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•Maxwell’s equations
•Grad, div and  curl
•Wave equations
•Plane Waves
•Boundary conditions

Lecture 2

A. Nassiri
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Maxwell’s EquationsMaxwell’s Equations

The general form of the time-varying Maxwell’s 
equations can be written in differential form as:
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What is Maxwell’s theory?What is Maxwell’s theory?

“I cannot give any clearer or briefer answer than the following:
Maxwell’s theory is the system of Maxwell’s equations”

-Heinrich Rudolph Hertz
(1857-94)
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Physical interpretation of curlPhysical interpretation of curl

River

velocity

position

Centre of river flows 
at maximum speed.
Now put the “curl meter”
into the river and see
what happens!

Rotating paddle wheel
or “curl-meter”
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No rotation!

River RiverRiver

Three different positions Three different positions 
(centre left and right)(centre left and right)

Anti-clockwise
rotation.

Clockwise
rotation.
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ConclusionsConclusions

• Curl-meter only indicates rotation if there is non-uniformity in
the vector field.

• The amount of rotation is proportional to the degree of 
non-uniformity.

• The rotation cannot be described just with a scalar. Direction
should also be given. Rotation is therefore a vector quantity.

Curl therefore describes the variation across the field. The above
physical interpretation is concerned with only one dimension or
one component. For electromagnetic fields we must imagine
the concept applying to three dimensions. 
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A few other fundamental relationshipsA few other fundamental relationships
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Physical interpretation of divergencePhysical interpretation of divergence

Flux in = flux out
so no sources or
sinks inside V.

Flux out > flux in
Positive
divergence.
Must be a source
inside V.

Flux out < flux in
Negative
divergence.
Must be a sink or
drain inside V.

V V
V
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ExampleExample

t
J V

∂
∂

−=⋅∇
ρr

The current density flux
flowing out of the closed surface
equals the rate of decrease of
the positive charge density.
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Maxwell’s EquationsMaxwell’s Equations
– All (macroscopic) electromagnetic phenomena can be 

explained in terms of Maxwell’s equations, the 
continuity equation and the Lorentz force equation.

–We also note that Maxwell’s equations are not independent. 
In fact, the two Divergence equations can be derived from the 
two Curl equations.

– We have only listed the differential form of Maxwell’s 
equations. There are corresponding integral forms of these 
equations as well.
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Integral form of the equationsIntegral form of the equations
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Wave EquationsWave Equations

In any problem with unknown E, D, B, H we have 
12 unknowns. To solve for these we need 12 scalar 
equations. Maxwell’s equations provide 3 each for 
the two curl equations. and 3 each for both 
constitutive relations (difficult task).
Instead we anticipate that electromagnetic fields 
propagate as waves. Thus if we can find a wave 
equation, we could solve it to find out the fields 
directly. 
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Maxwell’s equations not Maxwell’s equations not 
independent!independent!

E.g.           
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Wave equationsWave equations

Take the curl of the first Maxwell:
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Wave EquationsWave Equations

The result is:
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Note how in both case we have a wave equation (2nd order PDE) 
for both E and H with fields to the left of the = sign and sources
to the right. These two wave equations are completely equivalent
to the Maxwell equations.
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Solutions to the wave equationsSolutions to the wave equations

Consider a region of free space (σ = 0) where there are no sources
(J = 0). The wave equations become homogeneous:
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Solutions to the wave equationSolutions to the wave equation

Try a solution of the form f(z-vt) e.g. sin[β(z-vt)]. By differentiating
twice and substituting back into the scalar wave equation, we find 
that it satisfies!

f(z) t=0
z

f(z-vt1) t=t1 z

f(z-vt2) t=t2 z
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Plane WavesPlane Waves
• First treat plane waves in free space.
• Then interaction of plane waves with media.
• We assume time harmonic case, and source free situation.
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We require solutions for E and H (which are solutions to the
following PDE) in free space

No potentials here!
(no sources)
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How do we find a solution?How do we find a solution?
Usual procedure is to use Separation of Variables (SOV). 
Take one component  for example Ex.
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Mathematical SolutionMathematical Solution

We note we have 3 ODEs now. 
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But, what does it mean physically?But, what does it mean physically?

