Microwave Physics and Techniques

Solutions to Homework Set\#2 - June 18, 2003

Problem1.

Minimum power loss of 10 dB in a layer of 1 m thickness allows us to determine the attenuation constant α :

$$
10 \log e^{-20 \alpha}=-10 \Rightarrow \alpha=\frac{\ln 10}{2}
$$

The effective complex dielectric constant

$$
\begin{aligned}
\varepsilon_{e f f} & =\varepsilon_{0}\left(1-\frac{x}{1-j z}\right)=\varepsilon_{0}\left(1-\frac{x(1+j z)}{\left(1+z^{2}\right)}\right)=\varepsilon_{0} \frac{1+z^{2}-x-j x z}{1+z^{2}} \\
& =\underbrace{\frac{1+z^{2}-x}{1+z^{2}}}_{\varepsilon_{e}^{\prime}}-j \underbrace{\varepsilon_{0} \frac{x z}{1+z^{2}} \Rightarrow \varepsilon_{e f f}=\varepsilon_{e f f}^{\prime}-\dot{\varepsilon}_{e f f}^{\prime \prime}}_{\varepsilon_{e f f}^{\prime}}
\end{aligned} \text { Here } \quad x=\frac{\omega_{p}^{2}}{\omega^{2}}=\frac{f_{p}^{2}}{f^{2}}, z=\frac{v}{\omega}, ~ l
$$

$$
\begin{aligned}
& \text { We have } \\
& \alpha=\omega \sqrt{\frac{\mu \varepsilon}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}}-1\right]^{1 / 2}=\omega \sqrt{\frac{\mu \varepsilon_{e f f}^{\prime}}{2}}\left[\sqrt{1+\left(\frac{\varepsilon_{\text {eff }}^{\prime \prime}}{\varepsilon_{e f f}^{\prime}}\right)^{2}}-1\right]^{1 / 2} \\
& \\
& =\frac{\omega}{c} \sqrt{\frac{1+z^{2}-x}{2\left(1+z^{2}\right)}}\left[\sqrt{1+\left(\frac{x z}{1+z^{2}-x}\right)^{2}}-1\right]^{1 / 2}
\end{aligned}
$$

Substituting numerical values of $v=10^{11} \mathrm{~s}^{-1}$ and

$$
f_{p}=9 \sqrt{N}=9 \sqrt{10^{19} \mathrm{~m}^{-3}} \approx 9 \sqrt{10} 10^{9} \mathrm{~Hz},
$$

We can solve for $f \Rightarrow f \approx 343 \mathrm{GHz}$

Since $r \gg L$, we can use far-zone field expressions. The maximum time-average radiated power density occurs at $\theta=90^{\circ}$ and is given by

$$
\left|S_{a v}\right|_{\max } \approx \frac{\left|E_{\theta}\right|_{\max }^{2}}{2 \eta_{a i r}}
$$

For far fields (Fraunhofer), we have

$$
\begin{aligned}
& H_{\phi} \approx j \frac{I d l}{4 \pi}\left(\frac{e^{-\beta r}}{r}\right) \beta \sin \theta \\
& E_{\theta} \approx j \frac{I d l}{4 \pi}\left(\frac{e^{-\beta r}}{r}\right) \eta \beta \sin \theta \\
& E_{Z} \approx 0
\end{aligned}
$$

So $\left|E_{\theta}\right|_{\text {max }}=\frac{I d \eta_{a i r} \beta}{4 \pi r}=\frac{I d \eta_{\text {air }}}{2 \lambda r}$. Substituting $\mathrm{I}=10 \mathrm{~A}$ and $\mathrm{d} / / \lambda=0.01$, the maximum time-average radiated power density at $\mathrm{r}=100 \mathrm{~m}$ can be calculated as

$$
\begin{aligned}
& \left|E_{\theta}\right|_{\max }=\frac{(10)(0.01)(377)}{2(100)}=0.1885 \mathrm{~V}-\mathrm{m} \\
& \Rightarrow\left|S_{a V}\right|_{\max } \approx \frac{(0.1885)^{2}}{2(377)} \approx 47.1 \mu W-\mathrm{m}^{-2}
\end{aligned}
$$

