
Microwave Physics and Techniques         

Solutions to Homework Set#2 – June 18, 2003
Problem1.
Minimum power loss of 10dB in a layer of 1m thickness allows us to 
determine the attenuation constant α:
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Substituting numerical values of ν=1011 s-1 and 
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We have
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We can solve for GHzff 343≈⇒



Problem2.

Since r>>L, we can use far-zone field expressions. The maximum time-average 
radiated power density occurs at θ=900 and is given by
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For far fields (Fraunhofer), we have 
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So                                                . Substituting I=10A and dl/λ=0.01, the 

maximum time-average radiated power density at r=100 m can be calculated as 
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b) Repeating part (a) at r=10km, we find 

24710 −−µ≈ mWSav .max

b) Repeating part (a) at r=1km, we find 

2714 −−µ≈ mWSav .max



Problem3.
Using the power density the total power radiated by the antenna can be 
calculated as 
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Since the input power of the antenna is given to be 25W, the antenna gain is 
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Problem4.
The total time-average power radiated by the Hertzian dipole antenna between 
the ±450 equatorial plane can be calculated as 

[ ] ( ) ( ) θθπηβ
π

= ∫
π

π
<θ≤ d

Idl
Prad

43

4

32
2

2

13545 2
32

00 sin

( ) ( ) ( )
43

4

22
2

2
2

3
2

32

π

π




 θ+

θ
−πηβ

π
= sincosIdl

( ) ( ) ( ) ( )



 +πηβ

π
= 52

23
152

23
12

32
2

2

2
..Idl

( ) 2
2

248
5

ηβ
π

=
Idl

Use:

( ) ( )∫∫∫ θ−θ=θθθ=θθ coscossinsinsin ddd 1223

( ) ( )31
3

3
33

22
3

−θ−
θ

=−θ
θ

=θ−
θ

= sincoscoscoscoscos

( )θ+
θ

−= 22
3

sincos

The fraction of the total power radiated between                can be found as oo 13545 <θ≤
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Problem5.
The penetration depth at 2.45 GHz with 

can be calculated as 

( )1330452 =µ=δ=ε′ rcr and .tan.   
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Therefore assuming that the hamburger is uniformly cooked if its thickness is 
about 1 to 1.5 times its penetration depth, the maximum thickness of the 
hamburger to be heated uniformly at 3.45 GHz is 1.5d ≈ 2.48 cm.

b) Following a similar approach as in part a) the penetration depth in the 
hamburger slice at 915 MHz with 

is

( )1410454 =µ=δ=ε′ rcr and .tan.   
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Therefore the maximum thickness of  the hamburger to be heated uniformly at 
915 MHz is 1.5d ≈ 5.26 cm. As mentioned, microwave ovens operating at 915 
MHz allow the user to cook with larger dimensions uniformly compared to 
microwave ovens operating at 2.45 GHz.

Problem6.
Note that since for normal incidence, 1+Γ=T, the reflection and transmission 
coefficients must, Γ=-0.5 and T=0.5. For a lossless nonmagnetic case, the 
reflection and transmission coefficients can be simplified as 
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Dividing these two with one another gives:
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Problem7.
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For copper                                       . For sea water1910521 −×=σε=τ . 1010771 −×=σε=τ .
118105861 −×=τ= sec.f for copper and                                for sea water.1910595 −× sec.

Problem8.
.EEjH σ+ωε=×∇ Displacement current can be neglected when 
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Problem9. (Colin 2.15)
Consider equation 2.92 (Collin, P.50)
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A Brewster angle that makes Γ=0 does not exist.



Problem10. (Collin 2.18)
We have
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