( )zkykxkj
x

zyxeAE ++±=

This represents the x-component of the travelling wave E-field
(like on a transmission line) which is travelling in the direction 
of the propagation vector, with Amplitude A. The direction of
propagation is given by

zkykxkk zyx ˆˆˆ ++=
r
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Physical interpretationPhysical interpretation

The solution represents a wave travelling in the +z direction with
velocity c. Similarly, f(z+vt) is a solution as well. This latter 
solution represents a wave travelling in the -z direction.
So generally,

( ) ( )( )( )[ ]vtzvtyvtxftzEx ±±±=,

In practice, we solve for either E or H and then obtain the
other field using the appropriate curl equation.

What about when sources are present?  Looks difficult!
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Generalize for all componentsGeneralize for all components

If we define the normal 3D position vector as:
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Properties of plane wavesProperties of plane waves

For source free propagation we must have ∇·E = 0. If we satisfy
this requirement we must have k·E0= 0. This means that E0
is perpendicular to k.

The corresponding expression for H can be found by 
substitution of the solution for E into the ∇×E equation. The 
result is:

EnkH
rr

×= ˆ
0

0

ωµ
Where n is a unit vector in the k direction.
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Transverse Electromagnetic (TEM) Transverse Electromagnetic (TEM) 
wavewave

Note that H is also perpendicular to k and also perpendicular to
E. This can be established from the expression for H.

E

H

Direction of propagation
k,n

Note that:

knHE ˆˆˆˆ or    =×
E and H lie on the
plane of constant
phase  (k·r = const)
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Plane waves at interfaces (normal Plane waves at interfaces (normal 
incidence)incidence)

Consider a linearly polarized (in x-direction) wave travelling in
the +z direction with magnitude Ei

Ei

Hi

Er

Hr

Incident

Reflected

µ2ε2σ2µ1ε1σ1

Transmitted

z

x Arbitrary
orientation!

Et

Ht
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Boundary conditionsBoundary conditions

We deal with a general dielectric interface and two special
cases. First the general case. For convenience we consider 
the boundary to be planar.

Maxwell’s equations in differential form require known boundary
values in order to have a complete and unique solution. The 
so called boundary conditions (B/C) can be derived by considering
the integral form of Maxwell’s equations.

nε1µ1σ1

ε2µ2σ2



35
Microwave Physics and Techniques                UCSB –June 2003

General caseGeneral case

Equivalent

Et1 nε1µ1σ1

ε2µ2σ2 Et2

Tangential E continuous

nε1µ1σ1

ε2µ2σ2 Ht2

Ht1

n x (H1-H2)=Js

nε1µ1σ1

ε2µ2σ2

Bn1

Bn2
Normal B continuous

nε1µ1σ1

ε2µ2σ2
D2n

D1n

n·(D1-D2)=ρs
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Special case (a) Lossless dielectricSpecial case (a) Lossless dielectric

nε1µ1σ1=0

ε2µ2σ2=0

Bn1=Bn2 normal B fields continuous

Ht1=Ht2 tangential H fields continuous (no current)

Dn1=Dn2             normal D fields continuous (no charge)

Et1=Et2                  tangential E fields continuous)
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Special case (b) Perfect ConductorSpecial case (b) Perfect Conductor
nε1µ1σ1=0

∞→2σ Perfect Electric Conductor   Et2=Ht2=0

Bn1= 0 Normal B(H) field is zero on conductor.

Et1= 0    Tangential Electric field on conductor is zero.

n × H1=Js    H field is discontinuous by the surface current

n . D1= ρ Normal D(E) field is discontinuous by surface charge
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Boundary conditionsBoundary conditions

Continuity at the boundary for the tangential fields requires:

(2)               
(1)                
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
Recall the Maxwell’s equations:
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
• So far, for lossless media, we considered J=0, and ρv=0 but, 
there are actually two types of current and one of them should 
not be ignored. 
• Total current is a sum of the Source current and Conduction 
current.
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
Defining complex permittivity 

ω
σ

−ε=ε j

Maxwell’s equations in a conducting media (source free) can be 
written as
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
We have considered so far:

Plane Waves
in Free space

Plane Waves
in Isotropic 
Dielectric

Plane Waves
in anisotropic 
Dielectric

Plane Waves
in Dissipative 
Media
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
Wave equation for dissipative media becomes:
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
Substituting into                               and             

yields the dispersion relation
EE
vrr

µεω−=∇ 22 HH
rrr

µεω−=∇ 22

ε
µ

=η

µεω=κ
and

22

Is the complex intrinsic impedance of the isotropic media.
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
Denoting the complex values:
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Ex̂eeEx̂eEx̂eEx̂E

e

j

IRIR

IRIR

00

000

r

r
then,



46
Microwave Physics and Techniques                UCSB –June 2003

Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
Loss tangent is defined from

tangent loss as defined is 
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
Slightly lossy case: 1<<
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
Highly lossy case: 1>>
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Plane Wave in Dispersive MediaPlane Wave in Dispersive Media
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Reflection & TransmissionReflection & Transmission

Similarly, substituting into (1) and (2) and eliminating Et

12

12t     coefficien Reflection
ZZ
ZZ

E
Eρ

i

r

+
−

==

We note that τ = 1+ρ, and that the values of the reflection 
and transmission are the same as occur in a transmission line
discontinuity.

Z1 Z2

τρ

Not 1-ρ



52
Microwave Physics and Techniques                UCSB –June 2003

Special case (1)Special case (1)

(1) Medium 1: air; Medium 2: conductor

iit
t

t

iit

m

HE
Z

H
Z
EH

E
Z
ZEE

jZZZ

22   usethen 

2    So

1      377

12

1

2

21

≈=⇒=

≈=

+
==>>Ω=

τ

σδ

This says that the transmitted magnetic field is almost doubled
at the boundary before it decays according to the skin depth. 
On the reflection side Hi ≈ Hr implying that almost all the
H-field is reflected forming a standing wave.
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Special case (2)Special case (2)

(2) Medium 1: conductor; Medium 2: air

Reversing the situation, now where the wave is incident
from the conducting side, we can show that the wave is
almost totally reflected within the conductor, but that the 
standing wave is attenuated due to the conductivity.  
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Special Case (3)Special Case (3)

(2) Medium1: dielectric; Medium2: dielectric
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This result says that the reflection can be controlled by varying
the ratio of the dielectric constants. The transmission analogy
can thus be used for a quarter-wave matching device.
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λλ/4 Matching Plate/4 Matching Plate

Z0 Zp Z2

λ/4

Air: εr=1 Plate εr'=? Dielectric εr=4

Transmission line theory tells us that for a match

20ZZZ p =

2   and       266     So
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We will see TL lectures later
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Plane of IncidencePlane of Incidence

Surface
normal

Dielectric 
interface in 
x-z plane

x

y

z

Plane of incidence contains
both direction of propagation 
vector and normal vector.

Direction of
propagation
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ApplicationsApplications

The principle of λ/4 matching is not only confined to transmission
line problems! In fact, the same principle is used to eliminate 
reflections in many optical devices using a λ/4 coating layer on
lenses & prisms to improve light transmission efficiency.

Similarly, a half-wave section can be used as a dielectric window.
Ie. Full transparency. In this case Z2=Z0 and the
matching section is λ/2. Such devices are used to protect antennas
from weather, ice snow, etc and are called radomes.

Note that both applications are frequency sensitive and that the
matching section is only λ/4 or λ/2 at one frequency.
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Oblique IncidenceOblique Incidence

The transmission line analogy only works for normal incidence.
When we have oblique incidence of plane waves on a dielectric 
interface the reflection and transmission characteristics become
polarization and angle of incidence dependent.

We need to distinguish between the two different polarizations.
We do this by first, explaining what a plane of incidence is, then 
we will point out the distinguishing features of each polarization. 
We are aiming for expressions for reflection coefficients.

We note again that we are only dealing with plane waves
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Parallel & Perpendicular IncidenceParallel & Perpendicular Incidence

H
E

x

E
H

x

y y

Plane of incidence is the x-y plane

E is Perpendicular to the
plane of incidence

E is Parallel to the
plane of incidence
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Perpendicular incidencePerpendicular incidence

y

Hi EiEr

Hr 

x

θr θi

θtHt
Et

ε2µ2

ε1µ1
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Write math expression for fields!Write math expression for fields!
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Say What!!! How did you get that?Say What!!! How did you get that?

