

The US Particle Accelerator School Estimating Gasloads

Lou Bertolini Lawrence Livermore National Laboratory June 10-14, 2002

Sources of Gas in a Vacuum System

Desorption (outgassing)

- Desorption is the evolution of adsorbed gas from the internal surfaces of a vacuum vessel.
- \cdot Desorption is a function of :
 - · Gas molecule characteristics
 - Surface material
 - Surface treatment
 - Surface temperature
 - Exposure time at vacuum
- High temperature bakeout under vacuum is required to desorb gasses in the shortest possible time.

Use Published Desorption Data for comparative purposes only

	Desorption Rate		
	(mBar-l/sec-	/sec- cm ² x 10 ⁻¹⁰)	
Metals and Glasses	1 hr @ vacuum	4 hrs @ vacuum	
Aluminum	80	7	
Copper (mech. polished)	47	7	
OFHC Copper (raw)	266	20	
OFHC Copper (mech. polished)	27	3	
Mild Steel, slightly rusty	58,520	199	
Mild Steel, Cr plate (polished)	133	13	
Mild Steel, Ni plate (polished)	40	4	
Mild Steel, Al spray coating	798	133	
Molybdenum	67	5	
Stainless Steel (unpolished)	266	20	
Stainless Steel (electropolished)	66	5	
Molybdenum glass	93	5	
Pyrex (Corning 7740) raw	99	8	
Pyrex (Corning 7740) 1 mo. At Atm.	16	3	

Ref. "Modern Vacuum Practice", Nigel Harris, pg 240

Photon Stimulated Desorption

Photon Stimulated Desorption

Photo-desorption rates vary with dose

"Eta-Leveling"

 $\eta_{i} = \eta_{\text{base}} \left(\frac{\text{Peak } P_{SR}}{P_{SR}} \right)^{\prime\prime}$

where η = photo-desorption coeff. (molecules/photon) P_{SR} = Synch. Rad. Power (Watts/cm)

USPAS June 2002 Estimating Gasloads Page 7

$$Q_i = N_{\gamma} \eta_i \left(\frac{22.4 \text{ liters x 760 Torr}}{6.02 \times 10^{23} \text{ molecules}} \right)$$

where Q_i = Photon Stimulated Desorption (Torr - liters/sec) N_{γ} = Photon Dose (photons/sec) η_i = Photo - desorption Rate (molecules/photon)

$$Q_{E} = 3.639 \sqrt{\frac{T}{M}} (P_{E} - P)A$$

where Q_E = gasload due to evaporation (Torr-liters/sec) T = temperature (K) M = molecular weight (grams/mole) P_E = vapor pressure of material (Torr) P = pressure (Torr) A = surface area of material evaporating (cm²)

True Leaks are steady-state gas loads, which limit the ultimate pressure of a vacuum system.

There are two categories of leaks in a vacuum system:

External Leaks or True Leaks (Q_{Lt})
 Q₁₊ > 10⁻⁵ Torr-liter/sec laminar flow leak

Q_{Lt} < 10⁻⁸ Torr-liter/sec molecular flow leak

Ref. "Vacuum Technology and Space Simulation", Santeler et al, NASA SP-105, 1966

Leakage (continued)

2. Internal Leaks or Virtual Leaks (Q_{Lv})

$$Q_{Lv} = rac{P_a V}{et}$$

where Q_{Lv} = gasload due to virtual leak (Torrliters/sec)

- P_a = pressure of trapped gas (Torr)
- V = volume of trapped gas (liters)
- e = 2.7183 base to natural logarithm

t = time (sec)

Ref. "Vacuum Technology and Space Simulation", Santeler et al, NASA SP-105, 1966

Examples of Virtual Leaks

Permeation is the transfer of a fluid through a solid

O-rings

•

- Fluorocarbon Rubber (Viton , Kalrez)
 Working temperature range -40 to 200°C
 Hardness: Shore A-78
 - Nitrile (Buna N) Working temperature range -55 to 135°C Hardness: Shore A-70
- Silicone Rubber (Silastic, Silplus)
 Working temperature range -114 to 232°C
 Hardness: Shore A-72

$$Q_{P} = 0.7 FD(\Delta P) K(1 - S)^{2}$$

where	Q F	=	leak rate (std cc/sec) permeability rate for a specific aas through a
	·		specific elastomer at a specific temperature
			(sta cc-cm/cm ⁻ sec dar)
	D	=	o-ring dia. (in)
	DP	=	pressure differential across o-ring (psi)
	K	=	factor depending on % squeeze and lubrication (see next slide)
	S	=	% squeeze

Ref. Parker O-ring Handbook

Effect of Squeeze and Lubrication on Oring Permeability Leak Rate

Ref. Parker O-ring Handbook

Example Calculation of O-ring Permeability

What is the approximate H₂ permeability rate of a 10"
diameter Viton o-ring (no lubrication, with a 20% squeeze)
at a
$$\Delta p = 14.7 \text{ psi}$$
?
F = 160 × 10⁻⁸ std cc-cm from Parker Table A2-4
D = 10" diameter
Dp = 14.7 psi
K = 1.35 from Parker Figure A2-2
S = 0.20
Q = 0.70FD(ΔP) K(1 - S)²
Q = 0.70 $\left(160 \times 10^{-8} \frac{\text{std cc} - \text{cm}}{\text{cm}^2 - \text{sec} - \text{bar}}\right)(10")(14.7 \text{ psi})(1.35)(1 - 0.20)^2$
Q = $\left(1.42 \times 10^{-4} \frac{\text{std cc}}{\text{sec}}\right)\left(\frac{1/\text{iters}}{1000 \text{ cc}}\right)\left(\frac{760 \text{ Torr}}{\text{Std Atm}}\right)$
Q = $1.08 \times 10^{-4} \frac{\text{Torr - liters}}{\text{sec}}$

O-ring Seal Design Considerations

- The leak rate through an o-ring is dependent on the following:
 - 1. % squeeze
 - Lubricated or dry 2
- Increased o-ring squeeze decreases permeability by increasing the path length the gas has to travel.
- Increased o-ring squeeze also decreases the exposed area available for gas entry.
- Increased o-ring squeeze also forces the elastomer into the microscopic irregularities in the sealing surface.

- · Face-type o-ring seals are recommended.
- Use as heavy a squeeze as possible on the o-ring cross-section.
- When a heavy squeeze is not possible, then (and only then) consider lubrication.
 - A heavy squeeze requires heavy flange construction .
 - Two o-rings in series can drastically reduce permeation.

•

Ref. Parker O-ring Handbook

Multiple O-ring Seals

The compression force (per linear inch of o-ring) is dependent on:

- 1. Hardness of the o-ring
- 2. O-ring cross-section
- 3. % squeeze

Variations in material properties will cause the compression forces to vary though the three attributes are the same.

Typical O-Ring Groove Dimensions

face seal glands

Ref. Parker O-ring Handbook