b) Repeating part (a) at $\mathrm{r}=1 \mathrm{~km}$, we find

$$
\left|S_{a V}\right|_{\max } \approx 0.471 \mu W-m^{-2}
$$

b) Repeating part (a) at r=10km, we find

$$
\left|S_{a V}\right|_{\max } \approx 4.71 \mu W-m^{-2}
$$

Using the power density the total power radiated by the antenna can be calculated as

$$
P_{r a d}=4 \pi r^{2}\left|S_{a V}\right|=4 \pi\left(10^{8}\right)\left(\frac{20 \times 10^{-12}}{10^{-4}}\right)=80 \pi W
$$

Since the input power of the antenna is given to be 25 W , the antenna gain is

$$
G_{\text {anten }}=\frac{P_{r a d}}{P_{i n}}=\frac{80 \pi W}{25 W} \approx 10.5
$$

Problem4.

The total time-average power radiated by the Hertzian dipole antenna between the $\pm 45^{\circ}$ equatorial plane can be calculated as

$$
\begin{aligned}
{\left[P_{r a d}\right]_{45^{0} \leq \theta<135^{0}} } & =\frac{(I d l)^{2}}{32 \pi^{2}} \eta \beta^{2}(2 \pi) \int_{\pi / 4}^{3 \pi / 4} \sin ^{3} \theta d \theta \\
& =\frac{(I d l)^{2}}{32 \pi^{2}} \eta \beta^{2}(2 \pi)\left[-\frac{\cos \theta}{3}\left(2+\sin ^{2} \theta\right)\right]_{\pi / 4}^{3 \pi / 4} \\
& =\frac{(I d l)^{2}}{32 \pi^{2}} \eta \beta^{2}(2 \pi)\left[\frac{1}{3 \sqrt{2}}(2.5)+\frac{1}{3 \sqrt{2}}(2.5)\right] \\
& =\frac{5(I d l)^{2}}{48 \pi \sqrt{2}} \eta \beta^{2}
\end{aligned}
$$

Use:

$$
\begin{aligned}
& \int \sin ^{3} \theta d \theta=\int \sin ^{2} \theta \sin \theta d \theta=\int\left(\cos ^{2} \theta-1\right) d(\cos \theta) \\
& =\frac{\cos ^{3} \theta}{3}-\cos \theta=\frac{\cos \theta}{3}\left(\cos ^{2} \theta-3\right)=\frac{\cos \theta}{3}\left(1-\sin ^{2} \theta-3\right) \\
& =-\frac{\cos \theta}{3}\left(2+\sin ^{2} \theta\right)
\end{aligned}
$$

The fraction of the total power radiated between $45^{\circ} \leq \theta<135^{\circ}$ can be found as

$$
\frac{\left[P_{r a d}\right]_{45^{0}} \leq \theta<135^{0}}{P_{r a d}}=\frac{5}{4 \sqrt{2}} \approx 0.884 \text { or } 88.4 \%
$$

The penetration depth at 2.45 GHz with $\varepsilon_{r}^{\prime}=52.4$ and $\tan \delta_{c}=0.33\left(\mu_{r}=1\right)$ can be calculated as

$$
\begin{aligned}
d & =\frac{1}{\alpha}=\frac{\sqrt{2}}{\omega \sqrt{\varepsilon_{r}^{\prime}} \sqrt{\mu_{0} \varepsilon_{0}}\left[\sqrt{1+\tan ^{2} \delta_{c}-1}\right]^{1 / 2}} \\
& =\frac{\sqrt{2}\left(3 \times 10^{8}\right)}{2 \pi\left(2.45 \times 10^{9}\right) \sqrt{52.4}\left[\sqrt{1+\left(0.33^{2}\right)-1}\right]^{1 / 2}} \approx 0.0165 \mathrm{~m}=1.65 \mathrm{~cm} .
\end{aligned}
$$