Within the exponential: This tells the direction of propagation
Of the wave. E.g. for both the incident Ei and Hi

( )ii yxj θθβ cossin1 +
A component in the – x direction

Another component in the –y direction

Propagating
In medium 1

Outside the exponential tells what vector components of the field
Are present. E.g. for Hr

( )
1

0sinˆcosˆ
Z

Eyx rr
⊥+

ρθθ
+x and +y components of Hr

Perpendicular reflection
coefficient

E0/Z1 converts E to H
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Apply boundary conditionsApply boundary conditions

Tangential E fields (Ez) matches at y=0
Tangential H fields (Hx) matches at y=0

( ) ( ) ( )tri xjxjxj θβτθβρθβ sinexpsinexpsinexp 211 ⊥⊥ =+

We know that τ =1+ ρ, so then the arguments of the 
exponents must be equal. Sometimes called Phase matching
in optical context. It is the same as applying the boundary
conditions.

tri jjj θβθβθβ sinsinsin 211 ==
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Snell’s laws and Fresnel coefficientsSnell’s laws and Fresnel coefficients

The first equation gives

and from the second using  it θ
εµ
εµθ

λ
πβ sinsin

22

11              2
==

ir θθ =

By matching the Hx components and utilizing Snell, we can 
obtain the Fresnel reflection coefficient for perpendicular 
incidence.

ti

ti

ZZ
ZZ

θθ
θθρ

coscos
coscos

12

12

+
−

=⊥
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Alternative form Alternative form 

Alternatively, we can use Snell to remove the θt and write it in
terms of the incidence angle, at the same time assuming 
non-magnetic media (µ= µ0 for both media).

ii

ii

θ
ε
εθ

θ
ε
εθ

ρ
2

1

2

2

1

2

sincos

sincos

−+

−−
=⊥

Note how both forms
reduce to the transmission
line form when θi=0

This latter form is the one that is most often quoted in texts,
the previous version is more general 
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Some interesting observationsSome interesting observations

• If ε2 > ε1       Then the square root is positive,
• If ε1> ε2        i.e. the wave is incident from more dense to

less dense
AND

⊥ρ Is real

1

22

ε
εθ ≥isin

Then         is complex and   ⊥ρ 1=⊥ρ

This implies that the incident wave is totally
internally reflected (TIR) into the more dense 
medium



67
Microwave Physics and Techniques                UCSB –June 2003

Critical angle Critical angle 

When the equality is satisfied we have the so-called critical
angle. In other words, if the incident angle is greater than or 
equal to the critical angle AND the incidence is from more 
dense to less dense, we have TIR. 

1

21

ε
εθ −= sinic

For θi>  θic Then                as noted previously.1=⊥ρ
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Strange resultsStrange results

Now 

1A  where

imaginary! is             1

!  1       since so   

2

2

1

2

21
2

1

−=

=−=

>⇒>=

i

ttt

tit

jA

θ
ε
ε

θθθ

θεεθ
ε
εθ

sin

cossincos

sinsinsin

What is the physical interpretation of these results? To see
what is happening we go back to the expression for the
transmitted field and substitute the above results.
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Transmitted field Transmitted field 

( )[ ]

[ ] [ ]

1 where 2

2

1
222

20

20

−==

−=

+=

⊥

⊥

i

t

ttt

Aα

yxjEz

yxjEzE

θ
ε
εεµωβ

αθβτ

θθβτ

sin

expsinexpˆ

cossinexpˆpreviously

cos θt=jA

Physically, it is apparent that the transmitted field propagates
along the surface (-x direction) but attenuates in the +y direction
This type of wave is a surface wave field
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ExampleExample

Assume:
εr = 81
σ = 0
µr = 1

Let θi = 45°
evaluate TIRicic ⇒>== °− θθθ i

1    so    386
81
1 .sin

y

air
water

Ei

Hi 

2
1 x
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Example (Example (ctdctd))

°−∠=

−+

−−
+=

+=

===

+=−°±=

==

⊥

°

6.4442.1

5.0
81
1707.0

5.0
81
1707.0

1

1

/5.3928.62
28.6145sin81cos

38.645sin
1
81sin    Snell Using

00
2

2

ρτ
λλ

πβα

θ

θ

mNepA

jjt

t

This means that if
the field strength on
the surface is1Vm-1, 
then

-1Vm421.== it EE τ

Choose + sign
to allow for
attenuation
in +y direction
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Evaluate the field just above the Evaluate the field just above the 
surfacesurface

Lets evaluate the transmitted E field at λ/4 above the surface.

dB

VmEt

885
421
1027320

273
4

4939421

6

10

0

.
.

.log

..exp.

