

.=l

_ 0l

The displacement current density is given by

R OE(¢) _ 1 aQl) _ 1I(r)
" 4n o  AnCd ot 4AnCd

Microwave Physics and Techniques
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Displacement Current

The direction of the displacement current is in the direction of the current.
The total current of the displacement current is
A-1
4nC -d

Thus the current flowing in the wire and the displacement current flowing in
the condenser are the same.

How about the magnetic field inside the capacitor? Since the is no real
current in the capacitor,

curl B = l@_E

c Ot

Integrating over a circular area of radius r,

Icur]B a’a—— j -da
C

s(r)
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Displacement Current

l.h.s= J'cur]B-da = jB‘dS =2nB-r

S(r) C(r)
2
r.b.szlg E-a’azﬂa—E
c Ot c Ot
S(r)

nr? 8V_71‘1“2 | 5@_7[1‘2 Il _471.'11“2

T d ot d C ot od C ¢ 2

Thus the magnetic field in the capacitor is
4] fz ( )_ 2

2nB-r= T—z — Bl(r )
d cd
4rl 27
2nB-r= T — B(r)= ~ (atthe edge of the capacitor)

This is the same as that produced by a current flowing in an infinitely long

wire.
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Wave in Elastic Medium

Xn—2 Xn—1 Xn Xn+1 Xn+2

e el e-e

\
R

un-2 un-1 un un+1 un+2

The equation of motion for n" mass is

2
5 ==kt =0, 1)+ Kl =)= kl
t
By expanding the displacement u_,,(t)=u(x,.4,t) around x,, we can convert
the equation into a DE with variable x and t.

B 2un + un+l)

n—1
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Wave in Elastic Medium

2
i ()=l £ Ax,0) = alx, )+ 280w (4 a0y 1Oy
B aXH 2 &Y,%
o 52U(Xn,t) A2 aZU(XH,[) ,m 52U(XH, ): IAy 82u(XH,t)
ot* Ox Ax o’ ox;

Define K =k Ax as the elastic modulus of the medium and p = m/ Ax is the
mass density. In continuous medium limit Ax —> 0, we can take out n.

82u(X,[) _x azu(X,t)

ot Ox?

p

We examine a wave equation in three dimensions. Consider a physical
quantity that depends only on z and time t.
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Wave along z-axis

82T(Z,t) 2 @2‘{’(Z,t)
ol o
VA

We prove that the general solution of this DE is given by

LP(Z,t)z f(Z—Vt)—|— g(z—H/t)

fand g are arbitrary functions.

Insert a set of new variables,
E=z—wt and nN=z+Wwt

Then
0 8& 0 811 0 8 0
Oz Oz 8& Oz ON 8& on

and
0 aga 6n8 a 0

o oroE drom e an
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Wave along z-axis
2 2
0o O 0 O
)y |t Y| Y
[8i @nj (ﬁﬁ 8nj

52
thus Y =0
onog

From this equation:

o0 ¥ oY

611 5% -0 5@ -Fe)
%Z:F(i)—w{’zj (€t +5(n)=1(8)+5(n)
Thus

LI’(Z,L‘)z f(z—V[)+ g(Z+Vz‘)
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Radiation

&

v
wwv

Charges and currents

Great Distance

@W/T/c?

Aperture fields

wv
wWwwv

Great Distance
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Approximate plane waves

%
&

p

Approximate plane waves
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Radiation Antennas

Transmission line fed dipole Transmission line fed current loop

/ 7

Slots in waveguide ,
Waveguide fed horn
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Radiation

In the time domain the electric scalar potential @ (r,,t) and the magnetic vector
potential A(r,,t) produced at time t at a point r, by charge and current distribution pP(r,)

1 J‘P(fl’f—flz/c)d

and J(r,) are given by

| 4

and

1)

Alry,0)= Ko J‘J(ﬁ;f_flz/c)dV

G_JBf 12 js the phase retardation factor
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We start with
B=curl A and E =—grad ¢— jo A

Charge conservation:

, 0 Sinusoidal steady state . .
le]"'_p:O —y div J + jop=0
ot
Because p and J are related by the charge conservation equation, ¢ and A are also related. In

the time domain,

Sinusoidal steady state

div A+ pogg X 0 g div A+ jopgggd =0

ot
with ® #= 0
__div A
JOWUGEQ
Substituting for @: I - Lcur] 4
Ho
I =— ! grad div A — joA
JOHE(
= —Bﬁzgrad div A— jnA
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Near and far fields

We consider the transmission characteristics of a particular antenna in the form of a straight
wire, carrying an oscillatory current whose length is much less than the electromagnetic
wavelength at the operating frequency. Such antenna is called a short electric dipole.

P

Z : P

Avoiding spherical polar coordinates 6 4
——

Coordinates transformation IL y

/\ strength of the radiated field X
JoP =1L

L
[ —

The components of the dipole vector in these coordinates are

(p. | [-psin0]
P=| 0 |= 0

p,| | pcosO |
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Dipole radiation

The retarded vector potential is then

_jBZ
A:HOJJC’ dv

47 z

V

o)
Where we used 3 =— . We also replace jjdv by /1. = j» P and obtain

C
. L
A= (joP)
4 Z
. 1' ‘]' k . 0
curl A ~72H0 g N ) PBP.e P
4z | Ox oy Oz 4nz XO
Pe P 0 peH

Thus the radiation component of the magnetic field has a g component only given by

. PP
Hy:_JB.]O) =

Atz
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Dipole radiation

Electric field:
. _JBZ
We start with divA ~ 04, _ JOMo L, (_ JB)€
Oz Az
p 0
then grad divA = Ho/® Z(_ jB) 0

Atz

The first term we require for the electric field is simply

JBZO

— 2 -
120) grad divA = @ Hoc 0
B 4nz

A

The second term we require for the electric field is

- p
2 - Pz X
— jnd =2 EoC 0
4tz
__Pz_
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Dipole radiation

Electric field:

The electric field is the sum of these two terms. It may be seen that the z components
cancel, and we are left with only x component of field given by

2 - Bz
E _(D HoMXC' M

v =

4tz

The ratio of electric to magnetic field amplitudes is

E o’
=By, ——uoc o |— w/”‘) ="
H, po Moo

as expected for a uniform plane wave.
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Dipole radiation

We will now translate the field components into the spherical polar coordinates.