Therefore assuming that the hamburger is uniformly cooked if its thickness is about 1 to 1.5 times its penetration depth, the maximum thickness of the hamburger to be heated uniformly at 3.45 GHz is $1.5 \mathrm{~d} \approx 2.48 \mathrm{~cm}$.
b) Following a similar approach as in part a) the penetration depth in the hamburger slice at 915 MHz with $\varepsilon_{r}^{\prime}=54.4$ and $\tan \delta_{c}=0.41\left(\mu_{r}=1\right)$
is

$$
\left.d=\frac{\sqrt{2}\left(3 \times 10^{8}\right)}{2 \pi\left(915 \times 10^{6}\right) \sqrt{54.4}\left[\sqrt{1+\left(0.41^{2}\right)-1}\right]}\right] / 220.0351 \mathrm{~m}=3.51 \mathrm{~cm}
$$

Therefore the maximum thickness of the hamburger to be heated uniformly at 915 MHz is $1.5 \mathrm{~d} \approx 5.26 \mathrm{~cm}$. As mentioned, microwave ovens operating at 915 MHz allow the user to cook with larger dimensions uniformly compared to microwave ovens operating at 2.45 GHz .

Problem6.

Note that since for normal incidence, $1+\Gamma=T$, the reflection and transmission coefficients must, $\Gamma=-0.5$ and $T=0.5$. For a lossless nonmagnetic case, the reflection and transmission coefficients can be simplified as

$$
\Gamma=\frac{\sqrt{\varepsilon_{1 r}}-\sqrt{\varepsilon_{2 r}}}{\sqrt{\varepsilon_{1 r}}+\sqrt{\varepsilon_{2 r}}}=-0.5, T=\frac{2 \sqrt{\varepsilon_{1 r}}}{\sqrt{\varepsilon_{1 r}}+\sqrt{\varepsilon_{2 r}}}=0.5
$$

Dividing these two with one another gives:

$$
0.5-0.5 \frac{\sqrt{\varepsilon_{2 r}}}{\sqrt{\varepsilon_{1 r}}}=-1 \Rightarrow \frac{\varepsilon_{2 r}}{\varepsilon_{1 r}}=9
$$

$$
\begin{aligned}
& \bar{J}=\sigma \bar{E}, \nabla \cdot \varepsilon \bar{E}=\rho=\nabla \cdot\left(\frac{\varepsilon}{\sigma}\right) \bar{J} \\
& \Rightarrow \nabla \cdot \varepsilon \bar{E}=\nabla \cdot\left(\frac{\varepsilon}{\sigma}\right) \bar{J}=\left(\frac{\varepsilon}{\sigma}\right) \nabla \cdot \bar{J}=-\left(\frac{\varepsilon}{\sigma}\right) \frac{\partial \rho}{\partial t} \\
& \Rightarrow \rho=\rho_{0} e^{-\alpha t / \varepsilon}
\end{aligned}
$$

For copper $\tau=\varepsilon / \sigma=1.52 \times 10^{-19}$. For sea water $\tau=\varepsilon / \sigma=1.77 \times 10^{-10}$
$f=1 / \tau=6.58 \times 10^{18} \mathrm{sec}^{-1}$ for copper and $5.59 \times 10^{9} \mathrm{sec}^{-1}$ for sea water.

Problem8.

$\nabla \times \bar{H}=j \omega \varepsilon \bar{E}+\sigma \bar{E} . \quad$ Displacement current can be neglected when $\omega \varepsilon \ll \sigma$ or $f \ll \sigma / 2 \pi \varepsilon, \Rightarrow$ i.e. $f \ll 1 / 2 \pi \tau$.

Problem9. (Colin 2.15)

Consider equation 2.92 (Collin, P.50)

$$
\sin \theta_{1}=\eta \sin \theta_{3}
$$

Here in place of this equation we have $\sin \theta_{1}=\eta \sin \theta_{3}$ where now $\eta=\sqrt{\frac{\mu}{\mu_{0}}}$.