−=






 ×
=

=






−
=

−

−µλ
λ

This means that the surface wave is very tightly bound to the
surface and the power flow in the direction normal to the 
surface is zero.
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What about the factorWhat about the factor ??0

0

k
ωµ

0

0

00000

0 122
µ
ε

µωµ
π

ωµλ
π

ωµ
====

cc
fk

This term has the dimensions of admittance, in fact 

0

0

00
0

11
µ
ε

η
===

Z
Y

Ω≈= 377space free of impedance  Zwhere 0

EnH
rr

×= ˆ
0

1
η

And now
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Propagation in conducting mediaPropagation in conducting media

We have considered propagation in free space (perfect dielectric
with σ = 0). Now consider propagation in conducting media where
σ can vary from a finite value to ∞. 

ε
ρµµε ∇+

∂
∂

=
∂
∂

−∇
tt
JEE 2

2
2Start with

Assuming no free charge and the time harmonic form, gives

22

22

22

     where
0

µεωωµσγ

γ

ωµσµεω

−=

=−∇

=+∇

j
EE

EjEE
rr

rrr

Complex propagation
coefficient due to
finite conductivity
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Conduction current and Conduction current and 
displacement currentdisplacement current

In metals, the conduction current (σE) is much larger than the 
displacement current (jωε0E). Only as frequencies increase to
the optical region do the two become comparable.

E.g.         σ = 5.8x107 for copper
ωε0 = 2πx1010x 8.854x10-12 = 0.556

So retain only the jωµσ term when considering highly conductive
material at frequencies below light. The PDE becomes: 

00
2 =−∇ EjE

rr
σωµ
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Plane wave incident on a conductorPlane wave incident on a conductor

Consider a plane wave entering a conductive medium at normal
incidence.

z
x

Ex

Hy

Free space Conducting medium

Some transmittedMostly reflected
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Mathematical solutionMathematical solution

The equation for this is:
002

2

=−
∂

∂
x

x Ej
z
E σωµ

The solution is: zj
x eEE σωµ0

0
−=

We can simplify the exponent: ( )
2

1 0
0

σωµσωµγ jj +==

So now γ has equal real
and imaginary parts.

2
      with  0

0
σωµβαβα === −− zz

x eeEE

Alternatively write δδ
jzz

x eeEE −−
= 0
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Skin DepthSkin Depth

The last equation 

gives us the notion of skin depth:
βασωµ

δ 112

0

===

On the surface at z=0 we have Ex=E0
at one skin depth z=δ we have Ex=E0/e

δδ
jzz

x eeEE −−
= 0

field has decayed to 1/e
or 36.8% of value on the
surface.  
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Plot of field into conductorPlot of field into conductor

δ 2δ …….

z

E0

E0/e
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Examples of skin depthExamples of skin depth

f

2

0

106162 −×
==

.
σωµ

δ

at 60Hz   δ=8.5x10-3 m
at     1MHz δ=6.6x10-5 m
at 30GHz δ=3.8x10-7 m 

σ = 5.8x107 S/mCopper

Seawater
f

210522 ×
=

.δ

at 1 kHz δ=7.96m 

σ = 4 S/m

Submarine comms!
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Submarine communicationSubmarine communication



82
Microwave Physics and Techniques                UCSB –June 2003

Characteristic or Intrinsic Impedance Characteristic or Intrinsic Impedance 
ZZmm

Define this via the material
as before:

ω
σε

µ
ε
µ

j
Z

c
m

−
== 00

But again, the conduction current predominates, which means 
the second term in the denominator is large. With this
approximation we can arrive at:

( )
σδσ

ωµ jjZm
+

=+=
1

2
1 0

For copper at 10GHz  Zm= 0.026(1+j) Ω
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Reflection from a metal surfaceReflection from a metal surface

So a reflection coefficient at metal-air interface is 

0
0

0  since   1 ZZ
ZZ
ZZ

m
m

m <<−≈
+
−

=ρ

We also note that as σ→ ∞, Zm→ 0 and that ρ= -1 for the case
of the perfect conductor. Thus the boundary condition for a PEC
is satisfied in the limit.

The transmission coefficient into the metal is given by τ = 1+ρ



84
Microwave Physics and Techniques                UCSB –June 2003

Conductors and dielectricsConductors and dielectrics

Materials can behave as either a dielectric or a conductor 
depending on the frequency.

