Microwave Physics and Techniques

Solutions to Homework Set#2 — June 18, 2003
Problem1.

Minimum power loss of 10dB in a layer of 1m thickness allows us to
determine the attenuation constant o
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Substituting numerical values of v=10"" s*! and
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We can solve for f = f ~343GH~



Since r>>L, we can use far-zone field expressions. The maximum time-average
radiated power density occurs at 6=90° and is given by
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For far fields (Fraunhofer), we have

—Br
Idl Le }BsinG

‘ av

Hy~j—
¢J47t

1dl (e‘ﬁ"

r

Ly~ j—
ej4n

L, =0

)nBsinG

r

So ‘E ‘ = Idn;, = ldn,; . Substituting 1=10A and dI/A=0.01, the
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maximum time-average radiated power density at =100 m can be calculated as
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b) Repeating part (a) at r=1km, we find
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b) Repeating part (a) at r=10km, we find
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Using the power density the total power radiated by the antenna can be
calculated as
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Since the input power of the antenna is given to be 25W, the antenna gain is
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Problem4.

The total time-average power radiated by the Hertzian dipole antenna between
the +450 equatorial plane can be calculated as
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Use:
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The fraction of the total power radiated between 45° < 9 <135° can be found as
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The penetration depth at 2.45 GHz with €, =52.4 and tand, =0.33(u, =1)

can be calculated as
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Therefore assuming that the hamburger is uniformly cooked if its thickness is
about 1 to 1.5 times its penetration depth, the maximum thickness of the
hamburger to be heated uniformly at 3.45 GHz is 1.5d ~ 2.48 cm.

b) Following a similar approach as in part a) the penetration depth in the
hamburger slice at 915 MHz with €, =54.4 and tan§,. =0.41(n, =1)
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Therefore the maximum thickness of the hamburger to be heated uniformly at
915 MHz is 1.5d ~ 5.26 cm. As mentioned, microwave ovens operating at 915
MHz allow the user to cook with larger dimensions uniformly compared to
microwave ovens operating at 2.45 GHz.

5~ 0.0351m=3.51cm.

Problem6.

Note that since for normal incidence, 1+I'=T, the reflection and transmission
coefficients must, I'=-0.5 and T=0.5. For a lossless nonmagnetic case, the
reflection and transmission coefficients can be simplified as
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Dividing these two with one another gives:
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For copper ’C=8/G=1.52><10_19 . For sea water ‘C=8/G=1.77><10_10

£ =1/1=6.58x10"% sec™! for copperand 5.59x10° sec™! for sea water.

Problem8.
VxH = joek +ck.

Displacement current can be neglected when
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Problem9. (Colin 2.15)
Consider equation 2.92 (Collin, P.50)
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A Brewster angle that makes I'=0 does not exist.
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