

The US Particle Accelerator School Vacuum System Design Calculations

Lou Bertolini Lawrence Livermore National Laboratory June 10-14, 2002

$$\frac{d}{dz}\left(c\frac{dP}{dz}\right) - sP + q = 0$$

where z = axial beamline length (m)

- c = conductance m(liters/sec)
- s = pumping speed (liters/sec)/m
- q = gasload (nTorr liters/sec)/m

Ref. "A Method for Calculating Pressure Profiles in Vacuum Pipes", Sullivan, SLAC, 1993

- Each beampipe element is described by the following characteristics:
- Lumped or distributed values.
- Length (m)
- Axial conductance (liters/sec)
- Outgassing rate (nTorr-liters/sec)
- Pumping speed (liters/sec)
- Segment length (Δz) is specified for all elements

(10,000 segments max. per pipe).

Sample VACCALC Input File

Segment Length	Model of LCLS Undulator Beam Pipe			l anath	Outgassing load		
	0.005 2 First Segment	Segments		Length		Pumping Speed	
	0.00 0.00	1 2 LIN	20				
	Pump	L	0.1 🕨	0.15537	0.00785	1.00	
	Undulator	L	4.9	0.00317	0.39781	0.00	
	Pump	L	0.1	0.15537	0.00838	1.00	
	Undulator	L	4.9	0.00317	0.39781	0.00	
	Pump	L	0.1	0.15537	0.00838	1.00	
	Undulator	L	4.9	0.00317	0.39781	0.00	
	Pump	L	0.1	0.15537	0.00838	1.00	
	Undulator	L	4.9	0.00317	0.39781	0.00	
	Pump	L	0.1	0.15537	0.00838	1.00	
	Undulator	L	4.9	0.00317	0.39781	0.00	
	Pump	L	0.1	0.15537	0.00838	1.00	
	ENDPIPE			*			
	Second Segmen	t					
	0.00 0.00	2 3 LIN	20				
	Pump	L	0.1	0.15537	0.00785	2.00	
Conductance —	Undulator	1	4.9	0.00317	0.39781	0.00	
	Pump	L	0.1	0.15537	0.00838	3.00	
	Undulator	L	4.9	0.00317	0.39781	0.00	
	Pump	L	0.1	0.15537	0.00838	4.00	
	Undulator	L	4.9	0.00317	0.39781	0.00	
	Pump	L	0.1	0.15537	0.00838	5.00	
	Undulator	L	4.9	0.00317	0.39781	0.00	
	Pump ENDPIPE	L	0.1	0.15537	0.00838	1.00	

- The goal is to develop a numerical model of the vacuum system whether simple or complex.
- This effort is undertaken to provide an understanding of the critical issues (e.g. conductance limiting components, surface outgassing and leak rates) in order to design the most costeffective pumping system.
- Simple pumping calculations can lead to over-designing the pumping system which can escalate the costs for a large accelerator system.

- The goal is to develop a numerical model of the vacuum system whether simple or complex.
- This efforty is undertaken to provide an understanding of the critical issues (e.g. conductance limiting components, surface outgassing rates and leak rates) in order to design the most cost-effective pumping system.
- Simple pumping calculations can lead to over-designing the pumping system which can escalate the costs for a large accelerator system.

- In the mid-1990's, we at LLNL started using numerical modeling to design the vacuum systems for the APT RFQ and linac.
- Later we used it to design the vacuum systems for the Spallation Neutron Source linac.

- Pressure histories are solved for each sub-volume.
- We save the pumpdown history for specific sub-volumes of interest.
- We can employ separate time-dependent outgassing rates for preand post-conditioned surfaces.
- We can employ pressure-dependent pump speeds.
- We can do parametric studies of pump speeds and pump distribution,
- We can even run partial-pressure cases.

Complex example: Pumping using a manifold along an rf linac

Model the first twelve cavities with a length of 2.5 meters (per manifold) and extrapolate results to the full length (10's to 100's of meters)

Detail of the first six cavities of an rf linac

Goal: Pump through the coupling cavities and accel cavities to maintain the operating pressure of 10⁻⁶ Torr within the beam tube

For twelve cavities, conductances interconnect 83 sub-volumes (half-symmetry)

N ordinary differential equations must be solved simultaneously for each time where N = the number of sub-volumes

Gasload balance is the hearty of the numerical model.

$$V_n \frac{dP_n}{dt} = \sum Q_{in} - \sum Q_{out}$$

where V_n = volume of the nth sub-volume (liters)

 P_n = pressure of the nth sub-volume (Torr)

there are N pressures to solve for at each time t (sec)

- Q_{in} = leakage or outgassing into volume n (Torr-liters/sec)
- $Q_{out} = C_{nm}(P_n P_m)$ where m is the adjacent sub-volume
- C_{nm} = your favorite conducatance formula for the resistive component between sub-volumes n and m (liters/sec)

or
$$Q_{out} = S_p P_n$$
 where S_p is pressure-dependent pump speed

- Modol solve sfor pressure with N coupled differential equations (for each N sub-volumes) during each time for each pumping phase:
 - Roughing phase from atmospheric pressure down to 50 mTorr
 - Turbopumping phase from 50 mTorr to 10⁻⁶ Torr
 - Ion pumping phase down to base pressure
- Note that the choice of pump type depends on the design and operational requirements.
- Note that the final time for the pumpdown history should be chosen based on characteristics of outgassing data and operational requirements.

The software tool to solve the model depends on the number of sub-volumes and the speed of your computer.

- You can build your own solver routine using your favorite language and computer.
- You can use a routine like rkfixed from MathCad.
- You can use a routine like NDSolve from Mathmatica.
- We have solved small problems (N<10 sub-volumes) using MathCad on a PC in less than one hour.
- For larger problems, it is worth learning Mathmatica.
 - Example: N = 83 sub-volumes with tress separate pumping phases, the computer processing time was 4.5 min on a 266 MHz G3 PowerMac.
 - With MathCad, the problem would have taken days due to the overhead needed to MathCad more user friendly with a cleaner output.

Model can include multiple time-dependent outgassing rates for pre-and post-conditioned surfaces.

Pressure dependence of speed for a Varian

Pressure dependence of a speed for a Varian turbomolecular pump

Pressure dependence of a speed for a Varian Starcell ion pump

System response to a perturbation can be studied such as a failed pump.