EjEH ωεσ +=×∇      recall

Conduction current density

Displacement current density

3 choices
ωε >> σ displacement current >> conductor current  ⇒ dielectric
ωε ≈ σ displacement current ≈ conductor current    ⇒ quasi conductor
ωε << σ displacement current << conductor current  ⇒ conductor
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A rule for determining whether dielectric or A rule for determining whether dielectric or 
conductorconductor

ωε
σ
ωε
σ

ωε
σ

<

<<

<

100               Conductors

100
100

1     Conductors Quasi

100
1                         sDielectric

M

2
1

0
-1
-2

8 9 10 11

dielectric

quasi conductor

conductor

ground seawater

copper

N     Freq=10N

ωε
σ

=  10M
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General case: (both conduction & General case: (both conduction & 
displacement currents)displacement currents)









+−=−=

ωε
σµεωµεωωµσγ
j

j 1  222

From 4.4, we now retain both terms: 

If we now let γ = α+jβ, square it and equate real and imaginary
parts and then solve simultaneously for α and β. We obtain:

rad/m     11
2
1

Np/m     11
2
1

2
1

2

2
1

2
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+=

ωε
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ApproximationsApproximations

By taking a binomial expansion of the term under the radical
and simplifying, we can obtain: 

( )jZw +1
2

                                              

   
2

                                           

    
2

                          
2

                

σ
ωµ

ε
µ

ωµσµεωβ

ωµσ
ε
µσα

Good conductorGood dielectric
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Example Problem 1:

An FM radio broadcats signal traveling in the y-dirrection in air 
has a magnetic field given by the phasor

( ) ( )

( )  ingcorrespond the Find (b)
m). (in h wavelengtand MHZ) (infrequency  theetermine (a)

.

ˆˆ. .

yE
 D

mAjzxeyH yj 1680310922 −π−− −+−×=

( ) ( ) 1680

1

11

102
2

680

−π−

−

−−−≈⇒

ωε=
∂

∂
−

∂
∂

=×∇

≈
π

ω
=

−π=εµω=β

mVzjxeyE

Ej
y

Hz
y

HxH

MHzf

mrad

yj

o
xz

oo

ˆˆ.

ˆˆ

.

.

             

 whichfrom
               

 have  we(a)
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Example Problem 2:
A uniform plane wave of frequency 10 GHz propagates in a sufficiently 
large sample of gallium arsenide (GaAs, εr≈12.9,µr ≈1, tanδc ≈5x10-

5),which is a commonly substrate material for high-speed solid-state 
devices. Find (a) the attenuation constant α in np-m-1,(b) phase velocity 
νpin m-s-1,and (c) intrinsic impedance ηc in  Ω.

1
8

410

00
410

410

4

1880912
1032

105102
2

105102
2

105102
22

1105

−
−

−

−

−

−≈
××

×××π
=

εµεµ×××π
=

ε
µ×××π

=
ε
µδωε

=
ε
µσ

≈α

<<×=δ

mnp

rr

c

c

    

   

 have  We(a)
.dielectric good a forapprox  the use can  we Since

..

tan

,tan
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Example Problem 2:

air. in that that
 smaller times ~ is impedanceintrinsic   the that Note

  impedanceintrinsic  The (c)

air. the in that slower times ~ isvelocity   phase

 the that Note

 have  we where

 velocity  hase Since (b)

p

p

593

105
912

377
593

10358
912

1031 17
8

.

.
.

.

..
.

,

Ω≈≈
ε
µ

≈η

−×≈
×

≈
µε

≈ν

µεω≈β

β
ω

=ν

−

c

sm

p
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Example Problem3:
A recent survey conducted in USA indicates that ~50% of the population 
is exposed to average power densities of approximately 0.005 µW-(cm)-

2due to VHF and UHF broadcast radiation. Find the corresponding 
amplitude of the electric and magnetic fields.

( )

( )

( ) ( )[ ]zt
E

zzt
E

EzHΕ

ztEH

ztEΕ

y

x

β−ω+
η

=β−ω







η

=×=Ρ

ε
µ=ηµεω=β

β−ω
η

=

β−ω=

21
2

1

2
020

0

0

0

cosˆcosˆ

.

cos

cos

by given is  wavethis for vector Poynting The  and  where

:mediumlosslessa in gpropagatinwaveplaneuniform the Consider
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Example Problem3:

( ) ( )[ ]

η
=⇒

β−ω+
η

=Ρ= ∫∫

2

21
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11

2
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2
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dtzt
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z
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p
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ˆ
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