Similarly in place of (eq. 2.93):
$\left(E_{1}+E_{2}\right) \cos \theta_{1}=E_{3} \sqrt{1-\sin ^{2} \theta}=E_{3} \frac{\sqrt{\varepsilon_{r}-\sin ^{2} \theta_{1}}}{\eta}$
We get $\left(E_{1}+E_{2}\right) \cos \theta_{1}=E_{3}\left[\left(\mu_{r}-\sin ^{2} \theta_{1}\right) / \mu_{r}\right]^{1 / 2}$ and for (2.94)
$E_{1}-E_{2}=E_{3} \mu_{r} \quad$ where again $\quad \mu_{r}=\mu / \mu_{0}$.
Thus we get $\quad(1+\Gamma) \cos \theta_{1}=T\left[\left(\mu_{r}-\sin ^{2} \theta_{1}\right) / \mu_{r}\right]^{1 / 2}$

$$
1-\Gamma=T \mu_{r}^{-1 / 2}
$$

$$
\Gamma=\frac{\left(\mu_{r}-\sin ^{2} \theta_{1}\right)^{1 / 2}-\cos \theta_{1}}{\left(\mu_{r}-\sin ^{2} \theta_{1}\right)^{1 / 2}+\cos \theta_{1}} \text { and } T=\frac{2 \mu_{r}^{1 / 2} \cos \theta_{1}}{\left(\mu_{r}-\sin ^{2} \theta_{1}\right)^{1 / 2}+\cos \theta_{1}}
$$

A Brewster angle that makes $\Gamma=0$ does not exist.

We have

$$
\begin{aligned}
& \left\{\begin{array}{l}
E_{1} e^{-j k_{0} z}+E_{2} e^{j k_{0} z}=E_{X} \\
Y_{0} E_{1} e^{-j k_{0} z}-Y_{0} E_{2} e^{j k_{0} z}=H_{y}
\end{array} \quad z \leq-d\right. \\
& \left\{\begin{array}{l}
E_{3} e^{-j k_{1} z}+E_{4} e^{j k_{1} z}=E_{X} \\
Y_{1} E_{3} e^{-j k_{1} z}-Y_{1} E_{4} e^{j k_{1} z}=H_{y}
\end{array} \quad-d \leq z \leq-0\right. \\
& \left\{\begin{array}{l}
E_{5} e^{-j k_{2} z}=E_{x} \quad z \geq 0 \\
Y_{2} E_{5} e^{-j k_{2} z}=H_{y}
\end{array}\right.
\end{aligned}
$$

B.C's give:

$$
\begin{aligned}
& E_{1} e^{j k_{0} d}+E_{2} e^{-j k_{0} d}=E_{3} e^{j k_{1} d}+E_{4} e^{-j k_{1} d} \\
& E_{1} e^{j k_{0} d}-E_{2} e^{-j k_{0} d}=Y_{1} Z_{0}\left(E_{3} e^{j k_{1} d}-E_{4} e^{-j k_{1} d}\right) \\
& E_{3}+E_{4}=E_{5} \\
& E_{3}-E_{4}=Y_{2} Z_{1} E_{5}
\end{aligned}
$$

For $\quad k_{1} d=\pi / 2=2 \pi d / \lambda_{1}=2 \pi d\left(\varepsilon_{1 r}\right)^{1 / 2} / \lambda_{0}$

$$
\begin{aligned}
& E_{1}-E_{2}=E_{3}-E_{4}=Y_{1} Z_{1} E_{5} \\
& E_{1}+E_{2}=Y_{1} Z_{0}\left(E_{3}+E_{4}\right)=Y_{1} Z_{0} E_{5}
\end{aligned}
$$

Subtracting

$$
\begin{aligned}
& \Rightarrow 2 E_{2}=\left(Y_{1} Z_{0}-Y_{2} Z_{1}\right) E_{5} \\
& \Rightarrow E_{2}=0 \text { if } Y_{1} Z_{0}-Y_{2} Z_{1}=0 \Rightarrow Z_{1}=\left(Z_{0} Z_{2}\right)^{1 / 2} \Rightarrow \varepsilon_{1}=\left(\varepsilon_{0} \varepsilon_{2}\right)^{1 / 2}
\end{aligned}
$$