B in radial direction

P o
H in ydirection
r
0
E in xdirection

ILYo
since P, =—Psin® we have

0o P sin@e P i Hy 1, - — @B Psin0c P’

EGZEX:

Amtr 4ntr

. Vomom) o
The Poynting vector E(EXH ) is in r direction and has the value

B u0m3B‘P‘2 sin” 0

S =5 >
2(4nr)

r zZ

This vector (real) gives the real power per unit area flowing across an element of
area | to r at a great distance.
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Radiation pattern

Dipole axis

0 N X ™
AN -
- lcngth Is Proportxonal to power dcnsutg per

Dipole —— unit area at some fixed distance.

Note: No radiation takes place along the dipole axis, and the radiation pattern has axial
symmetry, with maximum radiation being in the equatorial plane.

Because of the non-uniform nature of the pattern we have the concept of antenna gain,
which for a lossless antenna is the power flow per unit area for the antenna in the most
efficient direction over the power flow per unit area we would obtain if the energy were
uniformly radiated in all directions. The total radiated power is

T 2% T 27
3 2
P
W= j j%e{Sr}(rz sin@®dp) == 0(3”23 ‘2 | I sin’ O j i
7T
6=0 $=0

0=0 ¢=0

_ oo B2 ‘2
1272
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The average radiated power per unit area is

3 2
W Reo Bl7|
4’ 487% 12

Hence the antenna gain, g defined by

radiated Powcr/unit area in the most efficient direction

average radiated Powcr/unit area over a largc sphcre

becomes
Y oB|P]” 487712
321° % o’plP|”

3
= 5 This result is the gain of a small dipole.
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Radiation resistance

Recall

o B2 _ pooplt| £
121 121

w

The radiation resistance £ .is defined as the equivalent resistance which would absorb the
same power W from the same current |, i.e.

_RI
)

W

Combining these results we obtain

2
R, = HooPL
67

Usingw =P, p=2n/A, czl/w/u()So and M=+/lo/€r ,we find
o) (LY
R, = %(BL)2 = (?Mij —=> R, ~20BL)Q (n~120mQ)
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Consider an arbitrary system of radiating currents

We start with the vector potential

J - B
A=t (’i)f "
12

| 4

We will regard r,, fixed. For P, a
distance point, we replace r,, with r,

o A=t [ s
Tsz

| 4

Approximations for r,, in e—JBflz require more care, sine phase differences in radiation
effects are crucial. We use the following approximation

=11 Iy B 1 COSY + 1) lip ® I —1j COS Y
MOe_jBrz + B r cos
—> A(r2 ) =1/ (1‘1 )f‘ 1SV ly  factor etBrcosv  axpresses the
47r ) phase advance of the radiation from
v the element at P, relative to the phase

at the origin.
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We have

- P
_ Ho€
A(fz ) = SR
4Tff2
where
R = ](1‘1 )ngrl cosV 1, SR is called the radiation vector. It depends on the
internal geometrical distribution of the currents
’ and on the direction of P, from the origin O, but not
on the distance.
Ho e B
The factor 4 depends only on the distance from the origin O to the field point
Tsz

P, but not on the internal distribution of the currents in the antenna.

The radiation vector ER can be regarded as an effective dipole equal to the sum of the
individual dipole elements Jdv, each weighted by phase factor CJBTI oSV which depends on

the phase advance BI‘I cos\y of the element in relation to the origin, and direction OP.,,.

e~ Br —Br
Hy= Ry and [ :—JBG Ry
dnr ¢ 4rr
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Small circular loop

Calculate the radiated fields and power at large
distance.

z P,

Using the symmetry the results will be independent of
the azimuth coordinate ¢.

The spherical polar coordinates of a point P, at a
general position on the loop are (a, n/2, ¢').

V' being the angle between OP, and OP, with a unit
vector in the direction of OP, (cos ¢',sin ¢',0) and
a unit vector in the direction of OP,
(sin6,0,cos0):

We have  cos\ =sin0cos ¢’

The radiation vector is then given by

filamentary current

R(0,0)= | J(1)- dige P00 v > R(0,0)= | tddrj - e PasinOcosd

2n 2n
R(6,0)= Tac P50 o O'dd) —>  R(O,0)=~ Iaj (1+ jBasinBcos d')cos ¢’ dp’

0

— > R,(00) = Prla’sin®
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Electric and magnetic fields

—Br 2 .
s :/Be P R :—(Ba) Ismee_]Br
0 4nr Y 4r

Poynting vector

4 2 .2
5Ly -G 0o
2 32r

Total power radiated

2 .
af’nlsin® _pz,
and Ed):_nHe:(B)zr e"B

W = J. jS rsinOddrdd Substituting for S, and using sin> 0 = %(3 sin© — sin 39)
$=0

o o (Ba)’
12
Radiation resistance
|
W= R ? R, = “—g(ﬁa)“ R, =20n2(B2)*Q (n=1207Q2)
Microwave Physics and Techniques UCSB -June 2003 !ga’l‘h

74



